首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Submillimeter lightcurves of Vesta   总被引:1,自引:0,他引:1  
Thermal lightcurves of Asteroid Vesta with significant amplitude have been observed at 870 μm (345 GHz) using the MPIfR 19-channel bolometer of the Heinrich–Hertz Submillimeter Telescope. Shape and albedo are not sufficient to explain the magnitude of this variation, which we relate to global variations in thermal inertia and/or other thermophysical parameters. Vesta's lightcurve has been observed over several epochs with the same general shape. However, there are some changes in morphology that may in part be related to viewing geometry and/or asteroid season. Inconsistent night-to-night variations exhibit the inherent difficulties in photometry at this wavelength. We are able to match the observed brightness temperatures with a relatively simple thermal model that integrates beneath the surface and assumes reasonable values of thermal inertia, loss tangent and refractive index, and without having to assume low values of emissivity in the submillimeter. High flux portions of the submillimeter lightcurve are found to correspond to regions with weak mafic bands observed in Hubble Space Telescope images.  相似文献   

2.
We present the surface mapping of the southern hemisphere of Asteroid (4) Vesta obtained from Hubble Space Telescope (HST). From 105 images of Vesta through four filters in the wavelengths best to characterize the 1-μm pyroxene band, we constructed albedo and color-ratio maps of Vesta. These new maps cover latitudes −50° to +20°. The southern hemisphere of Vesta displays more diverse albedo and color features than the northern hemisphere, with about 15 new albedo and color features identified. The overall longitudinal albedo and color variations in the southern hemisphere are comparable with that of the northern hemisphere, with a range of about ±20% and ±10%, respectively. The eastern hemisphere is brighter and displays more diogenitic minerals than the western hemisphere. Correlations between 1-μm band depth and band width, as well as between 1-μm band depth and albedo, are present on a global scale, attributed to pyroxene composition variations. The lack of correlations between albedo and the spectral slope indicates the absence of globalized space weathering. The lack of a global correlation between 1-μm band depth and topography suggests that the surface composition of Vesta is not completely controlled by a single impact. The distribution of compositional variation on Vesta suggests a possible large impact basin. Evidence of space weathering is found in regions, including the bright rim of the south-pole crater where the steepest gravitational slope on Vesta is, and a dark area near a gravitationally flat area. We propose to divide the surface of Vesta into six geological units different from the background according to their 1-μm absorption features and spectral slopes, including two eucrite-rich units, a low-Ca eucrite unit, a diogenite-rich unit, a space weathered unit, and a freshly exposed unit. No evidence of olivine-rich area is present in these data.  相似文献   

3.
We report a comprehensive review of the UV–visible spectrum and rotational lightcurve of Vesta combining new observations by Hubble Space Telescope and Swift Gamma-ray Burst Observatory with archival International Ultraviolet Explorer observations. The geometric albedos of Vesta from 220 nm to 953 nm are derived by carefully comparing these observations from various instruments at different times and observing geometries. Vesta has a rotationally averaged geometric albedo of 0.09 at 250 nm, 0.14 at 300 nm, 0.26 at 373 nm, 0.38 at 673 nm, and 0.30 at 950 nm. The linear spectral slope as measured between 240 and 320 nm in the ultraviolet displays a sharp minimum near a sub-Earth longitude of 20°, and maximum in the eastern hemisphere. This is consistent with the longitudinal distribution of the spectral slope in the visible wavelength. The photometric uncertainty in the ultraviolet is ∼20%, and in the visible wavelengths it is better than 10%. The amplitude of Vesta’s rotational lightcurves is ∼10% throughout the range of wavelengths we observed, but is smaller at 950 nm (∼6%) near the 1-μm band center. Contrary to earlier reports, we found no evidence for any difference between the phasing of the ultraviolet and visible/near-infrared lightcurves with respect to sub-Earth longitude. Vesta’s average spectrum between 220 and 950 nm can well be described by measured reflectance spectra of fine particle howardite-like materials of basaltic achondrite meteorites. Combining this with the in-phase behavior of the ultraviolet, visible, and near-infrared lightcurves, and the spectral slopes with respect to the rotational phase, we conclude that there is no global ultraviolet/visible reversal on Vesta. Consequently, this implies a lack of global space weathering on Vesta, as previously inferred from visible–near-infrared data.  相似文献   

4.
Photometry and thermal lightcurves of six large asteroids (1-Ceres, 2-Pallas, 3-Juno, 12-Victoria, 85-Io and 511-Davida) have been observed at 870 μm (345 GHz) using the MPIfR 19-Channel Bolometer of the Heinrich-Hertz Submillimeter Telescope. Only Ceres displayed a lightcurve with an amplitude (∼50%, peak to peak) that was significantly greater than the uncertainty in the observations. When thermal fluxes and brightness temperatures are corrected for heliocentric distance and albedo, there is a significant relation with the sub-solar latitude of the asteroid, or the local season of the asteroid. No such trend can be found between observations with solar phase angle. These results are evidence that most of the submillimeter thermal radiation is emitted from below the diurnal thermal wave. Comparing the observed trend with model output suggests that the submillimeter radiation from all the asteroids we observed is best modeled by surface material with low thermal inertia (<15 J m−2 s−0.5 K−1, consistent with mid-infrared observations of large main-belt asteroids) and a refractive index closer to unity relative to densities inferred from radar experiments, implying a veneer of material over the asteroid surface with a density less than 1000 kg m−3. More data with better signal-to-noise and aspect coverage could improve these models and constrain physical properties of asteroid surface materials. This would also allow asteroids to be used as calibration sources with accurately known and stable, broadband fluxes at long wavelengths.  相似文献   

5.
Asteroids in general display only small or negligible variations in spectrum or albedo during a rotational cycle. Color variations with rotation are described in the literature but are usually comparable to the noise in the measurements. Twenty-four asteroids have been systematically monitored for such color changes. Only 3 Juno, 4 Vesta, 6 Hebe, 71 Niobe, 349 Dembowska, and 944 Hidalgo display color variations larger than 0.03 mag. In each of these cases the asteroid appears redder near maximum brightness. Of seven asteroids monitored polarimetrically, only 4 Vesta shows a convincing variation, attributed to an albedo change with rotation. The lightcurve can be explained by albedo differences alone; Vesta apparently has a nearly spheroidal shape. Notwithstanding the above results, the degree of uniformity of most asteroid surfaces is remarkable. If asteroids exist with large discrete domains of ferrosilicate, metallic, and/or carbonaceous material together on their surfaces, they have not yet been identified.  相似文献   

6.
The initial exploration of any planetary object requires a careful mission design guided by our knowledge of that object as gained by terrestrial observers. This process is very evident in the development of the Dawn mission to the minor planets 1 Ceres and 4 Vesta. This mission was designed to verify the basaltic nature of Vesta inferred both from its reflectance spectrum and from the composition of the howardite, eucrite and diogenite meteorites believed to have originated on Vesta. Hubble Space Telescope observations have determined Vesta’s size and shape, which, together with masses inferred from gravitational perturbations, have provided estimates of its density. These investigations have enabled the Dawn team to choose the appropriate instrumentation and to design its orbital operations at Vesta. Until recently Ceres has remained more of an enigma. Adaptive-optics and HST observations now have provided data from which we can begin to confidently plan the mission. These observations reveal a rotationally symmetric body with little surface relief, an ultraviolet bright point that can be used as a control point for determining the pole and anchoring a geographic coordinate system. They also reveal albedo and color variations that provide tantalizing hints of surface processes.  相似文献   

7.
Photometric observations of Pluto in the BVR filter system were obtained in 1999 and in 1990-1993, and observations in the 0.89-μm methane absorption band were obtained in 2000. Our 1999 observations yield lightcurve amplitudes of 0.30 ± 0.01, 0.26 ± 0.01, and 0.21 ± 0.02 and geometric albedos of 0.44 ± 0.04, 0.52 ± 0.03, and 0.58 ± 0.02 in the B, V, and R filters, respectively. The low-albedo hemisphere of Pluto is slightly redder than the higher albedo hemisphere. A comparison of our results and those from previous epochs shows that the lightcurve of Pluto changes substantially through time. We developed a model that fully accounts for changes in the lightcurve caused by changes in the viewing geometry between the Earth, Pluto, and the Sun. We find that the observed changes in the amplitude of Pluto’s lightcurve can be explained by viewing geometry rather than by volatile transport. We also discovered a measurable decrease since 1992 of ∼0.03 magnitudes in the amplitude of Pluto’s lightcurve, as the model predicts. Pluto’s geometric albedo does not appear to be currently increasing, as our model predicts, although given the uncertainties in both the model and the measurements of geometric albedo, this result is not firm evidence for volatile transport. The maximum of methane-absorption lightcurve occurs near the minimum of the BVR lightcurves. This result suggests that methane is more abundant in the brightest regions of Pluto. Pluto’s phase coefficient exhibits a color dependence, ranging from 0.037 ± 0.01 in the B filter to 0.032 ± 0.01 in the R filter. Pluto’s phase curve is most like those of the bright, recently resurfaced satellites Triton and Europa. Although Pluto shows no strong evidence for volatile transport now (unlike Triton), it is important to continue to observe Pluto as it moves away from perihelion.  相似文献   

8.
The highest resolution (pixel scale 30 km) images of Ceres to date have been acquired by the Advanced Camera for Surveys onboard Hubble Space Telescope, through three wide band filters, centered at 535, 335, and 223 nm, covering more than one rotation of Ceres. The lightcurve at 535 nm agrees with earlier observations at V-band [Tedesco, E.F., Taylor, R.C., Drummond, J., Harwood, D., Nickoloff, I., Scaltriti, F., Schober, H. J., Zappala, V., 1983. Icarus 54, 23-29] in terms of magnitude, amplitude, and shape. The 0.04 magnitude lightcurve amplitude cannot be matched by Ceres' rotationally symmetric shape, and is modeled here by albedo patterns. The geometric albedos at the above three wavelengths are measured to be 0.087±0.003, 0.056±0.002, and 0.039±0.003, respectively. V-band geometric albedo is calculated to be 0.090±0.003, consistent with earlier observations [Tedesco, E.F., 1989. In: Binzel, R.P., Gehrels, T., Matthews, M.S. (Eds.), Asteroids II. Univ. of Arizona Press, Tucson, pp. 1090-1138]. A strong absorption band (30%) centered at about 280 nm is observed, but cannot be identified with either laboratory UV spectra or the spectra of Europa or Ganymede. The single-scattering albedo has been modeled to be 0.070±0.002, 0.046±0.002, and 0.032±0.003, respectively. The photometric roughness of Ceres' surface is found to be about 44°±5° from photometric modeling using Hapke's theory, consistent with earlier radar observations [Mitchell, D.L., Ostro, S.J., Hudson, R.S., Rosema, K.D., Campbell, D.B., Velez, R., Chandler, J. F., Shapiro, I.I., Giorgini, J.D., Yeomans, D.K., 1996. Icarus 124, 113-133]. The first spatially resolved surface albedo maps of Ceres at three wavelengths have been constructed from HST observations, as well as the corresponding color maps. Eleven surface albedo features are identified, ranging in scale from 40-350 km. Overall the range of these albedo and color variations is small compared to other asteroids and some icy satellites.  相似文献   

9.
High signal-to-noise, rotationally-resolved spectra of Asteroid 4 Vesta’s southern hemisphere from the 2007 opposition were used to constrain its compositional and mineralogical variations. The spectra were rotationally-phased using closely timed HST observations of Vesta by Li et al. (Li, J.-Y., McFadden, L.A., Thomas, P.C., Mutchler, M.J., Parker, J.Wm., Young, E.F., Russell, C.T., Sykes, M.V., Schmidt, B.E. [2010]. Icarus 208, 238–251). The average surface of Vesta’s southern hemisphere is analogous to a howardite or polymict eucrite assemblage similar to the northern hemisphere, although the band parameters are distinctly shifted towards the diogenite zone on the Band–Band plot. A few distinct compositional units were detected and they might be related to albedo features detected by Hubble Space Telescope (Li et al., 2010). We have identified two compositionally distinct regions overlaying the background surface. The first unit is a polymict eucrite and/or low-Ca eucrite compositional unit at 143° longitude that border the eucrite zone on the Band–Band plot and the second is a diogenite unit at 159°. While we did not detect any distinct olivine units as suggested by Gaffey (Gaffey, M.J. [1997]. Icarus 127, 130–157), we cannot rule out the possibility of smaller olivine-rich units that are below the detection limit of the instrumentation we used. Based on the analysis and the limitations of the data, we do not suggest that Vesta’s surface is olivine-free. Mean pyroxene chemistry estimates for both hemispheres broadly agree with one another (to within one-sigma) with the northern hemisphere ferrosilite (Fs) and wollastonite (Wo) values being slightly higher than southern hemisphere.  相似文献   

10.
Spectra of asteroid 4 Vesta obtained in October 1990 with the International Ultraviolet Explorer are reanalyzed and reinterpreted. A large portion of the eastern hemisphere (based on the prime meridian definition of Thomas et al., 1997a) is darker at UV wavelengths than much of the western hemisphere. The UV lightcurve is in contrast with the visible lightcurve, which shows that the eastern hemisphere is brighter than the western. These IUE spectra of Vesta thus may be evidence for the “spectral reversal,” first seen on the Moon by Apollo 17, where the visibly brighter lunar highlands are darker than the maria at far-UV wavelengths. This effect was linked to space weathering when it was noted (Wagner et al., 1987) that the spectral reversal appears in the laboratory spectra of lunar soils but not powdered lunar rocks.We investigate Vesta’s UV lightcurve and spectral reversal, and its possible connection with space weathering. The addition to grain coatings of small amounts of submicroscopic iron (SMFe) through vapor deposition causes drastic spectral changes at UV-visible wavelengths (Hapke, 2001), while the longer wavelength spectrum remains largely unaffected. Other laboratory results (e.g., Hiroi and Pieters, 1998) indicate that the UV-visible wavelength range is affected by simulated weathering processes in a manner similar to what is seen on Vesta. It is likely that Vesta has experienced relatively minor amounts of space weathering, as indicated by the spectral reversal, along with the subtle visible-near infrared weathering effects (e.g., Binzel et al., 1997).  相似文献   

11.
Abstract— We present results of visible wavelengths spectroscopic measurements (0.45 to 0.72 microns) of two binary asteroids, obtained with the 1‐m telescope at the Wise Observatory on January 2008. The asteroids 90 Antiope and 1509 Esclangona were observed to search for spectroscopic variations correlated with their rotation while presenting different regions of their surface to the viewer. Simultaneous photometric observations were performed with the Wise Observatory's 0.46 m telescope, to investigate the rotational phase behavior and possible eclipse events. 90 Antiope displayed an eclipse event during our observations. We could not measure any slope change of the spectroscopic albedo within the error range of 3%, except for a steady decrease in the total light flux while the eclipse took place. We conclude that the surface compositions of the two components do not differ dramatically, implying a common origin and history. 1509 Esclangona did not show an eclipse, but rather a unique lightcurve with three peaks and a wide and flat minimum, repeating with a period of 3.2524 hours. Careful measurements of the spectral albedo slopes reveal a color variation of 7 to 10 percent on the surface of 1509 Esclangona, which correlates with a specific region in the photometric lightcurve. This result suggests that the different features on the lightcurve are at least partially produced by color variations and could perhaps be explained by the existence of an exposed fresh surface on 1509 Esclangona.  相似文献   

12.
Dawn spacecraft orbited Vesta for more than one year and collected a huge volume of multispectral, high-resolution data in the visible wavelengths with the Framing Camera. We present a detailed disk-integrated and disk-resolved photometric analysis using the Framing Camera images with the Minnaert model and the Hapke model, and report our results about the global photometric properties of Vesta. The photometric properties of Vesta show weak or no dependence on wavelengths, except for the albedo. At 554 nm, the global average geometric albedo of Vesta is 0.38 ± 0.04, and the Bond albedo range is 0.20 ± 0.02. The bolometric Bond albedo is 0.18 ± 0.01. The phase function of Vesta is similar to those of S-type asteroids. Vesta’s surface shows a single-peaked albedo distribution with a full-width-half-max ∼17% relative to the global average. This width is much smaller than the full range of albedos (from ∼0.55× to >2× global average) in localized bright and dark areas of a few tens of km in sizes, and is probably a consequence of significant regolith mixing on the global scale. Rheasilvia basin is ∼10% brighter than the global average. The phase reddening of Vesta measured from Dawn Framing Camera images is comparable or slightly stronger than that of Eros as measured by the Near Earth Asteroid Rendezvous mission, but weaker than previous measurements based on ground-based observations of Vesta and laboratory measurements of HED meteorites. The photometric behaviors of Vesta are best described by the Hapke model and the Akimov disk-function, when compared with the Minnaert model, Lommel–Seeliger model, and Lommel–Seeliger–Lambertian model. The traditional approach for photometric correction is validated for Vesta for >99% of its surface where reflectance is within ±30% of global average.  相似文献   

13.
We present the results of photometric observations of trans-neptunian object 20000 Varuna, which were obtained during 7 nights in November 2004-February 2005. The analysis of new and available photometric observations of Varuna reveals a pronounced opposition surge at phase angles less than 0.1 deg with amplitude of 0.2 mag relatively to the extrapolation of the linear part of magnitude-phase dependence to zero phase angle. The opposition surge of Varuna is markedly different from that of dark asteroids while quite typical for moderate albedo Solar System bodies. We find an indication of variations of the scattering properties over Varuna's surface that could result in an increase of the lightcurve amplitude toward zero phase angle. It is shown that a similar phase effect can be responsible for lightcurve changes found for TNO 19308 (1996 TO66) in 1997-1999.  相似文献   

14.
The Keck Observatory's adaptive optics (AO) system has been used to observe Asteroid 4 Vesta during its 2003 closest approach to Earth. Broadband K- and L-band images, centered at 2.1 and 3.6 μm, respectively, are presented here. The sharpness of the images was improved by applying a deconvolution algorithm, MISTRAL, to the images. The K- and L-band images at spatial resolutions of 53 km (0.055) and 88 km (0.085), respectively, display albedo features on the surface of the asteroid that can also be seen in the HST images (673 nm) presented by Thomas et al. [1997. Impact excavation on Asteroid 4 Vesta: Hubble Space Telescope results. Science 277, 1492-1495] and Binzel et al. [1997. Geologic mapping of Vesta from 1994 Hubble Space Telescope images. Icarus 128, 95-103] at the same latitudes and longitudes. While we cannot determine the morphology of these features, we can speculate that some of the albedo features may be impact craters filled with dark material. Spectra, centered at 1.65 and 2.1 μm, were also obtained. Spectra were corrected for the solar flux and are similar to those published by Gaffey [1997. Surface lithologic heterogeneity of Asteroid 4 Vesta. Icarus 127, 130-157], along the same wavelength range.  相似文献   

15.
We present the results of extensive thermal-infrared observations of the C-type near-Earth Asteroid (1580) Betulia obtained in June 2002 with the 3-m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. Betulia is a highly unusual object for which earlier radiometric observations, interpreted on the basis of simple thermal models, indicated a surface of high thermal inertia. A high thermal inertia implies a lack of thermally insulating regolith. Radiometric observations of other asteroids of comparable size indicate that regolith is present in nearly all cases. Knowledge of the surface thermal properties of small near-Earth asteroids is crucial for meaningful calculations of the Yarkovsky effect, which is invoked to explain the delivery of collisional fragments from the main belt into near-Earth orbits, and apparently has a significant influence on the orbital evolution of potentially hazardous near-Earth asteroids. Furthermore, apart from being an indicator of the presence of thermally insulating regolith on the surface of an asteroid, the thermal inertia determines the magnitude of the diurnal temperature variation and is therefore of great importance in the design of instrumentation for lander missions to small asteroids. In the case of Betulia our database is sufficiently broad to allow the use of more sophisticated thermal models than were available for earlier radiometric observations. The measured fluxes have been fitted with thermal-model emission continua to determine the asteroid's size and geometric albedo, pv. Fits obtained with a new thermophysical model imply an effective diameter of 4.57±0.46 km and an albedo of 0.077±0.015 and indicate a moderate surface thermal inertia of around 180 J m−2 s−0.5 K−1. It is difficult to reconcile our results with earlier work, which indicate a larger diameter for Betulia and a high-thermal-inertia surface of bare rock.  相似文献   

16.
The surface composition of Vesta, the most massive intact basaltic object in the asteroid belt, is interesting because it provides us with an insight into magmatic differentiation of planetesimals that eventually coalesced to form the terrestrial planets. The distribution of lithologic and compositional units on the surface of Vesta provides important constraints on its petrologic evolution, impact history, and its relationship with vestoids and howardite‐eucrite‐diogenite (HED) meteorites. Using color parameters (band tilt and band curvature) originally developed for analyzing lunar data, we have identified and mapped HED terrains on Vesta in Dawn Framing Camera (FC) color data. The average color spectrum of Vesta is identical to that of howardite regions, suggesting an extensive mixing of surface regolith due to impact gardening over the course of solar system history. Our results confirm the hemispherical dichotomy (east‐west and north‐south) in albedo/color/composition that has been observed by earlier studies. The presence of diogenite‐rich material in the southern hemisphere suggests that it was excavated during the formation of the Rheasilvia and Veneneia basins. Our lithologic mapping of HED regions provides direct evidence for magmatic evolution of Vesta with diogenite units in Rheasilvia forming the lower crust of a differentiated object.  相似文献   

17.
Abstract— Visual photometry, which measures reflected solar radiation, can be combined with infrared radiometry, which measures absorbed and re‐radiated solar energy, to determine key properties of small solar system objects. This method can be applied via thermophysical model concepts not only for albedo and diameter determination, but also for studies of thermal parameters like thermal inertia, surface roughness or emissivity. Hence, a detailed analysis of the asteroid surface is possible and topics like surface mineralogy, the density of the regolith or the presence of a rocky surface, lightcurve influences due to shape or albedo, porosity of the surface material, etc. can be addressed. The “radiometric technique” based on a recently developed thermophysical model is presented. The model was extensively tested against observations from the infrared space observatory, including spectroscopic and photometric measurements at infrared wavelengths between 2 and 200 μm of more than 40 asteroids. The possible model applications are discussed in terms of the different levels of knowledge for individual asteroids. The effects of the thermal parameters are illustrated and methods are presented as to how to separate different aspects. Possibilities and limitations are evaluated for the possible transfer of this model to near‐Earth asteroids. In the long run, this kind of study of near‐Earth asteroids may provide answers to questions about their surface properties which are crucial to develop mitigation scenarios.  相似文献   

18.
T. Le Bertre  B. Zellner 《Icarus》1980,43(2):172-180
Polarimetric, photometric, and reflectance spectroscopic properties of asteroid 44 Vesta are simulated in the laboratory by a preparation of eucrite Bereba consisting oof a broad mixture of particle sizes (mainly greater than 50-μm) mixed and partially coated with particles of size 10 μm and less. Coarse grains are necessary for producing the same albedo and a very fine dust coating is necessary for producing the same polarization inversion angle as observed for Vesta. There are less small grains and fine dust in this sample than in lunar soils. Photometrically, if coating a sphere, this sample shows a constant brightness on the sunward half of the observed hemisphere, the brightness being given on the other half by the Minnaert reciprocity principle. With such a photometric behavior, the global geometric albedo and the sub-Earth point geometric albedo differ by no more than 5%. The microscopic phase coefficient β is 0.021 magnitude per degree for the sample; the larger value, β = 0.025, observed telescopically for Vesta indicates that large-scale roughness is present on this asteroid.  相似文献   

19.
B. Buratti  J. Veverka 《Icarus》1984,58(2):254-264
Voyager imaging observations provide new photometric data on Saturn's satellites at large phase angles (up to 133° in the case of Mimas) not observable from Earth. Significant new results include the determination of phase integrals ranging from 0.7 in the case of Rhea to 0.9 for Enceladus. For Enceladus we find an average geometric albedo pv = 1.04 ± 0.15 and Bond albedo of 0.9 ± 0.1. The data indicate an orbital lightcurve with an amplitude of 0.2 mag, the trailing side being the brighter. For Mimas, the lightcurve amplitude is probably less than 0.1 mag. The value of the geometric albedo of Mimas reported here, pv = 0.77 ± 0.15 (corresponding to a mean opposition magnitude V0 = +12.5) is definitely higher than the currently accepted value of about 0.5. For Dione, the Voyager data show a well-defined orbital lightcurve of amplitude about 0.6 mag, with the leading hemisphere brighter than the trailing one.  相似文献   

20.
The Galileo photopolarimeter–radiometer (PPR) made over 100 observations of Europa’s surface temperature. We have used these data to constrain a diurnal thermal model and, thus, map the thermal inertia and bolometric albedo over 20% of the surface. We find an increased thermal inertia at mid-latitudes that is widespread in longitude and does not appear to correlate with geology, albedo, or other observables. Our derived thermophysical properties can be used to predict volatile stability across the surface over the course of a day and in planning of infrared instruments on future missions. Furthermore, while observations in the thermal infrared can and have been used to find endogenic activity, no such activity was detected at Europa. We have calculated the detection limits of these PPR observations and find that 100 km2 hotspots with temperatures of 116–1200 K could exist undetected on the surface, depending on the location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号