首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Late Paleozoic volcanic rocks in the Intra-Sudetic Basin of the Bohemian Massif in the Czech Republic can be subdivided into two series: (I) a minor bimodal trachyandesite-rhyolite series of Upper Carboniferous age with initial 87Sr/86Sr of ca. 0.710 and εNd values of −6.1 also characteristic of volcanics of the near Krkonoše Piedmont Basin (0.707 and −6.0, Ulrych et al., 2003) and (II) a major differentiated basaltic trachyandesite-trachyandesite-trachyte-rhyolite series of Lower Permian age with lower initial 87Sr/86Sr of ca. 0.705-0.708 and εNd values ranging from −2.7 to −3.4/−4.1/. The newly recognized volcanic rocks of trachytic composition indicate that the rocks were formed by magmatic differentiation of similar parental melts rather than constituting a bimodal mafic-felsic sequence from different sources. Both series are generally of subalkaline affinity and calc-alkaline character with some tholeiitic tint (FeO/MgO vs. SiO2, presence of orthopyroxene). The magmatic activity occurred in cycles in a layered chamber, each starting primarily with felsic volcanics and ending with mafic ones. The mafic rocks represent mantle-melt(s) overprinted by crust during assimilation-fractional crystallization. The Sr-Nd isotopic data confirm a significant crustal component in the volcanic rocks that may have been inherited from the upper mantle source and/or from assimilation of older crust during magmatic underplating and shallow-level melt fractionation.  相似文献   

2.
The south-eastern Bohemian Massif consolidated during the Late Variscan orogeny by the oblique collision of two continental crustal blocks after closure of an oceanic realm. One microcontinent comprises portions which are now distributed among Moravian and Moldanubian units and which are characterized by Late Proterozoic tectonothermal events, especially by granitoid intrusions. The other microcontinent includes the Gföhl gneiss and granulites (Gföhl nappe) of probable Early Palaeozoic protolith ages. Both continental blocks are separated by an ophiolite-like assemblage, which is preserved in portions of the Raabs unit.Oblique crustal stacking is accompanied by north-eastward propagation of nappes in a dextral transpressive regime. Exhumation of previously thickened crust is achieved by equally oriented bulk extension but partitioned in distinct displacement paths. Coeval stacking and extension at different crustal levels is suggested.Correspondence to: H. Fritz  相似文献   

3.
High-temperature, high-pressure eclogite and garnet pyroxenite occur as lenses in garnet peridotite bodies of the Gföhl nappe in the Bohemian Massif. The high-pressure assemblages formed in the mantle and are important for allowing investigations of mantle compositions and processes. Eclogite is distinguished from garnet pyroxenite on the basis of elemental composition, with mg number <80, Na2O > 0.75 wt.%, Cr2O3 < 0.15 wt.% and Ni < 400 ppm. Considerable scatter in two-element variation diagrams and the common modal layering of some eclogite bodies indicate the importance of crystal accumulation in eclogite and garnet pyroxenite petrogenesis. A wide range in isotopic composition of clinopyroxene separates [Nd, +5.4 to –6.0; (87Sr/86Sr)i, 0.70314–0.71445; 18OSMOW, 3.8–5.8%o] requires that subducted oceanic crust is a component in some melts from which eclogite and garnet pyroxenite crystallized. Variscan Sm-Nd ages were obtained for garnet-clinopyroxene pairs from Dobeovice eclogite (338 Ma), Úhrov eclogite (344 Ma) and Nové Dvory garnet pyroxenite (343 Ma). Gföhl eclogite and garnet pyroxenite formed by high-pressure crystal accumulation (±trapped melt) from transient melts in the lithosphere, and the source of such melts was subducted, hydrothermally altered oceanic crust, including subducted sediments. Much of the chemical variation in the eclogites can be explained by simple fractional crystallization, whereas variation in the pyroxenites indicates fractional crystallization accompanied by some assimilation of the peridotite host.  相似文献   

4.
The Sr-Nd isotopic data for selected granitoids of the Central Bohemian Pluton show a broad negative correlation with the total range of (87Sr/86Sr)330 = 0.7051–0.7129 and Nd 330 = +0.2 to –8.9. The older intrusions have more depleted Sr-Nd compositions and calc-alkaline geochemistry (Sázava suite), whereas the younger intrusions shift towards K-rich calc-alkaline (Blatná suite) and shoshonitic rocks (íany and ertovo bemeno suites) with more evolved isotopic signatures. The distribution of the data is interpreted as reflecting a diversity of sources and processes, rather than a single progressive crustal contamination trend. The Sázava suite could have originated by partial melting of metabasites, or of a mantle source with an isotopic composition close to bulk earth, or by hybridization of crustally-derived tonalitic and mantle-derived magmas. Variation within the Blatná suite is modelled by mixing between a moderately enriched [(87Sr/86Sr)330 0.708, Nd 330 –3] mantle component with either an isotopically evolved metasedimentary component, or with more evolved magmas of the suite. The íany suite was most probably produced by partial melting of peraluminous lithologies, possibly of the adjacent Moldanubian unit. The ertovo bemeno suite evolved from strongly enriched mantle-derived magmas [(87Sr/86Sr)3300.7128, Nd 330 –7], either through closed-system fractional crystallization or interaction with magma corresponding to leucogranites of the Central Bohemian Pluton.  相似文献   

5.
The presence of numerous roof pendants, stoped blocks and discordant intrusive contacts suggests that magmatic stoping was a widespread, large-scale process during the final construction of the Central Bohemian Plutonic Complex, Bohemian Massif. The measured total length of the discordant contacts that cut off the regional cleavage and were presumably formed by stoping corresponds to about half of all contacts with the upper-crustal host rocks. In addition, at least some of the straight, cleavage-parallel intrusive contacts may also have recorded complex intrusive histories ending with piecemeal stoping of thin cleavage-bounded host rock blocks into the magma chamber. Based on the above, we argue that the fast strain rates required for emplacement of large plutons of the Central Bohemian Plutonic Complex into brittle upper crustal host rocks over relatively short-time span could not have been accommodated entirely by slow ductile flow or slip along faults. Instead, the emplacement was largely accommodated by much faster thermal cracking and extensive stoping independent of regional tectonic deformation. Finally, we emphasize that magmatic stoping may significantly modify the preserved structural patterns around plutons, may operate as an important mechanism of final construction of upper-crustal plutons and thus may contribute to vertical recycling and downward transport of crustal material within the magma plumbing systems in the crust.  相似文献   

6.
Plagioclase rims around metastable kyanite crystals appear during decompression of high-pressure felsic granulites from the high-grade internal zone of the Bohemian Massif (Variscan belt of Central Europe). The development of the plagioclase corona is a manifestation of diffusion-driven transfer of CaO and Na2O from the surrounding matrix and results in isolation of kyanite grains from the quartz- and K-feldspar-bearing matrix. This process establishes Si-undersaturated conditions along the plagioclase–kyanite interface, which allow crystallization of spinel during low-pressure metamorphism. The process of the plagioclase rim development is modeled thermodynamically assuming local equilibrium. The results combined with textural observations enable estimation of equilibration volume and diffusion length for Na and Ca that extends ∼400–450 and ∼450–550 μm, respectively, around each kyanite crystal. Low estimated bulk diffusion coefficients suggest that the diffusion rate of Ca and Na is controlled by low diffusivity of Al across the plagioclase rim.  相似文献   

7.
The Brunovistulian terrane represents a microcontinent of enigmatic Proterozoic provenance that was located at the southern margin of Baltica in the early Paleozoic. During the Variscan orogeny, it represented the lower plate at the southern margin of Laurussia, involved in the collision with the Armorican terrane assemblage. In this respect, it resembles the Avalonian terrane in the west and the Istanbul Zone in the east. There is a growing evidence about the presence of a Devonian back-arc at the margin of the Brunovistulian terrane. The early Variscan phase was characterized by the formation of Devonian extensional basins with the within-plate volcanic activity and formation of narrow segments of oceanic crust. The oldest Viséan flysch of the Rheic/Rhenohercynian remnant basin (Protivanov, Andelska Hora and Horní Benesov formations) forms the highest allochthonous units and contains, together with slices of Silurian Bohemian facies, clastic micas from early Paleozoic crystalline rocks that are presumably derived from terranes of Armorican affinity although provenance from an active Brunovistulian margin cannot be fully excluded either. The development of the Moravo–Silesian late Paleozoic basin was terminated by coal-bearing paralic and limnic sediments. The progressive Carboniferous stacking of nappes and their impingement on the Laurussian foreland led to crustal thickening and shortening and a number of distinct deformational and folding events. The postorogenic extension led to the formation of the terminal Carboniferous-early Permian Boskovice Graben located in the eastern part of the Brunovistulian terrane, in front of the crystalline nappes. The highest, allochthonous westernmost flysch units, locally with the basal slices of the Devonian and Silurian rocks thrusted over the Silesicum in the NW part of the Brunovistulian terrane, may share a similar tectonic position with the Giessen–Harz nappes. The Silesicum represents the outermost margin of the Brunovistulian terrane with many features in common with the Northern Phyllite Zone at the Avalonia–Armorica interface in Germany.  相似文献   

8.
The exhumation of eclogite facies granulites (Omp–Plg–Grt–Qtz–Rt) in the Rychleby Mts, eastern Czech Republic, was a localised process initiated by buckling of crustal layers in a thickened orogenic root. Folding and post‐buckle flattening was followed by the main stage of exhumation that is characterized by vertical ductile extrusion. This process is documented by structural data, and the vertical ascent of rocks from a depth of c. 70 to c. 35 km is documented by metamorphic petrology. SHRIMP 206Pb/238U and 207Pb/206Pb evaporation zircon ages of 342 ± 5 and 341.4 ± 0.7 Ma date peak metamorphic conditions. The next stage of exhumation was associated with sideways flat thrusting associated with lateral viscous spreading of granulites and surrounding rocks over indenting adjacent continental crust at a depth of c. 35–30 km. This stage was associated with syntectonic intrusion of a granodiorite sill at 345–339 Ma, emplaced at a crustal depth of c. 25 km. The time required for cooling of the sill as well as for heating of the country rocks brackets this event to a maximum of 250 000 years. Therefore, similar ages of crystallization for the granodiorite magma and the peak of eclogite facies metamorphism of the granulite suggest a very short period of exhumation, limited by the analytical errors of the dating methods. Our calculations suggest that the initial exhumation rate during vertical extrusion was 3–15 mm yr?1, followed by an exhumation rate of 24–40 mm yr?1 during further uplift along a magma‐lubricated shear zone. The extrusion stage of exhumation was associated with a high cooling rate, which decreased during the stage of lateral spreading.  相似文献   

9.
Abstract Eclogites with a wide range in bulk composition are present in the Münchberg Massif, part of the Variscan basement of the Bohemian Massif in north-east Bavaria. New analyses of the primary phases garnet, omphacite, phengite and amphibole, as well as the secondary phases clinopyroxene II, various amphiboles, biotite/phlogopite, plagioclase, margarite, paragonite, prehnite and pumpellyite, reveal a complex uplift history. New discoveries were made of samples with very jadeite-rich primary omphacite as well as a secondary omphacite in a symplectite with albite. Various geothermobarometric techniques, together with thermodynamic databases (incorporating separately determined activity–composition values) and experimental data have clustered the minimum conditions for the primary assemblages to the P–T range 650 ± 60° C, 14.3 ± 1 kbar. However, jadeite (in omphacite)–kyanite–paragonite (in phengite) and zoisite–grossular (in garnet)–kyanite–quartz relationships suggests pressures of 25–28 kbar at the same temperatures. The fact that the secondary omphacite–plagioclase assemblage yields pressures within a few hundred bars of the minimum pressures for the plagioclase-free assemblages strongly suggests that the minimum values are serious underestimates.
Zoning, inclusion suites and breakdown reactions of primary phases, in addition to new minerals formed during uplift, define a polyphase metamorphic evolution which, from geochronological evidence, occurred solely within the Variscan cycle. The complex breakdown in other Bohemian Massif eclogites and the distinct variation in their temperatures during uplift suggest a multi-stage thrusting model for the regional evolution of the eclogites. Such an evolution has significance with respect to incorporation of mantle slices into crustal sequences and fluid derivation from successively subducted units, possibly driving the breakdown reactions.  相似文献   

10.
Investigations of brittle deformation structures, present within the crystalline rocks of the Bavarian Oberpfalz, reveal a complex late to post-Variscan crustal evolution. Upper Carboniferous (mainly Westphalian) granites were emplaced into semibrittle to brittle rocks of the ZEV (zone of Erbendorf-Vohenstrauß) and the EGZ (Erbendorf greenschist unit), respectively. From both the alignment of the granites and the direction of granite-related tension gashes a north-east-south-west extension must be assumed for the period of magmatic activities. Apart from the granite intrusions, rapid crustal uplift (about 1.5 km/my) led to an increase in the geothermal gradient from < 30 °C/km (late Variscan pre-granitic) to > 40 °C/km (late Variscan post-granitic). The increased geothermal gradient persisted during the succeeding reverse faulting which results from late Carboniferous (probably Stephanian) east-west and northeast-south-west compression. Although not evidenced directly in the area considered, strike-slip faults seem to have played an important part during the late Variscan crustal evolution, particularly in the Early Permian. The strike-slip events indicate further crustal shortening and indentation under north-south compression.A similar indentation was present in Cretaceous time. After a weak phase of Early Cretaceous reverse faulting, which results from north-south compression, strike-slip faults formed under north-west-south-east and north-south compression. All these faults, in particular the strike-slip faults, seem to be related to the Cretaceous and lowermost Tertiary convergence of the Alpine/Carpathian orogeny.A late stage of crustal extension, characterized by a radial stress tensor (2 = 3), is indicated through high angle normal faults which probably formed during the subsidence of the adjacent Neogene Eger Graben.  相似文献   

11.
The Early Palaeozoic East Krkonoše Complex (EKC) situated in the central West Sudetes, NE Bohemian Massif, is a volcano‐sedimentary suite containing abundant mafic and felsic volcanics metamorphosed to greenschist facies. The trace element distribution patterns and Nd isotope signatures (ENd500 = + 3.1 to + 6.6) of the metabasites (metabasalts) indicate that they may be related to a rising mantle diapir associated with intracontinental rifting. At the early stage, limited melting of an upwelling asthenosphere produced alkali basalts and enriched tholeiites which compositionally resemble oceanic island basalts. A later stage of rifting with larger degrees of melting at shallower depths generated tholeiitic basalts with E‐MORB to N‐MORB characteristics. The values of (87Sr/86Sr)i = 0.706 and ENd500 = − 5 ±1 of the porphyroids (metarhyolites) as well as the lack of rocks with intermediate compositions suggest that the felsic rocks were formed by a partial melting event of continental crust triggered by mantle melts. The geochemistry of the EKC bimodal metavolcanics and their association with abundant terrigenous metasediments suggest that the felsic–mafic volcanic suite was generated during intracontinental rifting. This process, widespread in Western and Central Europe during the Early Palaeozoic, is evidence of large‐scale fragmentation of the northern margin of the Gondwana supercontinent. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
A layer of relict, high-temperature, prograde eclogite has been discovered within felsic granulite of the Gföhl Nappe, which is the uppermost tectonic unit in the Moldanubian Zone of the Bohemian Massif, the easternmost of the European Variscan massifs. Pressure-temperature conditions for eclogite (≥890  °C, 18.0  kbar) and felsic granulite ( c . 1000  °C, 16  kbar) place early metamorphism of the polymetamorphic Gföhl crustal rocks within the eclogite facies, and preservation of prograde compositional zoning in small garnet grains in high-temperature eclogite requires very rapid heating, as well as cooling. Mantle-derived garnet and spinel–garnet peridotites are associated with the high temperature-high pressure crustal rocks in the Gföhl Nappe, and this distinctive lithological suite appears to be unique among European Phanerozoic orogenic belts, implying that tectonic processes during the late stages in evolution of the Variscan belt were different from those in the Caledonian and Alpine belts. The unusually high temperatures and pressures in Gföhl crustal rocks, mineralogical evidence for rapid heating and cooling, juxtaposition of lithospheric and asthenospheric mantle with crustal rocks, and widespread production of late-stage granites indicate that culmination of the Variscan Orogeny may have been driven by lithospheric delamination and asthenospheric upwelling.  相似文献   

13.
In the Orlica–?nie?nik Dome (NE Bohemian massif), alternating belts of orthogneiss with high‐pressure rocks and belts of mid‐crustal metasedimentary–metavolcanic rocks commonly display a dominant subvertical fabric deformed into a subhorizontal foliation. The first macroscopic foliation is subvertical, strikes NE–SW and is heterogeneously folded by open to isoclinal folds with subhorizontal axial planes parallel to the heterogeneously developed flat‐lying foliation. The metamorphic evolution of the mid‐crustal metasedimentary rocks involved successive crystallization of chlorite–muscovite–ilmenite–plagioclase–garnet, followed by staurolite‐bearing and then kyanite‐bearing assemblages in the subvertical fabric. This was followed by garnet retrogression, with syntectonic crystallization of sillimanite and andalusite parallel to the shallow‐dipping foliation. Elsewhere, andalusite and cordierite statically overgrew the flat‐lying fabric. With reference to a P–T pseudosection for a representative sample, the prograde succession of mineral assemblages and the garnet zoning pattern with decreasing grossular, spessartine and XFe are compatible with a PT path from 3.5–5 kbar/490–520 °C to peak conditions of 6–7 kbar/~630 °C suggesting burial from 12 to 25 km with increasing temperature. Using the same pseudosection, the retrograde succession of minerals shows decompression to sillimanite stability at ~4 kbar/~630 °C and to andalusite–cordierite stability at 2–3 kbar indicating exhumation from 25 km to around 9–12 km. Subsequent exhumation to ~6 km occurred without apparent formation of a deformation fabric. The structure and petrology together with the spatial distribution of the metasedimentary–metavolcanic rocks, and gneissic and high‐pressure belts are compatible with a model of burial of limited parts of the upper and middle crust in narrow cusp‐like synclines, synchronous with the exhumation of orogenic lower crust represented by the gneissic and high‐pressure rocks in lobe‐shaped and volumetrically more important anticlines. Converging PTD paths for the metasedimentary rocks and the adjacent high‐pressure rocks are due to vertical exchanges between cold and hot vertically moving masses. Finally, the retrograde shallow‐dipping fabric affects both the metasedimentary–metavolcanic rocks and the gneissic and high‐pressure rocks, and indicates that the ~15‐km exhumation was mostly accommodated by heterogeneous ductile thinning associated with unroofing of a buoyant crustal root.  相似文献   

14.
To study the relative and absolute timing of post-Variscan cooling and denudation processes in the Erzgebirge of the Mid-European Variscides, eight samples for apatite fission-track (AFT) analysis were collected from a ~1,300 m drill-core. The fission-track data reveal two stages of accelerated cooling through the apatite partial annealing zone (APAZ; i.e., 110±10–60 °C) in the Late Jurassic-Late Cretaceous and in the late Cenozoic, respectively. Late Jurassic-Late Cretaceous cooling corresponding to denudation of 1.5–5.9 km has been related to wrench tectonics along the Elbe Zone during Triassic-Jurassic Pangea breakup. Late Cenozoic exhumation of 2.1–5.6 km, and the increase of the geothermal gradient from 17±5 °C km–1 (Oligocene/Miocene) to 25–27 °C km–1 (recent) is likely connected to the formation of the Eger Graben starting from the Oligocene, as a result of the late Alpine orogenic phases.  相似文献   

15.
A medium-scale shear zone exposed in the gneiss rocks of the South-western Bohemian Massif (Moldanubian Zone) contains cordierite, whose Na p.f.u. is subject to a significant increase from the centre to the edge of the deformation area, whilst other elements only show negligible variations. Coexisting mineral phases of cordierite include garnet, biotite, and sillimanite. According to the results obtained from the garnet-cordierite Fe2+/Mg2+-exchange thermometer a decrease of peak temperature from 639 °C in the central mylonite to 593 °C in the marginal mylonite can be observed, which indicates significant shear heating. Lithological pressures were estimated by considering the position of cordierite-forming reactions in the P-T field and the stability of coexisting sillimanite. They are subject to a reduction from 0.35 GPa in the highest deformed mylonite to 0.31 GPa at the margin of the shear zone. According to the results of comprehensive petrographic and mineralogical studies the investigated shear zone underwent a Variscan HT-LP metamorphic event implying the formation of cordierite and an Alpine MT-LP event entailing the rotation and decomposition of the cordierite phase.  相似文献   

16.
Barite occurrences related to the Cenozoic (Late Alpine) low-temperature hydrothermal activity are present in the continental Ohře (Eger) Rift area. A specific, Ra-bearing type of barite has been known under the name “radiobarite” from this area since 1904. Revision of 12 localities revealed the presence of alleged radiobarite only in the Teplice (Lahošť–Jeníkov) and Karlovy Vary areas. Barite from other localities is radium-poor. Barite crystals showing concentric oscillation colour zoning totally prevail. Isomorphous substitution of Sr (X×10−1 to X×wt%), Ca (X×10−2 wt%) and Fe (X×10−1 wt%) for Ba was proved. Average SrO contents of 0.4 wt% are markedly exceeded in some samples from Lahošť–Jeníkov (max. 3.2 wt%) and Karlovy Vary (max. 4.9 wt%). Besides inclusions of stoichiometric iron disulphide, the same samples also contain iron disulphides with unusual high contents of Co (max. 12.2 wt%) and Ni (max. to 8.4 wt%). Specific activity of 238U in the studied barites is very low while that of 226Ra reaches 8 Bq/g in several samples. Therefore, 226Ra is not in equilibrium with its parent uranium. These “radiobarites” or their parts must be therefore relatively young, not older than 10–15 ka. Very low uranium contents (<0.4 ppm) were also confirmed by neutron activation analyses of barite samples.

Unit-cell dimensions refined from X-ray powder diffraction data do not show any systematic variation with the measured chemical composition. Their values agree with the data given in the literature. Reflection half-widths, however, seem to correlate with chemistry. Peaks are wider in samples from Lahošť–Jeníkov and Karlovy Vary.

Sulphur and oxygen stable isotope compositions of the Cenozoic barite mineralization of Teplice area are very uniform (δ34S values between 3.9‰ and 7.1‰ CDT, and δ18O values between 6.1‰ and 7.7‰ SMOW), while the barites of Děc˘ín area show more variable sulphur sources. Sulphate derived from sediments of the Tertiary Most Basin seems to dominate for the Teplice area, while Cretaceous sediments are a more probable sulphur source in the Děc˘ín area. Calculation of oxygen isotope composition of hydrothermal fluids based on fluid inclusion homogenization temperatures and barite δ18O data shows δ18Ofluid values in the range of meteoric waters or δ18O – shifted deep circulating meteoric or basinal waters.  相似文献   


17.
The Central Bohemian Plutonic Complex (CBPC) consists of episodically emplaced plutons, the internal fabrics of which recorded tectonic evolution of a continental magmatic arc. The ~354–350 Ma calc-alkaline plutons were emplaced by multiple processes into the upper-crustal Teplá-Barrandian Unit, and their magmatic fabrics recorded increments of regional transpression. Multiple fabrics of the younger, ~346 Ma Blatná pluton recorded both regional transpression and the onset of exhumation of mid-crustal orogenic root (Moldanubian Unit). Continuous exhumation-related deformation during pluton cooling resulted in the development of a wide zone of sub-solidus deformation along the SE margin of the CBPC. Finally, syn-exhumation tabular durbachitic pluton of ultrapotassic composition was emplaced atop the intrusive sequence at ~343–340 Ma, and the ultrapotassic Tábor pluton intruded after exhumation of the orogenic root (~337 Ma). We suggest that the emplacement of plutons during regional transpression in the upper crust produced thermally softened domain which then accommodated the exhumation of the mid-crustal orogenic root, and that the complex nature of the Teplá-Barrandian/Moldanubian boundary is a result of regional transpression in the upper crust, the enhancement of regional deformation in overlapping structural aureoles, the subsequent exhumation of the orogenic root domain, and post-emplacement brittle faulting.  相似文献   

18.
The Variscan Hauzenberg pluton consists of granite and granodiorite that intruded late- to postkinematically into HT-metamorphic rocks of the Moldanubian unit at the southwestern margin of the Bohemian Massif (Passauer Wald). U–Pb dating of zircon single-grains and monazite fractions, separated from medium- to coarse-grained biotite-muscovite granite (Hauzenberg granite II), yielded concordant ages of 320 ± 3 and 329 ± 7 Ma, interpreted as emplacement age. Zircons extracted from the younger Hauzenberg granodiorite yielded a 207Pb–206Pb mean age of 318.6 ± 4.1 Ma. The Hauzenberg granite I has not been dated. The pressure during solidification of the Hauzenberg granite II was estimated at 4.6 ± 0.6 kbar using phengite barometry on magmatic muscovite, corresponding to an emplacement depth of 16-18 km. The new data are compatible with pre-existing cooling ages of biotite and muscovite which indicate the Hauzenberg pluton to have cooled below T = 250–400 °C in Upper Carboniferous times. A compilation of age data from magmatic and metamorphic rocks of the western margin of the Bohemian Massif suggests a west- to northwestward shift of magmatism and HT/LP metamorphism with time. Both processes started at > 325 Ma within the South Bohemian Pluton and magmatism ceased at ca. 310 Ma in the Bavarian Oberpfalz. The slight different timing of HT metamorphism in northern Austria and the Bavarian Forest is interpreted as being the result of partial delamination of mantle lithosphere or removal of the thermal boundary layer.  相似文献   

19.
Slaby  E.; Martin  H. 《Journal of Petrology》2008,49(2):353-391
The Hercynian, post-collisional Karkonosze pluton contains severallithologies: equigranular and porphyritic granites, hybrid quartzdiorites and granodiorites, microgranular magmatic enclaves,and composite and lamprophyre dykes. Field relationships, mineralogyand major- and trace-element geochemistry show that: (1) theequigranular granite is differentiated and evolved by smalldegrees of fractional crystallization and that it is free ofcontamination by mafic magma; (2) all other components are affectedby mixing. The end-members of the mixing process were a porphyriticgranite and a mafic lamprophyre. The degree of mixing variedwidely depending on both place and time. All of the processesinvolved are assessed quantitatively with the following conclusions.Most of the pluton was affected by mixing, implying that hugevolumes (>75 km3) of mafic magma were available. This maficmagma probably supplied the additional heat necessary to initiatecrustal melting; part of this heat could have also been releasedas latent heat of crystallization. Only a very small part ofthe Karkonosze granite escaped interaction with mafic magma,specifically the equigranular granite and a subordinate partof the porphyritic granite. Minerals from these facies are compositionallyhomogeneous and/or normally zoned, which, together with geochemicalmodelling, indicates that they evolved by small degrees of fractionalcrystallization (<20%). Accessory minerals played an importantrole during magmatic differentiation and, thus, the fractionalcrystallization history is better recorded by trace rather thanby major elements. The interactions between mafic and felsicmagmas reflect their viscosity contrast. With increasing viscositycontrast, the magmatic relationships change from homogeneous,hybrid quartz diorites–granodiorites, to rounded magmaticenclaves, to composite dykes and finally to dykes with chilledmargins. These relationships indicate that injection of maficmagma into the granite took place over the whole crystallizationhistory. Consequently, a long-lived mafic source coexisted togetherwith the granite magma. Mafic magmas were derived either directlyfrom the mantle or via one or more crustal storage reservoirs.Compatible element abundances (e.g. Ni) show that the maficmagmas that interacted with the granite were progressively poorerin Ni in the order hybrid quartz diorites—granodiorites—enclaves—compositedykes. This indicates that the felsic and mafic magmas evolvedindependently, which, in the case of the Karkonosze granite,favours a deep-seated magma chamber rather than a continuousflux from mantle. Two magma sources (mantle and crust) coexisted,and melted almost contemporaneously; the two reservoirs evolvedindependently by fractional crystallization. However, maficmagma was continuously being intruded into the crystallizinggranite, with more or less complete mixing. Several lines ofevidence (e.g. magmatic flux structures, incorporation of granitefeldspars into mafic magma, feldspar zoning with fluctuatingtrace element patterns reflecting rapid changes in magma composition)indicate that, during its emplacement and crystallization, thegranite body was affected by strong internal movements. Thesewould favour more complete and efficient mixing. The systematicspatial–temporal association of lamprophyres with crustalmagmas is interpreted as indicating that their mantle sourceis a fertile peridotite, possibly enriched (metasomatized) byearlier subduction processes. KEY WORDS: Bohemian Massif; fractional crystallization; geochemical modelling; hybridization; Karkonosze  相似文献   

20.
The metamorphic evolution of micaschists in the north‐eastern part of the Saxothuringian Domain in the Central European Variscides is characterized by the early high‐pressure M1 assemblage with chloritoid in cores of large garnet porphyroblasts and a Grt–Chl–Phe–Qtz ± Pg M2 assemblage in the matrix. Minerals of the M1–M2 stage were overprinted by the low‐pressure M3 assemblage Ab–Chl–Ms–Qtz ± Ep. Samples with the best‐preserved M1–M2 mineralogy mostly appear in domains dominated by the earlier D1 deformation phase and are only weakly affected by subsequent D2 overprint. Thermodynamic modelling suggests that mineral assemblages record peak‐pressure conditions of ≥18–19 kbar at 460–520 °C (M1) followed by isothermal decompression 10.5–13.5 kbar (M2) and final decompression to <8.5 kbar and <480 °C (M3). The calculated peak P–T conditions indicate a high‐pressure/low‐temperature apparent thermal gradient of ~7–7.5 °C km?1. Laser ablation inductively coupled plasma mass spectrometry isotopic dating and electron microprobe chemical dating of monazite from the M1–M2 mineral assemblages give ages of 330 ± 10 and 328 ± 6 Ma, respectively, which are interpreted as the timing of a peak pressure to early decompression stage. The observed metamorphic record and timing of metamorphism in the studied metapelites show striking similarities with the evolution of the central and south‐western parts of the Saxothuringian Domain and suggest a common tectonic evolution along the entire eastern flank of the Saxothuringian Domain during the Devonian–Carboniferous periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号