首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The three dimensional scattering of near-field, from a point source, is studied for acceleration in the time domain. The perturbation method is applied to define the acceleration for the first order scattering from a weak inhomogeneity in a homogeneous surrounding. A body force, arising from the interaction between the primary waves and the inhomogeneity, acts as the source generating the scattered motion. The acceleration of scattered waves is related to the velocity and density fluctuations of the inhomogeneity. No restrictions are placed on the inhomogeneity size or locations of the source and receiver. Decoupling of scattered motion enables the identification of different phases. Integral expressions are derived for the scattering acceleration due to the incidence of near-field wave (from an impulsive point force) at a radially inhomogeneous volume element. These integrals are solved further for scattering from an inhomogeneous spherical shell. The accelerations for back scattering are obtained as a special case. These accelerations are simple analytically solvable expressions in closed form. Only spherical asymmetry ofP wave velocity inhomogeneity can affect the scatteredS acceleration. ScatteredP acceleration is affected by the gradient ofS wave velocity inhomogeneity. The back scattering of near-field from a spherical shell, is independent of radial inhomogeneity ofP wave velocity. Inhomogeneity with smoothly perturbedS wave velocity does not back-scatter any acceleration. Accelerations are computed numerically for scattering from a part of inhomogeneous spherical shell. Hypothetical models are considered to study the effects of the distances of spherical shell from source, receiver, its thickness and its position relative to the direction of impulsive force.  相似文献   

2.
《地学前缘(英文版)》2020,11(3):989-998
Regions of slow strain often produce swarm-like sequences, characterized by the lack of a clear mainshock-aftershock pattern. The comprehension of their underlying physical mechanisms is challenging and still debated. We used seismic recordings from the last Pollino swarm (2010–2014) and nearby to separate and map seismic scattering (from P peak-delays) and absorption (from late-time coda-wave attenuation) at different frequencies in the Pollino range and surroundings. High-scattering and high-absorption anomalies are markers of a fluid-filled fracture volume extending from SE to NW (1.5–6 ​Hz) across the range. With increasing frequency, these anomalies approximately cover the area where the strongest earthquakes occurred from the sixteenth century until 1998. In our interpretation, the NW fracture propagation ends where carbonates of the Lucanian Apennines begin, as marked by a high-scattering and low-absorption area. At the highest frequency (12 ​Hz) the anomalies widen southward in the middle of the range, consistently marking the faults active during the recent Pollino swarm. Our results suggest that fracture healing has closed small-scale fractures across the SE faults that were active in the past centuries, and that the propagation of fluids may have played a crucial role in triggering the 2010–2014 Pollino swarm. Assuming that the fluid propagation ended at the carbonates barrier in the NW direction, fractures opened new paths to the South, favoring the nucleation of the last Pollino swarm. Indeed, the recently active faults in the middle of the seismogenic volume are marked by a high-scattering and high-absorption footprints. Our work provides evidence that attenuation parameters may track shape and dynamics of fluid-filled fracture networks in fault areas.  相似文献   

3.
Abstract Most porphyroblasts never rotate during ductile deformation, provided they do not internally deform during subsequent events, with the exception of relatively uncommon but spectacular examples of spiralling garnets. Instead, the surrounding foliation rotates and reactivates due to partitioning of the deformation around the porphyroblast. Consequently, porphyroblasts commonly preserve the orientation of early foliations and stretching lineations within strain shadows or inclusion trails, even where these structures have been rotated or obliterated in the matrix due to subsequent deformation. These relationships can be readily used to help develop an understanding of the processes of foliation development and they demonstrate the prominent role of reactivation of old foliations during subsequent deformation. They can also be used to determine the deformation history, as porphyroblasts only rotate when the deformation cannot partition and involves progressive shearing with no combined bulk shortening component.  相似文献   

4.
In stability analysis of rock blocks, the deformability of the blocks can conveniently be simulated using the boundary element method (BEM). However, all boundary conditions are given as stresses. Thus, the displacement solution is not unique. In this paper, an algorithm is proposed to remove rigid body motions in the solution of the boundary form of Somigliana identity discretized by the direct BEM formulation. The algorithm is applied to the calculation of the normal stiffness of rock blocks and coupled with BS3D, large displacement and rotation algorithm for the general stability of rock blocks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
In the low‐pressure, high‐temperature metamorphic rocks of western Maine, USA, staurolite porphyroblasts grew at c. 400 Ma, very late during the regional orogenesis. These porphyroblasts, which preserve straight inclusion trails with small thin‐section‐scale variation in pitch, were subsequently involved in the strain and metamorphic aureole of the c. 370 Ma Mooselookmeguntic pluton. The aureole shows a progressive fabric intensity gradient from effectively zero emplacement‐related deformation at the outer edge of the aureole ~2900 m (map distance) from the pluton margin to the development of a pervasive emplacement‐related foliation adjacent to the pluton. The development of this pervasive foliation spanned all stages of crenulation cleavage development, which are preserved at different distances from the pluton. The spread of inclusion‐trail pitches in the staurolite porphyroblasts, as measured in two‐dimensional (2‐D) thin sections, increases nonlinearly from ~16° to 75° with increasing strain in the aureole. These data provide clear evidence for rotation of the staurolite porphyroblasts relative to one another and to the developing crenulation cleavage. The data spread is qualitatively modelled for both pure and simple shear, and both solutions match the data reasonably well. The spread of inclusion‐trail orientations (40–75°) in the moderately to highly strained rocks is similar to the spread reported in several previous studies. We consider it likely that the sample‐scale spread in these previous studies is also the result of porphyroblast rotation relative to one another. However, the average inclusion‐trail orientation for a single sample may, in at least some instances, reflect the original orientation of the overgrown foliation.  相似文献   

6.
We have used incompressible Navier–Stokes in 2D finite element modelling to investigate rigid inclusion rotation under confined bulk simple shear flow. Confinement is defined as the ratio (S) between the channel width (H) and the inclusion's least axis (e2)(S=H/e2). The numerical results show that (i) inclusion rotation is strongly influenced by S and, when the confinement is effective, aspect ratio (R) and shape also play an important role. (ii) Back rotation is limited because inclusions reach a stable equilibrium orientation (se). (iii) There is also an unstable equilibrium orientation (ue), which defines an antithetic rotation field with se, and both se and ue depend on S, and inclusion R and shape.  相似文献   

7.
A Silurian/Ordovician extensional event in the southernmost sectors of the Central Iberian Zone is inferred from the Sm/Nd isochron obtained (436 ± 17 Ma) after the diabase sills from the La Codosera syncline. From the geochemical and mineralogical points of view, the diabase sills are subalkaline and range between high-Mg tholeiite diabases to tholeiite andesites. LREE enrichment, an Nb negative anomaly, the absence of a Ta trough and a high Nd isotope signature (εNdt = + 6) are the most relevant geochemical features. The diabase bodies are up to 330 m in thickness and were sampled from bottom to top along several different sections, permitting the definition of an accumulation of clinopyroxene, olivine and plagioclase close to chilled margins at the bottom, and abundant pegmatoid layers at the top. Chemical profiles and mass-balance modelling suggest that the bulk rock and chilled margin compositions are not dissimilar, defining an unusual S-type vertical compositional profile for large (> 50 m thick) sills, which in turn strongly suggests a single magma pulse and a probable gravitational settling. Assuming chilled margin samples as the parental magma, as well as Cr-enriched samples as cumulate layers, a two-stage liquid line of descent has been established, the first one consisting of a clinopyroxene-plagioclase-olivine cumulate assemblage. A second stage in relation to the depletion in Ti, Fe and V is accounted for by ilmenite fractionation, along with that of clinopyroxene, plagioclase and olivine fractionation. Thermobarometric estimations reveal that the clinopyroxene (around 1100 °C and 197 MPa) was a late mineral phase, whereas the plagioclase (around 1200 °C) was pre- to syn-emplacement, in agreement with the presence only of plagioclase phenocrysts in the chilled margins and the very abundant positive Eu anomaly. The energy constraint modelling is consistent with the lack of a significant assimilation process owing to the high temperature contrast between the country rock and the magma itself. The compositional characteristics of chilled margins enable them to be ruled out as primary melts in equilibrium with mantle olivine (Fo91), a certain amount of olivine fractionation being required, which might have occurred in magma conduits en route to shallow emplacement levels in the crust. Spinel lherzolitic xenoliths from the European Cenozoic alkaline magmatism appear to be unsuitable protoliths to account for the chilled margin compositions. Instead, a hybrid mantle source consisting of a small amount of OIB-mantle component (5 wt.%) and a depleted end-member mantle component seems to be a plausible protolith, resulting in a good fit with the fractionation-corrected chilled margin trends for 10% of partial melting.  相似文献   

8.
Natural occurrences and recent experimental work show that a low-friction inclusion/matrix boundary can be responsible for antithetical rotation and development of stable shape preferred orientations in simple shear. The flow of a viscous matrix around a rigid inclusion to which it may or may not be adherent is still not well studied, but it is relevant to the understanding of the behaviour of structural elements in mylonite zones. We used two-dimensional (2-D) analogue experiments to address these issues. The experimental results with a permanent low-friction inclusion/matrix boundary (nonadherent mode) show the following. (1) The rotation behaviour of inclusions in this mode is markedly different from the theoretical predictions and experimental results for the adherent mode. (2) Inclusions with aspect ratio equal to 1 rotate synthetically at a rate that depends upon inclusion shape and orientation. (3) Ellipse-, rectangle- and lozenge-shaped inclusions rotate antithetically when starting with their greatest axis parallel to the shear direction. (4) Back rotation is limited in all cases studied, and the angle between the inclusion greatest axis and the shear direction represents a stable orientation, which depends on inclusion aspect ratio and shape. (5) A metastable orientation exists, which is strongly dependent upon inclusion shape and aspect ratio, and separates fields of antithetic and synthetic rotation.Our experimental results show that the overall flow pattern is bow tie-shaped in adherent and nonadherent modes. However, there are major differences in the way the matrix flows near the inclusion. (i) In the nonadherent mode, the nearby matrix flows past the inclusion, whereas in the adherent mode, the nearby matrix flows with and follows the inclusion. Therefore, in the adherent mode, passive marker lines parallel to the shear direction and streamlines show considerable deflections at the inclusion crests, in marked contrast with their straight character in the nonadherent mode. (ii) Stagnation points or closed flow lines near the inclusion were not observed in the nonadherent mode, which means that there is no closed separatrix around the inclusion in this mode, despite the fact that the overall flow shape is bow tie. (iii) In the adherent mode, the line of flow reversal is stable throughout deformation, but in the nonadherent mode, it changes position and orientation with progressive shearing. This shifting of the line of flow reversal can be an important factor controlling rotation behaviour in the nonadherent mode. (iv) In the nonadherent mode, the inclusion behaviour is similar to that observed in confined flow. (v) The flow pattern in the nonadherent mode provides an explanation for the observed lack of drag folds associated with small-scale rigid inclusions in mylonites.  相似文献   

9.
We have used 2-D finite element modelling to investigate the influence of a permanent low-viscosity layer between matrix and inclusion on matrix flow and inclusion rotation under viscous simple shear flow. Rigid inclusions of different shape (circle, square, ellipse, lozenge, rectangle and skewed rectangles) and aspect ratio (R) were used. The calculated matrix flow pattern is neither bow tie nor eye-shaped. It is a new flow pattern that we call cat eyes-shaped, which is characterized by: (i) straight streamlines that slightly bend inwards at the inclusion's crests; (ii) elongate eye-shaped streamlines on each side of the inclusion; (iii) stagnation points in the centre of the eyes; (iv) absence of closed streamlines surrounding the inclusion; (v) changes in flow configuration with inclusion orientation; the lines of flow reversal bend and tilt, closed streamline circuits may disappear, and streamlines may bend outwards at the inclusion's crests.Concerning inclusion rotation, the numerical results show that: (i) a low-viscosity layer (LVL) makes inclusions with R = 1 rotate synthetically, but the rotation rate depends upon shape (circle or square) and orientation. Therefore, shape matters in the slipping mode. (ii) All studied shapes with R > 1 rotate antithetically when starting with the greatest principal axis (e1) parallel to the shear direction ( = 0°); (iii) rotation is limited because there is a stable equilibrium orientation (se) for all studied shapes with R > 1. (iii) There is also an unstable equilibrium orientation (ue), and both se and ue depend upon inclusion's R and shape.The present numerical results closely agree with previous results of analogue experiments with a permanent low viscosity interface. Only minor deviations related with small shape differences were detected.  相似文献   

10.
The microfabrics of folded quartz veins in fine‐grained high pressure–low temperature metamorphic greywackes of the Franciscan Subduction Complex at Pacheco Pass, California, were investigated by optical microscopy, scanning electron microscopy including electron backscatter diffraction, and transmission electron microscopy. The foliated host metagreywacke is deformed by dissolution–precipitation creep, as indicated by the shape preferred orientation of mica and clastic quartz without any signs of crystal‐plastic deformation. The absence of crystal‐plastic deformation of clastic quartz suggests that the flow stress in the host metagreywacke remained below a few tens of MPa at temperatures of 250–300 °C. In contrast, the microfabric of the folded quartz veins indicates deformation by dislocation creep accompanied by subgrain rotation recrystallization. For the small recrystallized grain size of ~8 ± 6 μm, paleopiezometers indicate differential stresses of a few hundred MPa. The stress concentration in the single phase quartz vein is interpreted to be due to its higher effective viscosity compared to the fine‐grained host metagreywacke deforming by dissolution–precipitation creep. The fold shape suggests a viscosity contrast of one to two orders of magnitude. Deformation by dissolution–precipitation creep is expected to be a continuous process. The same must hold for folding of the vein and deformation of the vein quartz by dislocation creep. The microfabric suggests dynamic recrystallization predominantly by subgrain rotation and only minor strain‐induced grain boundary migration, which requires low contrasts in dislocation density across high‐angle grain boundaries to be maintained during climb‐controlled creep at high differential stress. The record of quartz in these continuously deformed veins is characteristic and different from the record in metamorphic rocks exhumed in seismically active regions, where high‐stress deformation at similar temperatures is episodic and related to the seismic cycle.  相似文献   

11.
Detailed 3‐D analysis of inclusion trails in garnet porphyroblasts and matrix foliations preserved around a hand‐sample scale, tight, upright fold has revealed a complex deformation history. The fold, dominated by interlayered quartz–mica schist and quartz‐rich veins, preserves a crenulation cleavage that has a synthetic bulk shear sense to that of the macroscopic fold and transects the axis in mica‐rich layers. Garnet porphyroblasts with asymmetric inclusion trails occur on both limbs of the fold and display two stages of growth shown by textural discontinuities. Garnet porphyroblast cores and rims pre‐date the macroscopic fold and preserve successive foliation inflection/intersection axes (FIAs), which have the same trend but opposing plunges on each limb of the fold, and trend NNE–SSW and NE–SW, respectively. The FIAs are oblique to the main fold, which plunges gently to the WSW. Inclusion trail surfaces in the cores of idioblastic porphyroblasts within mica‐rich layers define an apparent fold with an axis oblique to the macroscopic fold axis by 32°, whereas equivalent surfaces in tabular garnet adjacent to quartz‐rich layers define a tighter apparent fold with an axis oblique to the main fold axis by 17°. This potentially could be explained by garnet porphyroblasts that grew over a pre‐existing gentle fold and did not rotate during fold formation, but is more easily explained by rotation of the porphyroblasts during folding. Tabular porphyroblasts adjacent to quartz‐rich layers rotated more relative to the fold axis than those within mica‐rich layers due to less effective deformation partitioning around the porphyroblasts and through quartz‐rich layers. This work highlights the importance of 3‐D geometry and relative timing relationships in studies of inclusion trails in porphyroblasts and microstructures in the matrix.  相似文献   

12.
As a result of oblique collision, the Taiwan orogen propagates southward. The Hengchun peninsula in the southern tip of the Taiwan Central Range, preserving the youngest, the least deformed and the most complete accretionary prism sequences, allows therefore better understanding of the tectonic evolution of Taiwan orogen. On the Hengchun peninsula, four main stages of paleostress can be recognized by the analysis of brittle tectonics. After recording the first two stages of paleostress, rocks of the Hengchun peninsula (the Hengchun block) have undergone both tilting and counterclockwise rotation of about 90°. The structural boundaries of this rotated Hengchun block are: the Kenting Mélange zone in the southwest, the Fongkang Fault in the north, and a submarine backthrust in the east. The angle of this rotation is principally calculated by the paleomagnetic analysis data and a physical model experiment. Through a systematic back-tilting and back-rotating restoration, the original orientations of the four paleostress stages of Hengchun peninsula are recognized. They are, from the ancient to the recent, a NW–SE extension, a combination of NW–SE transtension and NE–SW transpression, a NE–SW compression, and finally a combination of NE–SW transtension and NW–SE transpression. This result can be explained by a phenomenon of stress axes permutation, instead of a complex polyphase tectonism. This stress axes permutation is caused by the horizontal compression increase accompanying the propagation of the accretionary prism. Combining the tectonic and paleomagnetic data with paleocurrent and stratigraphic data enables us to reconstruct the tectonic evolution of the Hengchun peninsula. This reconstruction corresponds to the deformation history of a continental margin basin, from its opening to its intense deformation in the accretionary prism.  相似文献   

13.
The Mesozoic Liaonan metamorphic core complex (mcc) of the southeastern Liaoning province, North China, is an asymmetric Cordilleran-style complex with a west-rooting master detachment fault, the Jinzhou fault. A thick sequence of lower plate, fault-related mylonitic and gneissic rocks derived from Archean and Early Cretaceous crystalline protoliths has been transported ESE-ward from mid-crustal depths. U–Pb ages of lower plate syntectonic plutons (ca. 130–120 Ma), 40Ar–39Ar cooling ages in the mylonitic and gneissic sequence (ca. 120–110 Ma), and a Cretaceous supradetachment basin attest to the Early Cretaceous age of this extensional complex. The recent discovery of the coeval and similarly west-rooting Waziyu mcc in western Liaoning [Darby, B.J., Davis, G.A., Zhang, X., Wu, F., Wilde, S., Yang, J., 2004. The newly discovered Waziyu metamorphic core complex, Yiwulushan, western Liaoning Province, North China. Earth Science Frontiers 11, 145–155] indicates that the Gulf of Liaoning, which lies between the two complexes, was the center of a region of major crustal extension.Clockwise crustal rotation of a large region including eastern Liaoning province and the Korean Peninsula with respect to a non-rotated North China block has been conclusively documented by paleomagnetic studies over the past decade. The timing of this rotation and the reasons for it are controversial. Lin et al. [Lin, W., Chen, Y., Faure, M., Wang, Q., 2003. Tectonic implication of new Late Cretaceous paleomagnetic constraints from Eastern Liaoning Peninsula, NE China. Journal of Geophysical Research 108 (B-6) (EPM 5-1 to 5-17)] proposed that a clockwise rotation of 22.5° ± 10.2° was largely post-Early Cretaceous in age, and was the consequence of extension within a crustal domain that tapers southwards towards the Bohai Sea (of which the Gulf of Liaoning is the northernmost part). Paleomagnetic studies of Early Cretaceous strata (ca 134–120 Ma) in the Yixian–Fuxin supradetachment basin of the Waziyu mcc indicate the non-rotation of North China and the basin [Zhu, R.X., Shao, J.A., Pan, Y.X., Shi, R.P., Shi, G.H., Li, D.M., 2002. Paleomagnetic data from Early Cretaceous volcanic rocks of West Liaoning: evidence for intracontinental rotation. Chinese Science Bulletin 47, 1832–1837]. Such upper-plate non-rotation supports our conclusion that the lower plates of the Waziyu and Liaonan metamorphic core complexes were displaced ESE-ward in an absolute sense away from the stable North China block, thus contributing to the rotation of Korea and contiguous areas. Rotation is inferred to have affected only the upper crust above mid-crustal levels into which we believe the Jinzhou and Waziyu detachment fault zones flattened. If this is the case, the regional Tan Lu fault that lies between the two core complexes was truncated at mid-crustal depth, since in areas to the south it forms the boundary between the North and South China lithospheric blocks. It is noteworthy that the two extensional complexes lie not far north of the Bohai Bay, the area proposed by Lin et al. [Lin, W., Chen, Y., Faure, M., Wang, Q., 2003. Tectonic implication of new Late Cretaceous paleomagnetic constraints from Eastern Liaoning Peninsula, NE China. Journal of Geophysical Research 108 (B-6) (EPM 5-1 to 5-17)] as the site of the pole of rotation for Korea's clockwise displacement.Lin et al. [Lin, W., Chen, Y., Faure, M., Wang, Q., 2003. Tectonic implication of new Late Cretaceous paleomagnetic constraints from Eastern Liaoning Peninsula, NE China. Journal of Geophysical Research 108 (B-6) (EPM 5-1 to 5-17)] were unaware of the Liaonan and Waziyu mcc's and argued that most of the regional block rotation was post-Early Cretaceous and, in part, early Cenozoic. However, the ca. 130–120 Ma ages of the two Liaoning mcc's and a Songliao basin mcc (Xujiaweizi), the latter discovered only by recent drilling through its younger stratigraphic cover, support our and some Korean coworkers' conclusions that most of the clockwise rotation was Early Cretaceous.  相似文献   

14.
In this study, the chemistry and microstructure of garnet aggregates within a metamorphic vein are investigated. Garnet‐bearing veins in the Sanbagawa metamorphic belt, Japan, occur subparallel to the foliation of a host mafic schist, but some cut the foliation at low angle. Backscattered electron image and compositional mapping using EPMA and crystallographic orientation maps from electron‐backscattered diffraction (EBSD) reveal that numerous small garnet (10–100 μm diameter) coalesce to form large porphyroblasts within the vein. Individual small garnet commonly exhibits xenomorphic shape at garnet/garnet grain boundaries, whereas it is idiomorphic at garnet/quartz boundaries. EBSD microstructural analysis of the garnet porphyroblasts reveals that misorientation angles of neighbour‐pair garnet grains within the vein have a random distribution. This contrasts with previous studies that found coalescence of garnet in mica schist leads to an increased frequency of low angle misorientation boundaries by misorientation‐driven rotation. As garnet nucleated with random orientation, the difference in misorientation between the two studies is due to the difference in the extent of grain rotation. A simple kinetic model that assumes grain rotation of garnet is rate‐limited by grain boundary diffusion creep of matrix quartz, shows that (i) the substantial rotation of a fine garnet grain could occur for the conditions of the Sanbagawa metamorphism, but (ii) the rotation rate drastically decreased as garnet grains formed large clusters during growth. Therefore, the random misorientation distribution of garnet porphyroblasts in the Sanbagawa vein is interpreted as follows: (i) garnet within the vein grew so fast that substantial grain rotation did not occur through porphyroblast formation, and thus (ii) random orientations at the nucleation stage were preserved. The extent of misorientation‐driven rotation indicated by deviation from random orientation distribution may be useful to constrain the growth rate of constituent grains of porphyroblast that formed by multiple nucleation and coalescence.  相似文献   

15.
Abstract

Four oroclinal structures have been identified from structural, magnetic and gravity trends across a Carboniferous continental arc, forearc basin [Tamworth Belt (TB)] and conjugate accretionary complex in the southern New England Orogen (SNEO) of eastern Australia. None of the structures has yet been confirmed conclusively by paleomagnetism as oroclinal. Ignimbrites are common within the forearc basin and have been demonstrated to retain primary magnetisations despite prevalent overprinting. They are well exposed across six major tectono-stratigraphic blocks with partly interlinked stratigraphies, making the forearc basin highly prospective to oroclinal testing by comparing pole path segments for individual blocks across curved structures. Paleomagnetic studies have shown no noticeable rotation across the western/southwestern TB (Rocky Creek, Werrie and Rouchel blocks), but documented herein is a minor counter-clockwise rotation of the Gresford Block of the southern TB. This study details paleomagnetic, rock magnetic and magnetic fabric results for 87 sites (969 samples) across the southern Gresford Block. Predominantly thermal, also alternating field and liquid nitrogen, demagnetisations show a widely present low-temperature overprint, attributed to regional late Oligocene weathering, and high-temperature primary and overprint components residing in both mainly magnetite and mainly hematite carriers. Subtle, but systematic, directional differences between magnetite and hematite subcomponents show the latter as the better cleaned, better-defined, preferred results, detailing nine primary poles of middle and late Carboniferous ages and Permian and Permo-Triassic overprints as observed elsewhere in the western/southwestern TB. The primary poles update a poorly defined mid-Carboniferous section of the SNEO pole path and demonstrate counter-clockwise rotation, quantified at about 15° ± 13° from comparison of mid-Carboniferous Martins Creek Ignimbrite Member poles for the Rouchel and Gresford blocks, that may not necessarily have been completed prior to the Hunter–Bowen phase of the Gondwanide Orogeny. This minor counter-clockwise rotation of the Gresford Block accentuates a primary curvature of the southwestern/southern TB and heralds further, more complex, rotations of the Myall Block of the southeastern TB.  相似文献   

16.
Three‐dimensional particle morphology is a significant problem in the discrete element modeling of granular sand. The major technical challenge is generating a realistic 3D sand assembly that is composed of a large number of random‐shaped particles containing essential morphological features of natural sands. Based on X‐ray micro‐computed tomography data collected from a series of image processing techniques, we used the spherical harmonics (SH) analysis to represent and reconstruct the multi‐scale features of real 3D particle morphologies. The SH analysis was extended to some highly complex particles with sharp corners and surface cavities. We then proposed a statistical approach for the generation of realistic particle assembly of a given type of sand based on the principle component analysis (PCA). The PCA aims to identify the major pattern of the coefficient matrix, which is made up of the SH coefficients of all the particles involved in the analysis. This approach takes into account the particle size effect on the variation of particle morphology, which is observed from the available results of micro‐computed tomography and QICPIC analyses of sand particle morphology. Using the aforementioned approach, two virtual sand samples were generated, whose statistics of morphological parameters were compared with those measured from real sand particles. The comparison shows that the proposed approach is capable of generating a realistic sand assembly that retains the major morphological features of the mother sand. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Porphyroblasts of garnet and plagioclase in the Otago schists have not rotated relative to geographic coordinates during non-coaxial deformation that post-dates their growth. Inclusion trails in most of the porphyroblasts are oriented near-vertical and near-horizontal, and the strike of near-vertical inclusion trails is consistent over 3000 km2. Microstructural relationships indicate that the porphyroblasts grew in zones of progressive shortening strain, and that the sense of shear affecting the geometry of porphyroblast inclusion trails on the long limbs of folds is the same as the bulk sense of displacement of fold closures. This is contrary to the sense of shear inferred when porphyroblasts are interpreted as having rotated during folding.
Several crenulation cleavage/fold models have previously been developed to accommodate the apparent sense of rotation of porphyroblasts that grew during folding. In the light of accumulating evidence that porphyroblasts do not generally rotate, the applicability of these models to deformed rocks is questionable.
Whether or not porphyroblasts rotate depends on how deformation is partitioned. Lack of rotation requires that progressive shearing strain (rotational deformation) be partitioned around rigid heterogeneities, such as porphyroblasts, which occupy zones of progressive shortening or no strain (non-rotational deformation). Therefore, processes operating at the porphyroblast/matrix boundary are important considerations. Five qualitative models are presented that accommodate stress and strain energy at the boundary without rotating the porphyroblast: (a) a thin layer of fluid at the porphyroblast boundary; (2) grain-boundary sliding; (3) a locked porphyroblast/matrix boundary; (4) dissolution at the porphyroblast/matrix boundary, and (5) an ellipsoidal porphyroblast/shadow unit.  相似文献   

18.
从亚洲大陆块体拼贴过程看大陆造山带的形成与演化   总被引:14,自引:1,他引:13  
肖文交  杨振宇 《地质论评》2000,46(3):270-275
本文就亚洲大陆喜马拉雅造山带和大别-苏鲁造山带构造演化模式进行详细评述,并据大地构造学和古地磁学最新研究成果讨论并总结大陆造山带形成与演化模式,即大陆碰撞造山带的演化可能涉及以下5个连续的过程: 碰撞旋转拼合陆内挤压反弹.  相似文献   

19.
罗凡  严加永  付光明  王昊  陶鑫  罗磊 《中国地质》2019,46(4):759-774
华南地区是中国金属矿产资源的“大粮仓”,分布有多个多金属成矿带。多金属成矿带的形成常伴随着地下特殊的深部背景和过程,通过莫霍面深度的计算,对华南地区的地壳厚薄变化所反映的壳幔耦合关系进行研究,可为探索华南地区地下巨量金属资源的形成与演变过程提供参考。本文首先基于球坐标的重力解算方法对高阶卫星重力场模型EIGEN-6C4的数据进行校正,得到华南地区的卫星布格重力异常。然后采用改进的Parker-Oldenburg方法进行变密度界面反演,获得华南地区莫霍面起伏特征。最后结合区内不同成矿带的范围和前人发表的地质、地球化学等资料,探讨华南地区不同成矿带的成矿物质来源与莫霍面起伏的关系。认为长江中下游和钦杭东段处于莫霍面隆起区域的成矿带,幔源物质对其成矿作用起主导地位,形成以铜、铁为主的多金属矿床;南岭、武夷、钦杭西段及鄂西—湘西位于莫霍面隆-陷交替区域的成矿带,成矿与壳、幔源物质的相互作用密切相关,最终形成钨、锡、金、银、铅锌等多金属矿床。  相似文献   

20.
Geomagnetic storms are a natural hazard tohuman health in the Auroral Belt of the Circumpolar.Geomagnetic disturbances in space, and the associated short-term variations in the atmosphere and the geophysical environment,provoke a disturbance of nervous and cardiovascular systems in the human body. The Heart Rate Variability (HRV) method providesa momentary response of human organisms toshort-term geophysical perturbations related to the Polar Aurora. A pilot project was performed in the Murmansk region in 1997–1999 with a contemporaneous series of records for both HRV in a test group of local inhabitants and the variations of natural geomagnetic fields.A correlation between geomagnetic disturbances and heart rate was calculated and different reactions of people on geophysical impact were shown. The special group of `Aurora Disturbance Sensitive People' (ADSP) was revealed. Aninternational study, aimed atevaluation of the impact on human health due to exposure of northern populations to the geophysical risk factor (GRF) in the Circumpolar areas located under the Aurora Belt, is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号