首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The aim of this work is to show that, contrary to popular belief, galaxy clusters are not expected to be self-similar, even when the only energy sources available are gravity and shock-wave heating. In particular, we investigate the scaling relations between mass, luminosity and temperature of galaxy groups and clusters in the absence of radiative processes. Theoretical expectations are derived from a polytropic model of the intracluster medium and compared with the results of high-resolution adiabatic gasdynamical simulations. It is shown that, in addition to the well-known relation between the mass and concentration of the dark matter halo, the effective polytropic index of the gas also varies systematically with cluster mass, and therefore neither the dark matter nor the gas profiles are exactly self-similar. It is remarkable, though, that the effects of concentration and polytropic index tend to cancel each other, leading to scaling relations whose logarithmic slopes roughly match the predictions of the most-basic self-similar models. We provide a phenomenological fit to the relation between polytropic index and concentration, as well as a self-consistent scheme to derive the non-linear scaling relations expected for any cosmology and the best-fitting normalizations of the M – T , L – T and F – T relations appropriate for a Λ cold dark matter universe. The predicted scaling relations reproduce observational data reasonably well for massive clusters, where the effects of cooling and star formation are expected to play a minor role.  相似文献   

2.
3.
4.
5.
6.
7.
We present BVI photometry of 190 galaxies in the central 4 ×3 deg2 region of the Fornax cluster observed with the Michigan Curtis Schmidt Telescope. Results from the Fornax Cluster Spectroscopic Survey (FCSS) and the Flair-II Fornax Surveys have been used to confirm the membership status of galaxies in the Fornax Cluster Catalogue (FCC). In our catalogue of 213 member galaxies, 92 (43 per cent) have confirmed radial velocities.
In this paper, we investigate the surface brightness–magnitude relation for Fornax cluster galaxies. Particular attention is given to the sample of cluster dwarfs and the newly discovered ultracompact dwarf galaxies (UCDs) from the FCSS. We examine the reliability of the surface brightness–magnitude relation as a method for determining cluster membership and find that at surface brightnesses fainter than 22 mag arcsec−2, it fails in its ability to distinguish between cluster members and barely resolved background galaxies. Cluster members exhibit a strong surface brightness–magnitude relation. Both elliptical (E) galaxies and dwarf elliptical (dE) galaxies increase in surface brightness as luminosity decreases. The UCDs lie off the locus of the relation.
  B − V   and   V − I   colours are determined for a sample of 113 cluster galaxies and the colour–magnitude relation is explored for each morphological type. The UCDs lie off the locus of the colour–magnitude relation. Their mean   V − I   colours (∼1.09) are similar to those of globular clusters associated with NGC 1399. The location of the UCDs on both surface brightness and colour–magnitude plots supports the 'galaxy threshing' model for infalling nucleated dwarf elliptical (dE, N) galaxies.  相似文献   

8.
9.
We use the C24668, Fe4383, H γ A and H δ A spectral absorption line indices, together with U - and V -band photometry of 101 galaxies in the Coma cluster, to investigate how mean age and metal abundance correlate with galaxy luminosity. In particular, we use the line index measurements to address the origin of the colour–magnitude relation (CMR). We find that the CMR in Coma is driven primarily by a luminosity–metallicity correlation. We additionally show evidence for a relation between age and luminosity, in the direction predicted by the semi-analytic hierarchical clustering models of Kauffmann & Charlot, but this is only present in the C24668 index models, and could be an effect of the lack of non-solar abundance ratios in the Worthey models used.
By comparing deviations from the CMR with deviations in absorption index from analogous 'index–magnitude' relations, we find that colour deviations bluewards of the mean relation are strongly correlated with the hydrogen Balmer line series absorption. We show that the properties of these blue galaxies are consistent with the presence of a young stellar population in the galaxies, rather than with a reduced metallicity.  相似文献   

10.
We have extracted over 400 clusters, covering more than two decades in mass, from three simulations of the τ CDM cosmology. This represents the largest uniform catalogue of simulated clusters ever produced. The clusters exhibit a wide variety of density profiles. Only a minority are well-fitted in their outer regions by the widely used density profile of Navarro, Frenk & White (NFW), which is applicable to relaxed haloes. Others have steeper outer density profiles, show sharp breaks in their density profiles, or have significant substructure. If we force a fit to the NFW profile, then the best-fitting concentrations decline with increasing mass, but this is driven primarily by an increase in substructure as one moves to higher masses. The temperature–mass relations for properties measured within a sphere enclosing a fixed overdensity all follow the self-similar form, T ∝ M 2/3; however, the normalization is lower than the value inferred for observed clusters. The temperature–mass relations for properties measured within a fixed physical radius are significantly steeper then this. Both can be accurately predicted using the NFW model.  相似文献   

11.
The X-ray properties of a sample of 11 high-redshift  (0.6 < z < 1.0)  clusters observed with Chandra and/or XMM–Newton are used to investigate the evolution of the cluster scaling relations. The observed evolution in the normalization of the   L – T , M – T , M g– T   and M – L relations is consistent with simple self-similar predictions, in which the properties of clusters reflect the properties of the Universe at their redshift of observation. Under the assumption that the model of self-similar evolution is correct and that the local systems formed via a single spherical collapse, the high-redshift L – T relation is consistent with the high- z clusters having virialized at a significantly higher redshift than the local systems. The data are also consistent with the more realistic scenario of clusters forming via the continuous accretion of material.
The slope of the L – T relation at high redshift  ( B = 3.32 ± 0.37)  is consistent with the local relation, and significantly steeper than the self-similar prediction of   B = 2  . This suggests that the same non-gravitational processes are responsible for steepening the local and high- z relations, possibly occurring universally at   z ≳ 1  or in the early stages of the cluster formation, prior to their observation.
The properties of the intracluster medium at high redshift are found to be similar to those in the local Universe. The mean surface-brightness profile slope for the sample is  β= 0.66 ± 0.05  , the mean gas mass fractions within   R 2500( z )  and   R 200( z )  are  0.069 ± 0.012  and  0.11 ± 0.02  , respectively, and the mean metallicity of the sample is  0.28 ± 0.11 Z  .  相似文献   

12.
13.
We studied and compared the radial profiles of globular clusters and of the stellar bulge component in three galaxies of the Fornax cluster observed with the WFPC2 of the Hubble Space Telescope ( HST ). The stars are more concentrated toward the galactic centres than globular clusters, in agreement with what has already been observed in many other galaxies: if the observed difference is the result of evolution of the globular cluster systems starting from initial profiles similar to those of the halo–bulge stellar components, a relevant fraction of their initial mass (74, 47 and 52 per cent for NGC 1379, 1399 and 1404, respectively) should have disappeared in the inner regions. This mass has probably contributed to the nuclear field population, local dynamics and high-energy phenomena in the primeval life of the galaxy. An indication in favour of the evolutionary interpretation of the difference between the globular cluster system and stellar bulge radial profiles is given by the positive correlation we found between the value of the mass lost from the globular cluster system and the central galactic black hole mass in the set of seven galaxies for which these data are available.  相似文献   

14.
15.
16.
We present XMM–Newton observations of three optically selected   z > 0.6  clusters from the European Southern Observatory (ESO) Distant Cluster Survey (EDisCS), comprising the first results of a planned X-ray survey of the full EDisCS high-redshift sample. The EDisCS clusters were identified in the Las Campanas Distant Cluster Survey as surface brightness fluctuations in the optical sky and their masses and galaxy populations are well described by extensive photometric and spectroscopic observations. We detect two of the three clusters in the X-ray and place a firm upper limit on diffuse emission in the third cluster field. We are able to constrain the X-ray luminosity and temperature of the detected clusters and estimate their masses. We find that the X-ray properties of the detected EDisCS clusters are similar to those of X-ray-selected clusters of comparable mass and – unlike other high-redshift, optically selected clusters – are consistent with the T –σ and   L X–σ  relations determined from X-ray-selected clusters at low redshift. The X-ray determined mass estimates are generally consistent with those derived from weak-lensing and spectroscopic analyses. These preliminary results suggest that the novel method of optical selection used to construct the EDisCS catalogue may, like selection by X-ray luminosity, be well suited for identification of relaxed, high-redshift clusters whose intracluster medium is in place and stable by   z ∼ 0.8  .  相似文献   

17.
18.
19.
20.
We present an analysis of the X-ray point source populations in 182 Chandra images of galaxy clusters at   z > 0.1  with exposure time >10 ks, as well as 44 non-cluster fields. The analysis of the number and flux of these sources, using a detailed pipeline to predict the distribution of non-cluster sources in each field, reveals an excess of X-ray point sources associated with the galaxy clusters. A sample of 148 galaxy clusters at  0.1 < z < 0.9  , with no other nearby clusters, shows an excess of 230 cluster sources in total, an average of ∼1.5 sources per cluster. The lack of optical data for these clusters limits the physical interpretation of this result, as we cannot calculate the fraction of cluster galaxies hosting X-ray sources. However, the fluxes of the excess sources indicate that over half of them are very likely to be active galactic nuclei (AGN), and the radial distribution shows that they are quite evenly distributed over the central 1 Mpc of the cluster, with almost no sources found beyond this radius. We also use this pipeline to successfully reproduce the results of previous studies, particularly the higher density of sources in the central 0.5 Mpc of a few cluster fields, but show that these conclusions are not generally valid for this larger sample of clusters. We conclude that some of these differences may be due to the sample properties, such as the size and redshift of the clusters studied, or a lack of publications for cluster fields with no excess sources. This paper also presents the basic X-ray properties of the galaxy clusters, and in subsequent papers in this series the dependence of the AGN population on these cluster properties will be evaluated.
In addition the properties of over 9500 X-ray point sources in the fields of galaxy clusters are tabulated in a separate catalogue available online or at http://www.sc.eso.org~rgilmour .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号