首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A microcosm experiment was conducted to test the short-term effects of nitrogen (as TKN, total Kjeldahl nitrogen) and sulphide (as AVS, acid volatile sulphide) on macrobenthic infauna over a period of 8 weeks. The experiment consisted of four treatments using sediment cores (D: 8 cm, H: 20 cm) with addition of: I, nitrogen (N) to an in situ mean level of 0.48 mg Ng(-1) dw; II, sulphidic solution (S) to an in situ mean level of 318.8 microM S g(-1) dw; III, nitrogen and sulphidic solution (NS) to in situ mean levels of 0.45 mg Ng(-1) dw and 329.0 microM S g(-1) dw, respectively, and IV, control with no addition of N and S. Sediment cores were retrieved for analysis of infaunal composition after weeks 2, 4 and 8. A total of 646 specimens of macrobenthic infauna belonging to 27 species were recorded from the cores, in which polychaetes were the most abundant with respect to species and individual numbers. Mean species number and diversity H' of the control and N treatment was statistically higher than S and NS treatments, mean individual number of the S treatment was larger than the NS treatment, and mean evenness J of the S treatment was lower than the N and NS treatments as well as the control. Individual numbers also showed a significant increase from weeks 2 to 8, whereas evenness J decreased in weeks 4 and 8. Multivariate analyses of the faunal data suggested that benthic composition of the N treatment and control did not differ during the experimental period, but changes in benthic structure in S and NS treatments were evident. The present findings demonstrated the dose-response relationship of benthic species changes under controlled addition of N and S. The response to N and S additions in the sediment microcosms was in agreement with the general effects of organic enrichment on macrobenthic communities along a spatial gradient of organic pollution as described by Pearson and Rosenberg [Pearson, T.H., Rosenberg, R., 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology Annual Review 16, 229-311]. However, in the present experiment, community changes in the treatments were observable in a short, temporal scale.  相似文献   

2.
We assessed the relative hydrological impacts of climate change and urbanization using an integrated approach that links the statistical downscaling model (SDSM), the Hydrological Simulation Program—Fortran (HSPF) and the impervious cover model (ICM). A case study of the Anyangcheon watershed, a representative urban region in Korea, illustrates how the proposed framework can be used to analyse the impacts of climate change and urbanization on water quantity and quality. The evaluation criteria were measurements of low flow (99, 95, and 90 percentile flow), high flow (10, 5, and 1 percentile value), pollutant concentration (30, 10, and 1 percentile value), and the numbers of days required to satisfy the target water quantity and quality for a sensitive comparison of subtle impacts of variations in these measures. Nine scenarios, including three climate scenarios (present conditions, A1B, and A2) and three land use change scenarios, were analysed using the HSPF model. The impacts of climate change on low flow (34·1–59·8% increase) and high flow (29·1–37·1% increase) were found to be much greater than those on the biochemical oxygen demand (BOD) (3·8–10·0% decrease). On the other hand, the impacts of urbanization on water quality (19·0–44·6% increase) are more significant than those on high (1·0–4·4% increase) and low flow (11·4–25·6% decrease). Furthermore, low flows are more sensitive to urbanization than high flows. The number of days required to satisfy the target water quantity and quality can be a sensitive criterion to compare the subtle impacts of climate and urbanization on human society, especially as they are much more sensitive than low flow and pollutant concentration. Finally, urbanization has a potent impact on BOD while climate change has a high impact on flow rate. Therefore, the impacts of both climate change and urbanization must be included in watershed management and water resources planning for sustainable development. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Two successive knickpoints with a 10% slope were constructed 1 m apart on a sandy bed in a rectangular flume with a longitudinal slope of 0.003.Bed erosion and knickpoint migration were studied experimentally for different discharge s.The performance of two grade-control structures-Newbury rock riffles(NRR) and cross-vane riffles(CVR)-were studied experimentally for the stabilization of each knickpoint.Both of the structures were successful in controlling the bed erosion;however,the NRR operated...  相似文献   

4.
Peat deposits in a gully at the inland margin of the Firth of Tay carselands contain a transgressive wedge of estuarine sediments laid down at the culmination of the Main Postglacial Transgression. In previous work, the sequence of deposits in the gully and their age have been examined at one location. The present study both extends and evaluates that previous work, employing further field work and laboratory analyses. The detailed stratigraphy of the deposits is identified, whilst from a borehole close to the limit of the transgressive deposit, diatom analysis and geochemical analyses, involving the determination of Al, Mg, C, and δ 13CPDB are outlined. Eight 14C assays from peat at the transgressive and regressive contacts in four boreholes along the wedge of estuarine sediments are described. Whilst the results of diatom analysis are inconclusive, the geochemical analyses indicate that the sediment accumulated broadly continuously without major changes in the depositional environment. It is concluded that the Main Postglacial Transgression in the gully was at first rapid, then slowed and culminated between 6240 ± 80 and 6030 ± 80 (or 6170 ± 90) radiocarbon years, B.P. It is subsequently maintained that the geochemical analyses described here may be of value in determining the continuity of transgressive deposits, whilst the practice of obtaining multiple radiocarbon assays at such locations should enable assessment of age to be refined. This may in turn assist in testing the hypothesis of shoreline diachroneity in glacioisostatically affected areas.  相似文献   

5.
Experiments were conducted on Magilligan Strand, Northern Ireland, to assess the influence of the fetch effect on aeolian sediment transport. During each experiment surface sediments were uniformly dry and unhindered by vegetation or debris. The leading edge of erodible material was well defined, with the limit of wave up‐rush demarcating the wet–dry boundary; the work was conducted during low tides. A number of electronic and integrating traps were utilised, with two ultrasonic anemometers used to measure wind direction and velocity at 1 Hz. The combination of 1o direction data and trap locations resulted in a range of fetch distances, from 2 to 26 m. Data integrated over 15‐minute intervals (corresponding to the integrating trap data) revealed a distinct trend for all the experiments. An initial rapid increase in the transport rate occurred over a short distance (4–9 m). This maximum transport rate was maintained for a further 5–6 m before a steady decay in the flux followed, as fetch distance increased. A measured reduction in wind speed (6–8%) across the beach suggests a negative feedback mechanism may be responsible for the diminishing transport rate: the saltating grains induce energy dissipation, thus reducing the capability of the wind to maintain transport. For one experiment, the presence of compact sediment patches may also have contributed to the reduction of the transport rate. The decay trend calls into question the utility of the fetch effect as an important parameter in aeolian studies that seek to understand sediment budgets of the foredune‐beach zone. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Understanding the principal causes and possible solutions for groundwater depletion in India is important for its water security, especially as it relates to agriculture. A study was conducted in an agricultural watershed in Andhra Pradesh, India to assess the impacts on groundwater of current and alternative agricultural management. Hydrological simulations were used as follows: (1) to evaluate the recharge benefits of water‐harvesting tillage through a modified Soil and Water Assessment Tool (SWAT) model and (2) to predict the groundwater response to changing extent and irrigation management of rice growing areas. The Green–Ampt infiltration routine was modified in SWAT was modified to represent water‐harvesting tillage using maximum depression storage parameter. Water‐harvesting tillage in rainfed croplands was shown to increase basin‐scale groundwater recharge by 3% and decrease run‐off by 43% compared with existing conventional tillage. The groundwater balance (recharge minus irrigation withdrawals), negative 11 mm/year under existing management changed to positive (18–45 mm/year) when rice growing areas or irrigation depths were reduced. Groundwater balance was sensitive to changes in rice cropland management, meaning even small changes in rice cropland management had large impacts on groundwater availability. The modified SWAT was capable of representing tillage management of varying maximum depression storage, and tillage for water‐harvesting was shown to be a potentially important strategy for producers to enhance infiltration and groundwater recharge, especially in semi‐arid regions where rainfall may be becoming increasingly variable. This enhanced SWAT could be used to evaluate the landscape‐scale impacts of alternative tillage management in other regions that are working to develop strategies for reducing groundwater depletion. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
An essential part of hydrological research focuses on hydrological extremes, such as river peak flows and associated floods, because of their large impact on economy, environment, and human life. These extremes can be affected by potential future environmental change, including global climate change and land cover change. In this paper, the relative impact of both climate change and urban expansion on the peak flows and flood extent is investigated for a small‐scale suburban catchment in Belgium. A rainfall‐runoff model was coupled to a hydrodynamic model in order to simulate the present‐day and future river streamflow. The coupled model was calibrated based on a series of measured water depths and, after model validation, fed with different climate change and urban expansion scenarios in order to evaluate the relative impact of both driving factors on the peak flows and flood extent. The three climate change scenarios that were used (dry, wet winter, wet summer) were based on a statistical downscaling of 58 different RCM and GCM scenario runs. The urban expansion scenarios were based on three different urban growth rates (low, medium, high urban expansion) that were set up by means of an extrapolation of the observed trend of urban expansion. The results suggest that possible future climate change is the main source of uncertainty affecting changes in peak flow and flood extent. The urban expansion scenarios show a more consistent trend. The potential damage related to a flood is, however, mainly influenced by land cover changes that occur in the floodplain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Coastal reclamation and modifications are extensively carried out in Bahrain, which may physically smother the coastal and subtidal habitats resulting in changes to abundance and distribution of macrobenthic assemblages. A microcosm laboratory experiment using three common macrobenthic invertebrates from a proposed reclaimed coastal area was preformed to examine their responses to mud burial using marine sediment collected from a designated borrow area. Significant difference in numbers of survived organisms between control and experimental treatments with a survival percentage of 41.8% for all of the selected species was observed. The polychaete Perinereis nuntia showed the highest percentage of survival (57.1%) followed by the bivalve Tellinavaltonis (42.3%) and the gastropod Cerithidea cingulata (24.0%). Quantifying species responses to sediment burial resulted from dredging and reclamation will aid in predicting the expected ecological impacts associated with coastal developments and subsequently minimizing these impacts and maintaining a sustainable use of coastal and marine ecosystems in the Arabian Gulf.  相似文献   

9.
Global warming poses a great threat to wetland ecological stability and water quality improvement. In this paper, we sampled six types of wetlands representing different kinds of land utilisation around the TaiHu Lake Basin in southeast China. An outdoor computerized microcosm was set up in May 2008 to simulate climate scenarios of ambient temperature (control) and a warmed ambient temperature (+5 °C) using a novel minute‐scale daily and seasonal temperature manipulation technology. The 18‐month incubation indicated that warming impaired the ecological sink of sediment (fixing P from porewater) while strengthening the role of the ecological source, moreover, the rate of P release from sediment into porewater (19–113% for total phosphorus) was much stronger than from top sediment into overlying water. Warming enhanced the activity of neutral and alkaline phosphatases for P‐deficient wetland sediments and neutral phosphatases for P‐rich sediments, at the 14th month of incubation. A significant increase in total phospholipid fatty acids (PLFAs) occurred under warming in sediments with relatively low levels of PLFAs, but bacterial abundance in the sediment biomass tended to decrease (18%) along with an increase (4·5%) of the fungi‐to‐bacteria ratio. The variations of carbon consumption and availability indicated by measured dissolved organic carbon in sediment may have contributed to P release from sediments to water. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Environmental impacts of dredging on seagrasses: a review   总被引:2,自引:0,他引:2  
Main potential impacts on seagrasses from dredging and sand mining include physical removal and/or burial of vegetation and effects of increased turbidity and sedimentation. For seagrasses, the critical threshold for turbidity and sedimentation, as well as the duration that seagrasses can survive periods of high turbidity or excessive sedimentation vary greatly among species. Larger, slow-growing climax species with substantial carbohydrate reserves show greater resilience to such events than smaller opportunistic species, but the latter display much faster post-dredging recovery when water quality conditions return to their original state. A review of 45 case studies worldwide, accounting for a total loss of 21,023 ha of seagrass vegetation due to dredging, is indicative of the scale of the impact of dredging on seagrasses. In recent years, tighter control in the form of strict regulations, proper enforcement and monitoring, and mitigating measures together with proper impact assessment and development of new environmental dredging techniques help to prevent or minimize adverse impacts on seagrasses. Costs of such measures are difficult to estimate, but seem negligible in comparison with costs of seagrass restoration programmes, which are typically small-scale in approach and often have limited success. Copying of dredging criteria used in one geographic area to a dredging operation in another may in some cases lead to exaggerated limitations resulting in unnecessary costs and delays in dredging operations, or in other cases could prove damaging to seagrass ecosystems. Meaningful criteria to limit the extent and turbidity of dredging plumes and their effects will always require site-specific evaluations and should take into account the natural variability of local background turbidity.  相似文献   

11.
The seismic performance of underground reservoir structures depends on the properties of the structure, soil, and ground motion as well as the kinematic constraints imposed on the structure. A series of four centrifuge experiments were performed to evaluate the influence of site response, structural stiffness, base fixity, and excitation frequency on the performance of relatively stiff reservoir structures buried in dry, medium-dense sand. The magnitude of seismic thrust increased and the distribution of seismic earth pressures changed from approximately triangular to parabolic with increasing structural stiffness. Heavier and stiffer structures also experienced increased rocking and reduced flexural deflection. Fixing the base of the structure amplified the magnitude of acceleration, seismic earth pressure, and bending strain compared to tests where the structure was free to translate laterally, settle, or rotate atop a soil layer. The frequency content of transient tilt, acceleration, dynamic thrust, and bending strain measured on the structure was strongly influenced by that of the base motion and site response, but was unaffected by the fundamental frequency of the buried structure (fstructure). None of the available simplified procedures could capture the distribution and magnitude of seismic earth pressures experienced by this class of underground structures. The insight from this experimental study is aimed to help validate analytical and numerical methods used in the seismic design of reservoir structures.  相似文献   

12.
A damaging earthquake occurred on 14 July 1993 in Patras, Western Greece. The mainshock (local magnitude 5.1) was followed on the same day by two aftershocks of magnitudes 4.4 ML and 3.6 ML, respectively. The strong motion record of the mainshock is studied, based on the teleseismically determined seismic moment and focal mechanism. The Discrete Wavenumber (DW) and Empirical Green's Function (EGF) methods are used. The main conclusion is that the 1993 Patras mainshock had a complex S-wave group mainly due to structural (path and site) effect. However, some effects of the rupture stopping on the peak ground acceleration (0.2 g in the so-called S3 phase) cannot be ruled out. Two values of the source radius are suggested: R = 1.9 and 3.0 km. The strong motion record better agrees with R = 1.9 km. If the latter is true, the stress drop was of the order of 20 MPa, i.e., higher than often reported for comparable events in Western Greece. Regardless of the true source radius, the ratio of stress drops between the mainshock and aftershocks was about 1–2. The aftershock waveforms indicate significant lateral heterogeneities around Patras. Therefore, the ground-motion predictions of strong events in the area will remain highly non-unique until weak events from an immediate neighbourhood of the particular fault are recorded.  相似文献   

13.
The construction of a Giant Sea Wall (GSW) complex in Jakarta Bay has been proposed to protect Jakarta against flood in the Master Plan for National Capital Integrated Coastal Development (NCICD). However, these large-scale hydraulic structures could significantly change the tidal dynamics in Jakarta Bay. This research investigates the potential impacts of a GSW on the tidal dynamics, including tides, currents, and residual currents in Jakarta Bay using a validated numerical model (Finite Volume Coastal Ocean Model (FVCOM)). Results show that the bay is diurnal with a maximum tidal range of ~0.9 m. The flow is mainly in an east-west direction with a maximum depth-mean current speed of up to 0.3 ms?1. The construction of a GSW would modulate the tidal dynamics by changing the bathymetry, tidal prism, wind effect, and tidal choking effect in the bay. The maximum tidal range would be slightly increased due to the reduced tidal prism of the bay and the increased tidal choking effect. The current would penetrate into the west reservoir through the gates and channels between the artificial islands, with peak speed jets appearing at the gates (~0.3 ms?1), due to tidal choking. A similar peak current speed appears near the right wing of the GSW due to the pressure gradient would be created by the wing of the GSW. Closing the gates would mainly affect the currents inside the west reservoir. The residual current would be slightly increased after the construction of the GSW. An eddy would be formed at the bottom level near the right wing of the GSW. The direction of the residual current is landward instead of seaward at the surface level outside the GSW. The impact of wind on surface currents would be much reduced due to the decreased water surface area. Although this study is site specific, the findings may have a wider applicability to the impacts of large-scale hydraulic structures on tidal dynamics in open-type bays.  相似文献   

14.
在气候变化和人类活动的双重影响下,湖泊内部的水动力条件正发生重大的变化,进而影响到湖泊水环境的变化.水龄是颗粒物从入口传输到指定点的时间,可以定量反映水体的运动和交换程度以及滞留情况.如何定量区分人类活动与气候变化对水龄的影响程度,对湖泊水资源科学管理和水环境的治理有着重要的科学意义.本文耦合了深度学习网络和传统二维水...  相似文献   

15.
Earthquake has left much life and property damages. The occurrence of such events necessitates the execution of plans for combating the earthquakes. One of the most important methods for combating earthquakes includes assessing dynamic characteristics of soil and site effect. One of the methods by which one can state dynamic characteristics of the soil of an area is the measurement of microtremors. Microtremors are small-scale vibrations that occur in the ground and have an amplitude range of about0.1–1 microns. Microtremor measurement is fast, applicable, cost-effective. Microtremor measurements were taken at 15 stations in the Babol, north of Iran. Regarding H/V spectral ratio method, peak frequency and amplification factor were calculated for all microtremor stations.According to the analysis, the peak frequency varies from0.67 to 8.10 Hz within the study area. Also, the authors investigated the validity of the results by comparing them with SESAME guidelines and geotechnical conditions of study area. The microtremor analysis results are consistent with SESAME guidelines and geotechnical condition of study area. The results show that the microtremor observations are acceptable methods for assessing dynamic characteristics of soil and site effect in the Babol City.  相似文献   

16.
Irrigation is the major water supply for crop production in water‐limited regions. However, this important water component is usually neglected or simplified in hydrological modelling primarily because information concerning irrigation is notably difficult to collect. To assess real effects of irrigation on the simulation of evapotranspiration (ET) in water‐limited region, the Community Land Model version 4 was established over a typical semi‐humid agricultural basin in the northern China – the Haihe River basin. In the irrigated cropland, incorporating an irrigation scheme can enhance the simulated ET and improve the simulation of spatial variability of soil moisture content. We found that different configurations in the irrigation scheme do not cause significant differences in the simulated annual ET. However, simulated ET with simulated irrigation differs clearly from that with observed irrigation in mean annual magnitude, long‐term trend and spatial distribution. Once the irrigation scheme is well‐calibrated against observations, it reasonably reproduces the interannual variability of annual irrigation, when irrigation water management is relatively stable. More importantly, parameter calibration should be consistent with the configuration of the source of irrigation water. However, an irrigation scheme with a constant parameter value cannot capture the trend in the annual irrigation amount caused by abrupt changes in agricultural water management. Compared with different remotely sensed ET products, the enhancement in the simulated ET by irrigation is smaller than the differences among these products, and the trend in simulated ET with the observed irrigation cannot be captured correctly by the remotely sensed ET. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Microbial respiration rates were determined through a 3.2 m thick, sandy unsaturated zone in a 2.4 m diameter x 4.6 m high mesocosm. The mesocosm was maintained under near constant temperature (18 degrees to 23 degrees C) and reached steady moisture content conditions after several hundred days. Soil-gas CO2 concentrations in the mesocosm ranged from 0.09% to 3.31% and increased with depth. Respiration rates within the mesocosm were quantified over a 342-day period using measured CO2 concentrations and a transient, one-dimensional finite-element model. Microbial respiration rates were 2 x 10(-1) micrograms C.g-1.d-1 throughout most of the system, but decreased to 10(-4) to 10(-3) micrograms C.g-1.d-1 within the capillary fringe. Microbial respiration rates were also determined in minicosms (500 g sample mass) over a range in temperatures (4 degrees to 30 degrees C) and volumetric moisture contents (0.044 to 0.37). The functional dependence of CO2 production on temperature and soil-moisture content was similar for the two scales of laboratory observation. Respiration rates in the minicosms, for temperatures and moisture contents in the mesocosm, were up to an order of magnitude greater than those determined for the mesocosm. The higher respiration rates in the minicosms, compared to the mesocosm, were attributed to greater disturbance of the samples and to shorter acclimation time in the minicosms. Extrapolating the laboratory respiration rates to field conditions yielded rates that were two to three orders of magnitude greater than rates previously determined in situ for C-horizon material. Results show that in situ microbial reaction rates determined using disturbed samples in minicosms and mesocosms yielded respiration rates that greatly exceeded field conditions. Mesocosms can, however, provide a useful environment for conducting process-related research in unsaturated environments.  相似文献   

18.
Anthropogenic inputs of crude and refined petroleum hydrocarbons into the sea require knowledge of the effects of these contaminants on the receiving assemblages of organisms. A microcosm experiment was carried out to study the influence of diesel on a free living nematode community of a Tunisian lagoon. Sediments were contaminated by diesel that ranged in concentration from 0.5 to 20 mg diesel kg−1 dry weight (dw), and effects were examined after 90 days. Gradual changes in community structure were revealed depending on the quantity of diesel administrated. In the medium (1 mg diesel kg−1 and 5 mg diesel kg−1 (dw)) and high (10 mg diesel kg−1, 15 mg diesel kg−1 and 20 mg kg−1 (dw)) treated microcosms, most univariate measures, including diversity and species richness, decreased significantly with increasing level of diesel contamination whereas nematode assemblage from the low treated microcosm (0.5 mg diesel kg−1 (dw)) remained unaffected. Results from multivariate analyses of the species abundance data demonstrated that responses of nematode species to the diesel treatments were varied: Chaetonema sp. was eliminated at all doses tested and seemed to be intolerant species to diesel contamination; Pomponema sp. and Oncholaimus campylocercoïdes were significantly affected at all diesel contamination levels but they were not eliminated, these species were categorized as “diesel-sensitive”; Hypodontolaimus colesi, Daptonema trabeculosum and Daptonema fallax which significantly increased respectively at 0.5, 1 and 5 mg diesel kg−1 (dw) concentrations and appeared to be “opportunistic” species at these doses whereas Marylynnia stekhoveni which increased at all high doses (10, 15 and 20 mg diesel kg−1 (dw)) seemed to be a “diesel-resistant” species.  相似文献   

19.
Comparison of eolian transport during five high-velocity wind events over a 29 day period on a narrow estuarine beach in Delaware Bay, New Jersey, USA, reveals the temporal variability of transport, due to changes in direction of wind approach. Mean wind speed measured 6 m above the dune crest for the five events ranged from 8·5 to 15·9 ms?1. Mean wind direction was oblique to the shoreline (63° from shore-normal) during one event but was within 14° of shore-normal during the other events. Eolian transport is greatest during low tide and rising tide, when the beach source area is widest and when drying of surface sediments occurs. The quantity of sediment caught in a vertical trap for the five events varied from a total of 0·07 to 113·73 kgm?1. Differences in temperature, relative humidity and moisture and salt content of surficial sediments were slight. Mean grain sizes ranged from 0·33 to 0·58 mm, causing slight differences in threshold shear velocity, but shear velocities exceeded the threshold required for transport during all events. Beach width, measured normal to the shoreline, varied from 15·5 to 18·0 m; beach slope differed by 0·5°. The oblique wind during one event created a source width nearly double the width during other days. Beach slope, measured in the direction of the wind, was less than half as steep as the slope measured normal to the shoreline. The amount of sand trapped during the oblique wind was over 20 times greater than any other event, even those with higher shear velocities. The ability of the beach surface to supply grains to the air stream is limited on narrow beaches, but increased source width, due to oblique wind approach, can partially overcome limitations of surface conditions on the beach.  相似文献   

20.
Intertidal shoals are pronounced morphological features found in many estuaries worldwide. Apart from maintaining an ecologically unique intertidal environment, shoals also protect adjacent dyke systems by attenuating waves. The fate of sandy shoals under anticipated sea level rise (SLR) scenarios is underexplored. The current research investigates the long-term morphodynamic evolution of estuarine sandy shoals under forcing by short fetch, locally generated wind-waves, tides, and SLR by means of a numerical, process-based model (Delft3D). The focus lies on a sheltered shoal complex in the Western Scheldt, the Netherlands. Starting from the initial, 1963 bathymetry, we model 50-year morphodynamic development with schematized wind-wave forcing. We analyze in detail the impact of locally generated wind-waves on shoal formation. Finally, we impose regional SLR of 1.10 m and 1.95 m for 100 years. Model results show that, on the spatial scale of intertidal flats, small, locally generated wind-waves lower and widen the shoals while the adjacent channels deepen. However, on the estuarine system scale, wind-waves do not lead to fundamentally different channel–shoal patterns and morphodynamic evolution trends. This suggests that channel–shoal formation is mainly due to tide residual sediment transports, with wind-waves playing a secondary role. SLR leads to a notable intertidal area loss, despite a continuous heightening of the shoals, implying that morphodynamic adaptation lags behind SLR. The inclusion of wind-waves does not fundamentally change the reaction of the estuarine shoal to SLR. Future research may focus on exploring the impact of including multiple sediment classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号