首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
We suggest that an extreme Kerr black hole with a mass ∼106 M, a dimensionless angular momentum     and a marginally stable orbital radius     located in a normal galaxy may produce a γ -ray burst (GRB) by capturing and disrupting a star. During the capture period, a transient accretion disc is formed and a strong transient magnetic field ∼     lasting for     may be produced at the inner boundary of the accretion disc. A large amount of rotational energy of the black hole is extracted and released in an ultrarelativistic jet with a bulk Lorentz factor Γ larger than 103 via the Blandford–Znajek process. The relativistic jet energy can be converted into γ -radiation via an internal shock mechanism. The GRB duration should be the same as the lifetime of the strong transient magnetic field. The maximum number of sub-bursts is estimated to be     because the disc material is likely to break into pieces with a size about the thickness of the disc h at the cusp     The shortest risetime of the burst estimated from this model is ∼     The model GRB density rate is also estimated.  相似文献   

6.
Scattering of the forward-shock synchrotron emission by a relativistic outflow located behind the leading blast wave may produce an X-ray emission brighter than that coming directly from the forward shock and may explain four features displayed by Swift X-ray afterglows: flares, plateaus (slow decays), chromatic light-curve breaks and fast post-plateau decays. For a cold scattering outflow, the reflected flux overshines the primary one if the scattering outflow is nearly baryon-free and highly relativistic. These two requirements can be relaxed if the scattering outflow is energized by weak internal shocks, so that the incident forward-shock photons are also inverse-Compton scattered, in addition to bulk scattering. Sweeping-up of the photons left behind by the forward shock naturally yields short X-ray flares. Owing to the boost in photon energy produced by bulk scattering, the reflected emission is more likely to overshine that coming directly from the forward shock at higher photon energies, yielding light-curve plateaus and breaks that appear only in the X-ray. The brightness, shape and decay of the X-ray light-curve plateau depend on the radial distribution of the scatterer's Lorentz factor and mass flux. Chromatic X-ray light-curve breaks and sharp post-plateau decays cannot be accommodated by the direct forward-shock emission and argue in favour of the scattering-outflow model proposed here. On the other hand, the X-ray afterglows without plateaus, those with achromatic breaks and those with very long lived power-law decays are more naturally accommodated by the standard forward-shock model. Thus, the diversity of X-ray light curves arises from the interplay of the scattered and direct forward-shock emissions.  相似文献   

7.
8.
GRB 990123 was a long, complex gamma-ray burst accompanied by an extremely bright optical flash. We find different constraints on the bulk Lorentz of this burst to be consistent with the speculation that the optical light is emission from the reverse shock component of the external shock. Motivated by this currently favoured idea, we compute the prompt reverse shock emission to be expected for bursts in which multiwavelength observations allow the physical parameters to be constrained. We find that for reasonable assumptions about the velocity of source expansion, a strong optical flash  mV≈9  was expected from the reverse shocks, which were usually found to be mildly relativistic. The best observational prospects for detecting these prompt flashes are highlighted, along with the possible reasons for the absence of optical prompt detections in ongoing observations.  相似文献   

9.
10.
11.
We investigate the possibility that the     relation between the peak energy E p of the  ν F ν  spectrum and energy output     for long-duration gamma-ray bursts (GRBs) arises from the external shock produced by the interaction of a relativistic outflow with the ambient medium. To that aim, we take into account the dependence of all parameters which determine E p and     on the radial distribution of the ambient medium density and find that the     relation can be explained if the medium around GRBs has a universal radial stratification. For various combinations of GRB radiative process (synchrotron or inverse-Compton) and dissipation mechanism (reverse or forward shock), we find that the circumburst medium must have a particle density with a radial distribution different than the   R −2  expected for the stellar wind corresponding to a constant mass-loss rate and terminal speed.  相似文献   

12.
13.
The gamma-ray burst (GRB) 021211 had a simple light curve, containing only one peak and the expected Poisson fluctuations. Such a burst may be attributed to an external shock, offering the best chance for a unified understanding of the gamma-ray burst and afterglow emissions. We analyse the properties of the prompt (burst) and delayed (afterglow) emissions of GRB 021211 within the fireball model. Consistency between the optical emission during the first 11 min (which, presumably, comes from the reverse shock heating of the ejecta) and the later afterglow emission (arising from the forward shock) requires that, at the onset of deceleration (∼2 s), the energy density in the magnetic field in the ejecta, expressed as a fraction of the equipartition value  (ɛ B )  , is larger than in the forward shock at 11 min by a factor of approximately 103. We find that synchrotron radiation from the forward shock can account for the gamma-ray emission of GRB 021211; to explain the observed GRB peak flux requires that, at 2 s,  ɛ B   in the forward shock is larger by a factor 100 than at 11 min. These results suggest that the magnetic field in the reverse shock and early forward shock is a frozen-in field originating in the explosion and that most of the energy in the explosion was initially stored in the magnetic field. We can rule out the possibility that the ejecta from the burst for GRB 021211 contained more than 10 electron–positron pairs per proton.  相似文献   

14.
The temporal behaviour of the early optical emission from gamma-ray burst afterglows can be divided into four classes: fast-rising with an early peak, slow-rising with a late peak, flat plateaus and rapid decays since first measurement. The fast-rising optical afterglows display correlations among peak flux, peak epoch and post-peak power-law decay index that can be explained with a structured outflow seen off-axis, but the shock origin (reverse or forward) of the optical emission cannot be determined. The afterglows with plateaus and slow rises may be accommodated by the same model, if observer location offsets are larger than for the fast-rising afterglows, or could be due to a long-lived injection of energy and/or ejecta in the blast wave. If better calibrated with more afterglows, the peak flux–peak epoch relation exhibited by the fast- and slow-rising optical light curves could provide a way to use this type of afterglows as standard candles.  相似文献   

15.
16.
The prompt ( t ≲0.16 d) light curve and initial 9th-magnitude optical flash from GRB 990123 can be attributed to a reverse external shock, or possibly to internal shocks. We discuss the time decay laws and spectral slopes expected under various dynamical regimes, and the constraints imposed on the model by the observations, arguing that they provide strongly suggestive evidence for features beyond those in the simple standard model. The longer term afterglow behaviour is discussed in the context of the forward shock, and it is argued that, if the steepening after 3 d is due to a jet geometry, this is likely to be a result of jet-edge effects, rather than sideways expansion.  相似文献   

17.
18.
In the set of 236 gamma-ray burst (GRB) afterglows observed by Swift between 2005 January and 2007 March, we identify 30 X-ray light-curves that have power-law fall-offs that exhibit a steepening ('break') at 0.1–10 d after they are triggered, to a decay steeper than t −1.5. For most of these afterglows, the X-ray spectral slope and the decay indices before and after the break can be accommodated by the standard jet model although a different origin of the breaks cannot be ruled out. In addition, there are 27 other afterglows which have X-ray light-curves that may also exhibit a late break to a steep decay, but the evidence is not that compelling. The X-ray emissions of 38 afterglows decay slower than t −1.5 until after 3 d, half of them exhibiting such a slow decay until after 10 d. Therefore, the fraction of well-monitored Swift afterglows with potential jet breaks is around 60 per cent, whether we count only the strongest cases for each type or all of them. This fraction is comparable to the 75 per cent of pre-Swift afterglows which have optical light-curves that displayed similar breaks at ∼1 d. The peak energy of the GRB spectrum of Swift afterglows with light-curve breaks shows the same correlations with the burst isotropic output (Amati relation) and with the burst collimated output (Ghirlanda relation) as previously found for pre- Swift optical afterglows with light-curve breaks. However, we find that the Ghirlanda relation is largely a consequence of Amati's and that the use of the jet-break time leads to a stronger Ghirlanda correlation only when the few objects that do not satisfy the Amati relation are included.  相似文献   

19.
We propose to explain the recent observations of gamma-ray burst early X-ray afterglows with SWIFT by the dissipation of energy in the reverse shock that crosses the ejecta as it is decelerated by the burst environment. We compute the evolution of the dissipated power and discuss the possibility that a fraction of it can be radiated in the X-ray range. We show that this reverse shock contribution behaves in a way very similar to the observed X-ray afterglows if the following two conditions are satisfied. (i) The Lorentz factor of the material which is ejected during the late stages of source activity decreases to small values  Γ < 10  and (ii) a large part of the shock-dissipated energy is transferred to a small fraction  (ζ≲ 10−2)  of the electron population. We also discuss how our results may help to solve some puzzling problems raised by multiwavelength early afterglow observations such as the presence of chromatic breaks.  相似文献   

20.
We calculate the high-energy (sub-GeV to TeV) prompt and afterglow emission of GRB 080319B that was distinguished by a naked-eye optical flash and by an unusual strong early X-ray afterglow. There are three possible sources for high-energy emission: the prompt optical and γ-ray photons IC scattered by the accelerated electrons, the prompt photons IC scattered by the early external reverse-forward shock electrons, and the higher band of the synchrotron and the synchrotron self-Compton emission of the external shock. There should have been in total hundreds of high-energy photons detectable for the Large Area Telescope onboard the Fermi satellite, and tens of photons of those with energy >10 GeV. The >10 GeV emission had a duration about twice that of the soft γ-rays. Astro-rivelatore Gamma a Immagini Leggero (AGILE) could have observed these energetic signals if it was not occulted by the Earth at that moment. The physical origins of the high-energy emission detected in GRB 080514B, GRB 080916C and GRB 081024B are also discussed. These observations seem to be consistent with the current high-energy emission models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号