首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
碱熔沉淀-等离子体质谱法测定地质样品中的多元素   总被引:14,自引:17,他引:14       下载免费PDF全文
采用过氧化钠焙融或偏硼酸锂熔融分解样品,将提取液碱性沉淀,通过过滤分离掉大量熔剂,再将沉淀用酸复溶后用等离子体质谱测定26个元素。通过对比,偏硼酸锂熔融—酸提取—碱性沉淀的方案,空白低,易操作,成本低,大多数元素测定结果的相对误差<10%,相对标准偏差<5%(n=10),与标准值相吻合。  相似文献   

2.
唐力君  罗立强等 《岩矿测试》2001,20(4):253-256262
研究制定了在X射线荧光光谱分析中适用于多类型地质样品的低稀释比制样技术。确定了四硼酸锂和偏硼酸锂混合试剂作为熔剂,使用m样品:m熔剂=1:3的稀释比制样,对4种不同种类的地质材料进行了实验,并采用基本参数法和理论α系数法校正基体效应,得到了准确度较高的定量分析结果。  相似文献   

3.
波长色散X射线荧光光谱法测定铜精矿中铜铅锌硫镁砷   总被引:7,自引:6,他引:1  
采用偏硼酸锂和四硼酸锂混合熔剂熔融法制样,波长色散X射线荧光光谱法测定铜精矿中铜、铅、锌、硫、镁、砷,考察了熔剂、玻璃化试剂和预氧化条件对制样的影响。采用理论α系数和经验系数相结合的方法校正元素间的效应。测定铜精矿试样各组分的相对标准偏差(RSD,n=12)均小于3%,结果与化学分析法吻合。  相似文献   

4.
铝土矿中主成分的X射线荧光光谱分析   总被引:1,自引:1,他引:0  
钟代果 《岩矿测试》2008,27(1):71-73
利用X射线荧光光谱法测定铝土矿中主成分Al2O3、SiO2、Fe2O3、TiO2.采用四硼酸锂-偏硼酸锂作熔剂,溴化锂作脱模剂,国产高频熔样炉高温熔融制备玻璃圆片,以标准物质制作校准曲线进行测定,并与化学法进行对照,结果基本一致.方法操作简单、快速,准确度和精密度均达到国家标准方法规定的要求,已用于实际生产中.  相似文献   

5.
X射线荧光光谱法(XRF)已经应用于石膏等非金属矿物的测定,但由于石膏标准物质匮乏、硫含量较高且在高温易挥发损失,给测定带来了一定困难。本文采用石膏标准物质、高纯硫酸钙和其他国家一级标准物质(土壤、水系沉积物、碳酸盐)配制人工标准物质拟合校准曲线,优化稀释比、熔矿温度等熔融制样条件,用理论α系数校正基体效应,建立了采用XRF同时测定石膏矿中10个主次量元素(硅铝铁钙镁钾钠钛硫锶)的分析方法。样品与四硼酸锂-偏硼酸锂熔剂的稀释比为1∶9,在1050℃温度下样品熔融完全。方法检出限为4~135μg/g,精密度(RSD,n=12)小于3.0%。本方法配制的人工校准样品加强了样品基体的适应性,使用的四硼酸锂-偏硼酸锂熔剂在样品熔融过程中可有效地结合硫,抑制了硫的挥发损失,适用于批量分析硫含量高达12.60%~51.91%的实际石膏矿物。  相似文献   

6.
青刚玉是以天然铝土矿为主要原料加上一些其他组分经电弧炉高温熔炼结晶而成的α-刚玉。主要成分是氧化铝和少量铁、钛、硅的氧化物。用常规方法熔融人工合成青刚玉往往分解不完全,而用硼酸钠-碳酸钠(钾)混合熔剂熔融虽然可以完全分解,但熔融和浸取需要长达12小时以上。四硼酸锂熔剂在X荧光光谱法-熔融制样中己普遍采用,对难溶的岩矿已能熔融完全,我们受到启发后,用这种熔剂在1000℃马弗炉中或在claisse Fluxer Ⅳ自动熔样机上高温熔融,然后用盐酸提  相似文献   

7.
用电感耦合等离子体质谱法(ICP-MS)测定地质样品中的稀土及难熔元素,混合酸敞开酸溶法和碱熔融法是两种主要的溶样方法。但地质样品组分复杂,元素之间存在相互共生的现象,对于特殊元素、特殊样品用传统酸溶法会造成部分元素消解不完全,使测定结果不准确;而碱熔法的操作过程繁琐,且溶液盐度高,易产生基体干扰和堵塞仪器进样系统。本文改进了传统四酸和五酸体系,采用氢氟酸-硝酸-硫酸敞开酸溶体系,用国家一级标准物质制作标准曲线测定15种稀土元素,方法准确度(ΔlgC)为0.001~0.027。同时改进了偏硼酸锂碱熔法,样品用偏硼酸锂碱熔提取,加入氢氧化钠调节溶液至碱性条件,所测元素与偏硼酸锂共沉淀后过滤分离熔剂,再用硝酸复溶测定15种稀土元素及铌钽锆铪。两种溶样方法的测定值与认定值的相对误差为1.09%~9.30%。将混合酸敞开酸溶法测定稀土元素、偏硼酸锂碱熔法测定铌钽锆铪的结果与其他实验室密闭酸溶法相比,两组数据的相对偏差为0.13%~15.32%。本实验表明,混合酸敞开酸溶法适用于测定地质样品中的稀土元素,偏硼酸锂碱熔法不仅适用于测定地质样品中的稀土元素及铌钽锆铪,也适用于测定如古老高压变质岩石及铝含量高的样品中的铌钽锆铪。  相似文献   

8.
熔融制片-X射线荧光光谱法测定磷矿石中主次量组分   总被引:10,自引:5,他引:5  
采用四硼酸锂-偏硼酸锂混合熔剂熔融制备样片,用Axios型X射线荧光光谱仪测定磷矿石样品中五氧化二磷、氟、二氧化硅、三氧化二铝、总三氧化二铁、氧化镁、氧化钙、氧化钠、氧化钾、二氧化钛、氧化锰、氧化锶和硫等13种组分。重点试验了熔样比、熔样温度和标样制备。用基本参数法校正基体效应,分析方法的精密度(RSD,n=10)除二氧化钛、氟和硫分别小于10.8%、6.0%及10.2%外,其余各组分均小于4.5%。用磷矿石国家一级标准物质验证,结果与标准值相符。  相似文献   

9.
采用偏硼酸锂和四硼酸锂混合熔剂熔融法制样,波长色散X射线荧光光谱法同时测定钒渣中的Al2O3、SiO2、CaO、TiO2、MnO、P、V2O5、MgO、Fe、S、Cr2O3等11个主、次量成分。研究了熔剂、预氧化条件、熔样温度、脱模剂等对制样的影响。采用理论α系数校正基体效应及谱线重叠干扰的影响。测定钒渣试样各组分的相对标准偏差(RSD,n=10)在0.1%~7.5%。用钒渣行业级有证标准物质及实际样品验证,测定结果与标准值及其他方法的测定值相符。与化学法相比,该方法具有快速、简便,精密度好,准确度高等优点。  相似文献   

10.
用偏硼酸锂熔样ICP-AES法测定岩石中Si、Zr等12个元素   总被引:5,自引:0,他引:5  
鲁慧文  王英杰 《吉林地质》2005,24(2):118-122
本方法采用偏硼酸锂分解样品,电感耦合等离子体发射光谱法测量,在同一份溶液中可以测定硅、钠、铝、钙、镁、铁、钛、锰、钡、锶、钒、锆等元素。通过对国家标准物质测定,其准确度、精密度能满足岩石样品中定量分析要求。  相似文献   

11.
在应用光学发射光谱分析地质样品、微波等离子体(MWp)以及电感耦合等离子体(ICp)已经证明是一种优良的激发光源。分析富硅的地质样品要遇到困难的样品分解过程,其中包括如偏硼酸锂或碳酸钠熔融这样极为关键性的步骤。完全分解硅酸盐  相似文献   

12.
海洋沉积物常用的分析方法如敞开消解或高压密闭消解结合电感耦合等离子体质谱(ICP-MS)或电感耦合等离子体发射光谱(ICP-OES)测定,粉末压片或熔片结合X射线荧光光谱法(XRF)测定,分别存在消解不完全、速度慢、检出限高等缺点,导致样品前处理效率低、待测元素少。针对上述问题,本文采用偏硼酸锂为熔剂分解样品,5%硝酸浸取,用ICP-MS法进行测定,建立了一种快速分析海洋沉积物中48种元素的方法。使用海洋沉积物国家标准物质作为高点绘制标准工作曲线,确定了助熔剂偏硼酸锂用量、稀释倍数、各待测元素的分析同位素及内标元素、仪器测定模式及个别元素的干扰校正方程等,得到最佳分解条件及测定条件。结果表明:由于高温损失,P、As、Se、Cd、Hg等元素无法得到准确结果,可改用微波消解等方式前处理后再进行测定;Cu、Zn、Cr、Ni、Co等共计48种元素使用本法均能得到准确结果,各元素方法精密度(RSD)均小于9.7%。本方法应用于分析海洋沉积物国家标准物质GBW07333、GBW07314、GBW07335、GBW07336,测定值和认定值相符;分析海洋沉积物实际样品,各元素加标回收率介于83.6%~118.6%。本方法可测定元素多,极大提高了分析效率,适合大批量样品分析。  相似文献   

13.
电气石是一类含硼的铝硅酸盐矿物,化学成分复杂、化学稳定性强,不易湿法分解,B_2O_3含量较高,导致其主次量元素的同时测定存在一定困难。本文采用熔融法制样,建立了X射线荧光光谱法测定电气石Na_2O、MgO、Al_2O_3、SiO_2、P_2O_5、K_2O、CaO、TiO_2、V_2O_5、Cr_2O_3、MnO、TFe_2O_3等主次量元素的分析方法。样品与四硼酸锂-偏硼酸锂-氟化锂(质量比为4.5∶1∶0.4)混合熔剂的稀释比例为1∶10,消除了粒度效应和矿物效应;在缺少电气石标准物质的情况下,选择土壤、水系沉积物及多种类型的地质标准物质绘制校准曲线,利用含量与电气石类似的标准物质验证准确度,测定结果的相对标准偏差小于4.2%。采用所建方法测定四种不同类型电气石实际样品,测定值与经典化学法基本吻合。本方法解决了电气石不易湿法分解和硼的干扰问题,测定结果准确可靠,与其他方法相比操作简便,分析周期短。  相似文献   

14.
王冠  董俊  徐国栋  胡志中 《岩矿测试》2023,42(1):114-124
锡石不溶于盐酸、硝酸及王水,测定其中元素含量时通常采用碱熔融分解样品,电感耦合等离子体发射光谱法(ICP-OES)测定。而传统的过氧化钠或其他氧化性熔剂会引入大量的盐类,酸化提取后的溶液需要进一步分离或稀释,这样不仅影响分析的准确度及较低含量元素的测定限,长时间测定还会引起等离子体信号降低,造成仪器损伤。本文将锡矿石经偏硼酸锂熔融,超声波水浴处理,用ICP-OES法同时测定锡、钨、铁、锰、铜、锌元素含量,在标准溶液中匹配等量锂盐,各待测元素之间无明显干扰,操作简单快捷,环境污染小。实验过程中结合扫描电镜-能谱(SEM-EDX)微区分析技术,观察和分析不同熔剂量下样品熔珠的形貌特征和成分差异,发现随着熔剂与样品比例从小至大,熔珠表面结构呈现由松散、易碎向细粒、致密均匀的规律性变化,当熔剂与样品的比例达到7∶1后,熔珠表面形态无明显变化,当熔剂与样品的比例为8∶1时,熔珠表面能明显检测出硼元素的存在,说明此时的熔剂过量,从而实现了应用SEM-EDX技术来确定ICP-OES法分析中熔剂与样品的最佳配比。本研究还探讨了锡矿石样品的熔融温度和时间、介质酸度,对锡矿石标准物质GBW07281进行分析测定,方法精密度(RSD)为1.20%~8.06%,方法检出限为0.0012%~0.0098%,满足了样品中元素定量分析的要求。  相似文献   

15.
熔融制样X射线荧光光谱法测定岩盐中的主量成分   总被引:3,自引:3,他引:0  
李可及 《岩矿测试》2016,35(3):290-294
以XRF分析岩盐,需解决标准物质缺乏和Cl在分析过程中的损失问题,选择合适的前处理方法以保证结果重现性。经实验发现用于粉末压片法的人工标准物质中氯化钠、硫酸钙等组分经X射线照射后呈现向样片表面扩散的趋势,其中氯化钠进一步分解,难以建立稳定的工作曲线;熔融制样则不存在这一问题,具备定量基础。本文选择熔融制样作为前处理方法,将光谱纯盐类、氧化物与土壤、水系沉积物国家标准物质以不同比例混合,配制人工标准物质建立工作曲线。熔融制样条件为:取样量0.6000 g,四硼酸锂+偏硼酸锂(12:22)混合熔剂10.000 g,熔融温度1000℃,预熔时间300 s,熔样时间300 s,静置时间30 s,所得样片平整通透,因样品中所含Cl具有脱模效果无需补充脱模剂。本方法测定主量元素的精密度(RSD)均小于1.5%,与经典方法相比减少了分析时间与试剂消耗,可作为岩盐主量成分分析的备选方法。  相似文献   

16.
铬铁矿属难熔矿物,目前对铬铁矿的分析以化学分析为主,方法成熟,但操作麻烦且步骤繁琐;而应用X射线荧光光谱法进行分析测定,一般都采用较高稀释比熔融制样,不利于低含量元素的测定。本文选用四硼酸锂+偏硼酸锂作为混合熔剂,与样品以20:1的稀释比熔融制样,利用波长色散X射线荧光光谱测定铬铁矿中多种元素(Cr、Si、Al、TFe、Mg、Ca、Mn)的方法。采用多种铬铁矿标准物质和人工配制标准物质制作工作曲线,理论α系数及康普顿散射内标法校正元素间的吸收-增强效应,方法精密度(RSD,n=10)为0.2%~5.3%。方法检出限低,如锰元素的检出限可低至60 μg/g;镁元素的检出限为225 μg/g,比文献采用高稀释比XRF测定的方法检出限(250 μg/g)要低。本方法通过选择有效的熔剂和较低的稀释比解决了铬铁矿的制样问题,熔剂的用量减少,称样量增加,提高了低含量元素分析的准确度,相应地降低了分析成本。  相似文献   

17.
将偏硼酸锂与四硼酸锂混合熔剂高温熔融伟晶岩样品形成的玻璃,于硝酸、盐酸、氢氟酸的混合液中进行快速消解后,采用电感耦合等离子体质谱仪测定了其中的Ga、Sr、Th、U和稀土元素。方法检出限为0.03~0.91μg/g,相对标准偏差(RSD)优于5%。经国家标准物质验证,待测元素的测定值与推荐值的相对误差在0.07%~25%之间,满足地质矿产行业标准(DZ/T0130—2006)中的相对误差允许限要求。将本方法应用于实际样品分析,分析结果与酸溶法结果基本一致。该方法从前处理到上机测试能在48 h内完成,极大地提高了分析效率,适用于包括伟晶岩在内的地质样品中稀土、铀、钍、镓、锶元素含量的快速测定。  相似文献   

18.
钨钼矿石是重要的战略性矿产资源,中国是钨钼矿的产出和消费大国,准确、高效地分析钨钼及其共伴生的有益有害元素含量对钨钼矿的矿床评价和综合利用有重要意义。钨钼矿石中钨钼及伴生元素的分析目前主要采用酸溶和碱熔方式消解样品,酸溶方式在处理高钨钼样品时无法克服水解问题,过氧化钠、氢氧化钠等碱熔方式通常会引入大量碱金属,不能完成钾钠的测定。本文建立了一种偏硼酸锂熔融,盐酸-酒石酸超声浸取,电感耦合等离子体发射光谱(ICP-OES)同时测定钨钼矿石中钨钼铜铅锌铝铁钙镁钛锰钾钠的方法。利用偏硼酸锂熔融的强解离作用使样品完全分解,溶液除硼锂外不引入其他金属元素,在盐酸提取液中加入酒石酸络合能够有效抑制钨钼水解,经超声浸取加快了熔块溶解。实验优化了各元素的分析谱线和观测方式,对熔剂用量以及仪器条件进行对比实验以获得最佳条件,采用基体匹配法绘制标准曲线消除了基体效应的影响。标准曲线线性相关系数均大于0.9990,方法检出限为1.34~46.2μg/g,标准物质测定结果的相对误差为0.14%~8.7%,相对标准偏差(RSD,n=10)为1.4%~7.6%。该方法能够准确、高效地完成钨钼矿石样品中多元素的同时测定。  相似文献   

19.
广泛赋存在花岗伟晶岩和热液石英脉中的铍矿石是铍最重要的矿物载体,目前铍矿石系统分析仍以传统化学法为主,影响分析效率,亟待开发一种简单高效的铍矿石中多元素分析方法。本文建立了一种基于偏硼酸锂熔融-电感耦合等离子体发射光谱(ICP-OES)测定铍矿石中铍及主量元素的定量分析方法,使用4∶1熔剂-样品比,950℃下熔融15min后,通过超声提取制备溶液。偏硼酸锂熔融法能有效地分解铍矿石中的氧化物,克服了传统酸溶或碱熔无法检测硅、钠、钾等元素的局限。本方法通过校准曲线与样品基体匹配,加入铕作内标等措施消除基体效应,实现了各元素(以氧化物计)低至0.003%~0.2%的检出限,满足铍精矿质量检测需求。对绿柱石、香花石、日光榴石样品(BeO含量范围为0.14%~13.33%)测定的相对标准偏差(RSD)小于6.83%,与混合酸酸溶分析方法的测定值相对偏差为0.06%~21.28%。通过标准物质GBW07150、GBW07151和GBW07183验证,本方法精密度和准确度均符合地质矿产实验室测试质量管理规范,适用于多种类型铍矿石样品中铍及主量元素的快速连续分析。  相似文献   

20.
熔融制样X射线荧光光谱法测定铜矿石中16种主次量元素   总被引:1,自引:1,他引:0  
铜矿石类型繁多,矿石赋存状态各异,成分复杂。在现有的铜矿石熔融制样X射线荧光光谱(XRF)分析方法中,选取标准物质个数和矿石类型少、分析范围宽,与实际样品类型相差太大,且制备的熔融片质量不高。本文选用铜含量既有良好浓度变化范围,又符合铜矿石常见含量的包括铜金银铅锌钼铜镍等各类矿石的24个标准物质,以四硼酸锂-偏硼酸锂-氟化锂为混合熔剂,熔剂与样品质量比为30:1,以溴化锂为脱模剂,改进样品预处理方式,将通常采用样品预氧化后或熔融中加入脱模剂的方式,改进为加入脱模剂后再用混合熔剂完全覆盖的方法制备了高质量的熔融片,建立了XRF测定铜矿石中铜锌铅硅铝铁钛锰钙钾镁钼铋锑钴镍16种元素的分析方法。分析铜矿石国家标准物质GBW 07164、GBW 07169,各元素的精密度(RSD)为0.1%~5.4%。分析国家标准物质GBW 07163(多金属矿石)、GBW 07170(铜矿石)的测定值与标准值相符;分析实际铜矿石样品,铜锌铅钼铋锑钴镍的测试结果与电感耦合等离子体发射光谱法和其他方法的测定值相符。本文方法扩大了基体的适应性,提高了实际应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号