共查询到5条相似文献,搜索用时 63 毫秒
1.
针对现有由稀到密的加密匹配算法中,初始匹配点可靠性低将导致迭代匹配拓展过程存在较多误匹配的问题,提出一种基于可靠匹配点约束的遥感影像密集匹配算法.首先,利用SIFT匹配点约束直线匹配获得的同名直线构建虚拟匹配点集,结合虚拟匹配点集和SIFT匹配点集建立初始匹配点集;然后,依次采用局部影像信息和局部几何约束对初始匹配点集... 相似文献
2.
多模态影像在辐射特征和几何特征方面存在的显著差异,会造成高精度匹配困难。因此,本文提出了一种融合多尺度深度学习特征的多模态影像匹配方法,主要利用深度残差神经网络结构自主训练学习影像的学习型特征,得到多模态图像之间更为丰富和更为准确的同名特征点对,实现了对多尺度、多时相影像的协同稳健匹配。结果表明,本文方法对于多组实验均能够得到数量丰富且分布相对均匀的同名特征点对,并具有高效、稳健的匹配性能。 相似文献
3.
面对实际的遥感影像分类任务,采用深度神经网络的方法存在的最大问题是缺乏充足的标注样本,如何使用较少的标注样本实现较高精度的遥感影像分类,是目前需要解决的问题。ImageNet作为世界上最大的图像识别数据集,在其上训练出的模型有着丰富的底层特征。对ImageNet预训练模型进行微调是最常见的迁移学习方法,能够一定程度利用其丰富的底层特征,提高分类精度。但ImageNet影像特征与遥感影像差距较大,对分类效果提升有限。为了解决上述问题,本文基于传递迁移学习思想,结合深度神经网络,提出一种基于深度传递迁移学习的遥感影像分类方法。该方法通过构建以开源遥感场景识别数据集为源域的中间域,并以ImageNet预训练权重为源域、待分类遥感影像为目标域进行迁移学习,提高遥感影像分类精度。首先,以ImageNet预训练VGG16网络为基础,为加速卷积层权重更新而将全连接层替换为全局平均池化层,构建GAP-VGG16,使用中间域数据集训练ImageNet预训练GAP-VGG16以获取权重;然后,以SegNet网络为基础,在SegNet中加入卷积层设计了T-SegNet,以对获取的权重进一步地提取。最后,将获... 相似文献
4.
特征匹配是面阵摆扫式航空影像处理的关键步骤,针对传统特征匹配方法在面阵摆扫式航空影像匹配时存在匹配点数量少,分布不匀均的问题,本文提出一种基于自适应亮度空间的特征匹配方法。首先根据影像POS(Postion Oriental System)信息求解待匹配影像间变换关系进行影像校正,在校正后的影像上构建自适应亮度空间,使用ORB算子和BEBLID算法在亮度空间上获取特征点和二进制特征描述符,然后基于汉明距离获取初始匹配点,使用RANSAC算法剔除粗差,最后将匹配点变换到原始影像上得到最终匹配结果。本文选取6组具有视角差异及亮度变化的面阵摆扫式航空影像进行实验,将本文算法与SIFT、SURF、ORB、ORB+BEBLID、ASIFT等匹配方法进行比较,结果表明:本文算法通过建立影像间变换关系,构建自适应亮度空间,使得算法提取的特征点数量增加1.5倍,获取匹配点数量是其他算法的3倍以上,且匹配点分布更加均匀,匹配效率高于其他算法,验证了本文算法在具有亮度变化及视角差异的面阵摆扫式航空影像上匹配的有效性。 相似文献
5.
特征匹配是无人机影像拼接过程的关键步骤,针对传统的特征匹配方法在影像拼接过程中获取匹配点少、特征点分布不均匀、匹配耗时长等问题,本文提出一种基于Dense SIFT特征的无人机影像快速拼接算法。首先,利用影像POS信息构建连接矩阵以引导匹配过程;然后在降采样影像上进行影像分块,利用Dense SIFT算子获取初始匹配点,并采用两次NCC方法分别实现降采样影像和原始影像上匹配点的精化;最后,基于共线方程将影像投影至物方面上,完成影像的快速拼接。本文选取2组无人机影像进行拼接实验,将本文算法与SIFT和SURF匹配拼接方法进行对比,结果表明:在影像特征点匹配方面,本文方法获取匹配点数量是SIFT和SURF算法的5倍以上,且匹配点分布更加均匀;在影像拼接结果方面,本文方法不仅能够较快完成影像拼接,而且有效避免了拼接影像中的“重影”现象,保证了较好的拼接质量。 相似文献