首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
进入湖泊中不同氮源氮稳定同位素值(δ15N)的差异和生物对氮稳定同位素的记忆作用,可以反映流域人类活动输入的污染物对生态系统的影响程度.本文调查了太湖4个湖湾(梅梁湾、贡湖湾、竺山湾和东太湖)中铜锈环棱螺(Bel-lamya aeruginosa)的δ15N值,结果表明环棱螺δ15N值的变幅为6.9‰~18.1‰,平均值为11.2‰,不同湖湾中环棱螺δ15N值差异极显著,从高到低依次为梅梁湾(17.7‰)、贡湖湾(13.2‰)、东太湖(10.2‰)和竺山湾(7.8‰).分析认为,梅梁湾和贡湖湾接纳较多的人类活动产生的污染物,其周边城市如无锡、常州等地的污水处理效率有待提高;竺山湾水体氮素主要来自于农业面源污染,需降低农田化肥的使用量.  相似文献   

2.
For centuries, Bermuda has been challenged with wastewater management for the protection of human and environmental health. By quantifying the δ15N of the common sea fan Gorgonia ventalina sampled from 30 sites throughout Bermuda we show that sewage-derived nitrogen is detectable on nearshore coral reefs and declines across the lagoon to the outer rim. We also sampled gorgonians from two museum collections representing a 50y time-series (1958–2008). These samples revealed an increase in δ15N of > 4.0‰ until the mid-1970s, after which δ15N values slowly declined by ~ 2.0‰. A δ15N chronology from a gorgonian skeleton exhibited a similar decline over the last 30–40 years of approximately 0.6‰. We conclude that policies have been effective in reducing sewage impacts to Bermudian reefs. However, significant sources of sewage pollution persist and are likely have a strong impact on harbor and nearshore coral communities and human health.  相似文献   

3.
To investigate the origin and behaviour of nitrate in alluvial aquifers adjacent to Nakdong River, Korea, we chose two representative sites (Wolha and Yongdang) having similar land‐use characteristics but different geology. A total of 96 shallow groundwater samples were collected from irrigation and domestic wells tapping alluvial aquifers. About 63% of the samples analysed had nitrate concentrations that exceeded the Korean drinking water limit (44·3 mg l?1 NO3?), and about 35% of the samples had nitrate concentrations that exceeded the Korean groundwater quality standard for agricultural use (88·6 mg l?1 NO3?). Based on nitrogen isotope analysis, two major nitrate sources were identified: synthetic fertilizer (about 4‰ δ15N) applied to farmland, and animal manure and sewage (15–20‰ δ15N) originating from upstream residential areas. Shallow groundwater in the farmland generally had higher nitrate concentrations than those in residential areas, due to the influence of synthetic fertilizer. Nitrate concentrations at both study sites were highest near the water table and then progressively decreased with depth. Nitrate concentrations are also closely related to the geologic characteristics of the aquifer. In Yongdang, denitrification is important in regulating nitrate chemistry because of the availability of organic carbon from a silt layer (about 20 m thick) below a thin, sandy surface aquifer. In Wolha, however, conservative mixing between farmland‐recharged water and water coming from a village is suggested as the dominant process. Mixing ratios estimated based on the nitrate concentrations and the δ15N values indicate that water originating from the village affects the nitrate chemistry of the shallow groundwater underneath the farmland to a large extent. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
This study aimed to understand changes in the biogeochemical processing of organic matter (OM) in response to multiple stressors (e.g., littoral area expansion, wastewater input, and hydrological regulation) in East Dongting Lake (Central China) over the past 60 years, using analyses of total organic carbon (TOC), total nitrogen (TN), C/N ratios, δ13C, δ15N, and diatoms from 2 sediment cores collected from the littoral and central parts of the lake. OM mainly originated from phytoplankton and C3 plant‐derived soil OM based on the ranges of C/N ratios (from 7 to 11) and δ13C (between ?27‰ and ?23‰). Littoral area expansion due to siltation caused an increasing influx of terrestrial soil OM in the 1980s and the 1990s, subsequently lowering δ13C values and rising C/N ratios in both sediment cores. Meanwhile, higher δ15N was linked to a high influx of isotopically heavy nitrate from urban and agricultural wastewaters. After 2000, slight decreases in TOC and TN in the littoral area were attributable to reducing inputs of external OM, likely linked to declining sediment influx from the upper reaches resulting from the Three Gorges Dam impoundment. Contrasting increases in TOC, TN, and C/N ratios in the central part indicated a high influx of terrestrial soil OM due to the declining distance from the shoreline with littoral area expansion. Declining δ15N values after 2000 indicated an increase in N2‐fixing cyanobacteria with eutrophication. Changes in diatom assemblages in both the littoral and central zones reflected nutrient enrichment and hydrological alterations. These results indicate that littoral expansion, declining riverine influx, and anthropogenic nutrient inputs are potential driving forces for the biogeochemical processing of OM in floodplain lakes. This study provides sedimentary biogeochemical clues for tracking past limnological conditions of floodplain lakes that are subjected to increasing disturbances from hydrological regulation and eutrophication.  相似文献   

5.
Surface sediments samples were collected from 9 stations of the Cochin estuary during the monsoon, post-monsoon and pre-monsoon seasons and were analyzed for grain size, total organic carbon (OC), total nitrogen (TN) and stable isotopic ratios of carbon (δ13C) and nitrogen (δ15N) to identify major sources of organic matter in surface sediments. Sediment grain size is found to be the key factor influencing the organic matter accumulation in surface sediments. The δ13C values ranges from ?27.5‰ to ?21.7‰ in surface sediments with a gradual increase from inner part of the estuary to the seaward side that suggest an increasing contribution of marine autogenous organic matter towards the seaward side. The δ15N value varies between 3.1‰ and 6.7‰ and it exhibits complex spatial and seasonal distributions in the study area. It is found that the dynamic cycling of nitrogen through various biogeochemical and organic matter degradation processes modifies the OC/TN ratios and δ15N to a considerable degree. The fraction of terrestrial organic matter in the total organic matter pool ranges from 13% to 74% in the surface sediments as estimated by δ13C based two end member mixing model.  相似文献   

6.
Natural attenuation of septic system nitrogen by anammox   总被引:1,自引:0,他引:1  
On-site disposal of sewage in septic systems can lead to groundwater plumes with NO(3)(-)-N concentrations exceeding the common drinking water limit of 10 mg/L. Currently, denitrification is considered as the principal natural attenuation process. However, at a large seasonal-use septic system in Ontario (256 campsites), a suboxic zone exists where nitrogen removal of up to 80% occurs including removal of NH(4)(+)-N. This zone has both NO(3)(-)-N and NH(4)(+)-N at >5 mg/L each. In the distal NH(4)(+)-rich zone, NH(4)(+)-N concentrations (8.1 ± 8.0 mg/L) are lower than in the proximal zone (48 ± 36 mg/L) and NH(4)(+)-N is isotopically enriched (concentration-weighted mean δ(15)N of +15.7‰) compared to the proximal zone (+7.8‰). Furthermore, δ(15)N-NH(4)(+) isotopic enrichment increases with depth in the distal zone, which is opposite to what would result if nitrification along the water table zone was the mechanism causing NH(4)(+) depletion. Bacterial community composition was assessed with molecular (DNA-based) analysis and demonstrated that groundwater bacterial populations were predominantly composed of bacteria from two Candidatus genera of the Planctomycetales (Brocadia and Jettenia). Together, these data provide strong evidence that anaerobic ammonium oxidation (anammox) plays an important role in nitrogen attenuation at this site.  相似文献   

7.
《Marine pollution bulletin》2013,72(1-2):152-158
Assessments of sewage pollution routinely employ stable nitrogen isotope analysis (δ15N) in biota, but multiple taxa are rarely used. This single species focus leads to underreporting of whether derived spatial N patterns are consistent. Here we test the question of ‘reproducibility’, incorporating ‘taxonomic replication’ in the measurement of δ15N gradients in algae, seagrasses, crabs and fish with distance from a sewage outfall on the Adelaide coast (southern Australia). Isotopic sewage signals were equally strong in all taxa and declined at the same rate. This congruence amongst taxa has not been reported previously. It implies that sewage-N propagates to fish via a tight spatial coupling between production and consumption processes, resulting from limited animal movement that closely preserves the spatial pollution imprint. In situations such as this where consumers mirror pollution signals of primary producers, analyses of higher trophic levels will capture a broader ambit of ecological effects.  相似文献   

8.
Mangroves are of great ecological and socio‐economic importance, yet they are under threat from urban development on the southern Pacific coast of Costa Rica. To test for possible nutrient‐related impacts, we compared water‐column nutrient concentrations, C and N stable isotope values and other environmental variables between mangroves with known sewage loading (three “nutrient loaded” locations) and those without such loading (three “reference” locations). Instantaneous nutrient concentrations were low at all locations, Secchi depth was greater at reference locations, and chlorophyll concentrations were higher at nutrient loaded mangroves. Suspended matter did not vary between reference and nutrient loaded mangroves, and nor did bivalve and algal δ13C and δ15N values. Enrichment of δ15N and δ13C of red mangrove leaves at the nutrient loaded locations is attributed to pulsed inputs of materials that were not detected in the instantaneous nutrient data. We provide evidence of isotopic enrichment at nutrient loaded locations from mangrove material and recommend that adequate waste water treatment be carried out on all anthropogenic discharges into this vulnerable marine system.  相似文献   

9.
Nitrate monitoring is commonly conducted with low-spatial resolution, only at the outlet or at a small number of selected locations. As a result, the information about spatial variations in nitrate export and its drivers is scarce. In this study, we present results of high-spatial resolution monitoring conducted between 2012 and 2017 in 65 sub-catchments in an Alpine mesoscale river catchment characterized by a land-use gradient. We combined stable isotope techniques with Bayesian mixing models and geostatistical methods to investigate nitrate export and its main drivers, namely, microbial N turnover processes, land use and hydrological conditions. In the investigated sub-catchments, mean values of NO3 concentrations and its isotope signatures (δ15NNO3 and δ18ONO3) varied from 2.6 to 26.7 mg L−1, from −1.3‰ to 13.1‰, and from −0.4‰ to 10.1‰, respectively. In this study, land use was an important driver for nitrate export. Very strong and strong positive correlations were found between percentages of agricultural land cover and δ15NNO3, and NO3 concentration, respectively. Mean proportional contributions of NO3 sources varied spatially and seasonally, and followed land-use patterns. The mean contribution of manure and sewage was much higher in the catchments characterized by a high percentage of agricultural and urban land cover comparing to forested sub-catchments. Specific NO3 loads were strongly correlated with specific discharge and moderately correlated with NO3 concentrations. The nitrate isotope and concentration analysis results suggest that nitrate from external sources is stored and accumulated in soil storage pools. Nitrification of reduced nitrogen species in those pools plays the most important role for the N-dynamics in the Erlauf river catchment. Consequently, nitrification of reduced N sources was the main nitrate source except for a number of sub-catchments dominated by agricultural land use. In the Erlauf catchment, denitrification plays only a minor role in controlling NO3 export on a regional scale.  相似文献   

10.
While coral reefs decline, scientists argue, and effective strategies to manage land-based pollution lag behind the extent of the problem. There is need for objective, cost-effective, assessment methods. The measurement of stable nitrogen isotope ratios, δ15N, in tissues of reef organisms shows promise as an indicator of sewage stress. The choice of target organism will depend upon study purpose, availability, and other considerations such as conservation. Algae are usually plentiful and have been shown faithfully to track sewage input. The organic matrix of bivalve shells can provide time series spanning, perhaps, decades. Gorgonians have been shown to track sewage, and can provide records potentially centuries-long. In areas where baseline data are lacking, which is almost everywhere, δ15N in gorgonians can provide information on status and trends. In coral tissue, δ15N combined with insoluble residue determination can provide information on both sewage and sediment stress in areas lacking baseline data. In the developed world, δ15N provides objective assessment in a field complicated by conflicting opinions. Sample handling and processing are simple and analysis costs are low. This is a method deserving widespread application.  相似文献   

11.
Human development of watersheds can change aquatic ecosystems via multiple pathways. For instance, human rural development may add nutrients to ecosystems. We used naturally occurring stable isotopes in stream food webs to investigate how land use affects stream ecosystems across a gradient of land development in the San Lorenzo watershed, California. Road density was used as a proxy for land development. We found that streams in watersheds with higher road densities had elevated concentrations of phosphate and nitrate. Furthermore, algal δ15N values increased as a function of nitrate concentration, but saturated at approximately 6‰. This saturating pattern was consistent with a two-source mixing model with anthropogenic and watershed sources, fit using Bayesian model fitting. In sites that had >2.6 km roads km−2, anthropogenic sources of N were estimated to represent >90% of the N pool. This anthropogenic N signal was propagated to stream consumers: rainbow trout (Oncorhynchus mykiss), signal crayfish (Pacifasticus leniusculus), and benthic invertebrate δ15N were positively correlated with algal δ15N. Even relatively low density rural human land use may have substantial impacts on nutrient cycling of stream ecosystems.  相似文献   

12.
High surface water-groundwater connectivity characterizes watersheds underlain by karsts, increasing contaminant transport risks. However, karsts are highly complex, making research necessary to understand the transport of contaminants from the surface, through the aquifer, to discharge areas. In Yucatan, the lack of waste water treatment raises the risk of groundwater contamination. We monitored stable isotopes (δ18O-NO3 and δ15N-NO3), cadmium, and lead to document waste water contamination and transport during the rainy and dry seasons, using water samples collected along the Ring of Cenotes during each season. Specific conductance and pH showed no consistent seasonality, with conductance ranging from 0.5 to 55 mS/cm and pH ranging from 6.6 to 8.6 for most samples. Nitrate concentrations in the cenotes averaged 205 ± 260 μM and no seasonal pattern was observed. Cd and Pb concentrations were 0.1 to 37.9 μg/L and 0.2 to 243.2 μg/L, respectively. Nitrate stable isotope values were 2.6 to 27.2‰ for δ18O and 1.2 to 20.7‰ for δ15N. The statistical relationship between δ15N and δ18O, in dry season samples, indicated that denitrification was occurring. A scale measure for waste water recognition showed: (1) high variability among sites probably related with dry/rainy seasons and/or diverse anthropogenic activities; and (2) specific water quality variables that contribute to contamination at each site during each season. Importantly, our analyses indicate that in the area surrounding the Ring of Cenotes, waste water exhibits spatial and temporal patterns related to complex transport and dilution processes, as is the case in karsts in general.  相似文献   

13.
Elemental carbon and nitrogen levels and isotope ratios were assessed in different biological compartments of a Northwest (NW) Mediterranean bay to trace the various sources of nutrient input from natural (river runoffs) and anthropogenic (harbor outflows, fish farms and urban sewage outfall) sources. Samples from transplanted mussels and natural sea grass communities (Posidonia oceanica leaves and epiphytes) were harvested from different locations throughout the bay during the touristic summer and rainy seasons. The results from the nitrogen analysis revealed that sewage and harbor outflow promote higher nitrogen levels, enrichment of 15N in the tissues, and a higher seasonal variability in sea grass and epiphytes. In mussel tissues, the δ15N was also influenced by sewage and harbor outflow, whereas δ13C was influenced by terrestrial inputs. These results suggest that natural and anthropogenic nutrient inputs have a temporary and localized influence and affect the sensitivity of natural isotopic ratios to changes in hydrologic conditions, especially to rain and tourism.  相似文献   

14.
The continuous real‐time analysis, at 30‐s intervals, of precipitation at an Australian tropical location revealed extreme and rapidly changing δ18O and δD values related to variations in moisture source areas, transport paths and precipitation histories. The range of δ18O (?19.6‰ to +2.6‰) and δD (?140‰ to +13‰) values from 5948 measurements of nine rain events over 15 days during an 8‐month period at a single location was comparable with the range measured in 1532 monthly samples from all seven Australian Global Network of Isotopes in Precipitation stations from 1962 to 2002. Extreme variations in δ18O (?8.7‰ to ?19.6‰) and δD (?54‰ to ?140‰) were recorded within a single 4‐h period. Real‐time stable isotope monitoring of precipitation at a high temporal resolution enables new and powerful tracer applications in climatology, hydrology, ecophysiology and palaeoclimatology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
This study introduces a new method of tracing the history of nutrient loading in coastal oceans via delta(15)N analysis of organic nitrogen preserved in the skeleton of the massive Porites coral. Four coral cores were collected in Bali, Indonesia, from reefs exposed to high levels of fertilizers in agricultural run-off, from lagoonal corals impacted by sewage, and from a reef located 30 km offshore. Skeletal delta(15)N in the agriculturally exposed coral declined from 10.7+/-0.4 per thousand in 1970-1971, when synthetic fertilizers (-0.8 per thousand+/-0.2 per thousand) were introduced to Bali, to a depleted "anthropogenic" baseline of 3.5 per thousand+/-0.4% in the mid-1990s. delta(15)N values were negatively correlated with rainfall, suggesting that marine delta(15)N lowers during flood-bourn influxes of waste fertilizers. Reef cores exposed to untreated sewage in terrestrial discharge were enriched (7.8 and 7.3+/-0.4 per thousand), while the offshore core reflected background oceanic signals (6.2+/-0.4 per thousand). delta(15)N, N concentration, and C:N systematics indicate that the N isotopic composition of skeletal organic matter was generally well preserved over 30 years. We suggest that skeletal organic delta(15)N can serve as a recorder of past nitrogen sources. In Bali, this tracer suggests that the intensification of Western style agricultural practices since 1970 are contributing to the degradation of coastal coral reefs.  相似文献   

16.
The results of studies of variations of δ18O values in river water in Crimea Peninsula in January–February 2015–2017 are given. The variation range of δ18О in river water over the three years of studies never exceeded 3‰. A tendency toward an increase in δ18О in the water of the Salgir, Kacha, Al’ma, Bel’bek, Biyuk-Karasu from their sources to mouths was identified and explained by a decrease in evaporation in the mouth areas of the rivers relative to their sources and upper reaches, and the inflow of isotopically light precipitation (rain and snow) into the rivers in their upper reaches. The values of δ18О in waters of the rivers with regulated stream were found to increase under the effect of the Simferopol Reservoir on the Salgir River and the Izobil’nenskoe Reservoir on the Ulu-Zen’ River. The values of δ18О in the upper reaches of the large rivers of Kacha and Bel’bek (the northwestern slope of the Crimean Mountains) vary from ?8.7 to ?9.7‰, except for the rivers of Al’ma (?7.7‰) and Kokozka (?10.2‰) because of the different shares of groundwater in the recharge of these rivers.  相似文献   

17.
Twelve species of deep-sea fishes collected in 2005 from the western North Pacific, off-Tohoku, Japan were analyzed for organohalogen compounds. Among the compounds analyzed, concentrations of DDTs and PCBs (up to 23,000 and 12,400 ng/g lipid wt, respectively) were the highest. The present study is the foremost to report the occurrence of brominated flame retardants such as PBDEs and HBCDs in deep-sea organisms from the North Pacific region. Significant positive correlations found between δ15N (‰) and PCBs, DDTs and PBDEs suggest the high biomagnification potential of these contaminants in food web. The large variation in δ13C (‰) values observed between the species indicate multiple sources of carbon in the food web and specific accumulation of hydrophobic organohalogen compounds in benthic dwelling carnivore species like snubnosed eel. The results obtained in this study highlight the usefulness of deep-sea fishes as sentinel species to monitor the deep-sea environment.  相似文献   

18.
The boron isotopic compositions of common synthetic boron products, municipal wastewaters from Switzerland, and three Swiss freshwater lakes were investigated. The δ11B values (δ11B values are normalized to the standard NIST SRM-951) of synthetic Na-borates (–0.4 to 7.6‰) and Ca-Na-borates (–13.4 to –4.9‰) overlap with those of natural borate minerals and hence suggest that the isotopic signal of anthropogenic boron is not modified during the manufacturing process. As a result it is possible to predict the isotopic composition of synthetic boron products and their potential impact upon contamination of water resources. The δ11B values of municipal wastewaters from two locations in northern Switzerland (–7.7 to –4.5‰) reflect utilization of Na/Ca- and/or Ca-borates depleted in 11B. Freshwater lakes from Switzerland (Lake Zürich, Greifensee, Lake Lugano) yielded a δ11B range of –1.7 to 7.1‰ and boron concentrations of 17 to 102 mg L–1. The boron isotopic ratios decrease with increasing boron concentrations, indicating mixing between anthropogenic boron with a low δ11B signature and meteoric boron with a heavier isotopic signal. We suggest that the isotopic composition of meteoric boron over central Europe has δ11B values in the range of ca. 10 to 20‰, whereas in coastal areas the marine component is larger with a higher 11B/10B ratio (δ11B ∼ 30‰).  相似文献   

19.
Macroalgae blooms of Gracilaria vermiculophylla, Hypnea spinella and Spyridia filamentosa have been found in coastal lagoons in the SE Gulf of California. Agriculture, livestock, shrimp and poultry farms and sewage contribute anthropogenic nitrogen to the systems. The δ15N of these sources, water column and macroalgae were studied in order to identify the N supply for macroalgae blooms. δ15N of three species of macroalgae (4.3-13.6‰) were enriched compared to the water column ( 3.7-6.8‰), probably because of fractioning from the macroalgae. δ15N of POM (1.4-10.3‰) was similar to the water column but the relationship was unclear. Depending on the site, macroalgae showed different δ15N values since some sites receive more or less influence from one given source of the associated watershed, which is reflected in the different δ15N values of the macroalgae of the same system and in the relative contributions of the sources.  相似文献   

20.
《Marine pollution bulletin》2014,78(1-2):227-236
Total organic carbon (TOC), total nitrogen (TN), δ13C and δ15N were measured in sediment cores at three sites in Sishili Bay, China, to track the impacts of anthropogenic activities on the coastal environment over the last 100 years. The increased TOC and TN in the upper section of sediment cores indicated a eutrophic process since 1975. In comparison, the TOC and TN in the sediment core near to a scallop aquaculture area displayed a much slower increase, indicating the contribution of scallop aquaculture in mitigating eutrophication. Combined information from δ13C, δ15N and TOC:TN indicated an increased terrestrial signal, although organic matter sources in Sishili Bay featured a mixture of terrestrial and marine sources, with phytoplankton being dominant. Increased fertilizer use since 1970s contributed to the eutrophic process in Sishili Bay since 1975, and increased sewage discharge from 1990s has added to this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号