首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The seafloor is the site of intense biogeochemical and mineral dissolution-precipitation reactions which generate strong gradients in pH near the sediment-overlying water interface. These gradients are usually measured in one-dimension vertically with depth. Two-dimensional pH distributions in marine sediments were examined at high resolution (65 × 65 μm pixel) and analytical precision over areas of ∼150 to 225 cm2 using a newly developed pH planar fluorosensor. Dramatic three-dimensional gradients, complex heterogeneity, and dynamic changes of pH occur in the surficial zone of deposits inhabited by macrofauna. pH can vary by ±2 units horizontally as well as vertically over millimeter scales. pH minima zones often form in association with redoxclines within a few millimeters of inner burrow walls, and become more pronounced with time if burrows remain stable and irrigated for extended periods. Microenvironmental pH minima also form locally around decaying biomass and relict burrow tracks, and dissipate with time (∼5 d). H+ concentrations and fluxes in sandy mud show complex acid-base reaction distributions with net H+ fluxes around burrows up to ∼12 nmol cm−2 d−1 and maximum net reaction rates varying between −90 (consumption) to 120 (production) μM d−1 (∼90 nmol cm−1 d−1 burrow length). Acid producing zones that surround irrigated burrows are largely balanced by acid titration zones along inner burrow walls and outer radial boundaries. The geometry and scaling of pH microenvironments are functions of diagenetic reaction rates and three-dimensional transport patterns determined by sediment properties, such as diffusive tortuosity, and by benthic community characteristics such as the abundance, mobility, and size of infauna. Previously, undocumented biogeochemical phenomena such as low pH regions associated with in-filled relict biogenic structures and burrowing tracks are readily demonstrated by two-dimensional and time-dependent images of pH and sedimentary structure.  相似文献   

3.
We ran a series of 124 semi-batch reactor experiments to measure the dissolution rate of forsterite in solutions of nitric and oxalic acid solutions over a pH range of 0-7 and total oxalate concentrations between 0 and 0.35 m at 25 °C. We found that the empirical rate law for the dissolution of forsterite in these solutions is
  相似文献   

4.
The 1.15-Ga-old Ilimaussaq intrusive complex in South Greenland shows an extensive fractionation trend from alkaline augite syenite to various varieties of strongly peralkaline, agpaitic nepheline syenites. The peralkaline nepheline-bearing syenites crystallized between ca. 900 and 450 °C at 1 kbar and they are cut by late-magmatic hydrothermal veins with nepheline-absent assemblages of albite + aegirine + analcime - sodalite - Na-Be-silicates (tugtupite, chkalovite, sørensenite) - ussingite (NaAlSi3O8*NaOH). Based on fluid inclusions and phase equilibria, these veins crystallized between 300 and 500 °C at 1 kbar. Textures indicate that the hydrothermal veins at least partly replaced earlier Ilimaussaq rocks. The occurrence of ussingite and tugtupite suggests that the late-magmatic fluids had strongly basic pH values. Speciation calculations show that the pH in fluids of the system Na-Al-Si-O-H-Cl mainly depends on the Na/Cl ratio and, to a lesser degree, on salinity and temperature. If the Na/Cl ratio is greater than 1, pH (at 400 °C and 1 kbar, where neutrality is about at pH 5) lies between 7 and 12. Because Na/Cl tends to decrease in the final stages of magmatism and during crystallization of the vein assemblage, pH of late-magmatic fluids generally should become more acidic, and only two processes can increase Na/Cl and, thus, pH: dissolution of a Cl-poor or Cl-free Na silicate or unmixing of an HCl-enriched vapour phase. Field observations and microtextures suggest that replacement reactions are responsible for the change to basic pH at least in some alteration assemblages. While replacement of 1 mol nepheline by 1 mol analcime would not alter the pH, the volume-conserving reaction 1.85  Ne + 2.3  H2 O + 0.19  H4 SiO4 = 1.02  Anl + 0.83   Na+ + 0.83  Al(OH)4-1.85\;{\rm Ne} + 2.3\;{\rm H}_{\rm 2} {\rm O} + 0.19\;{\rm H}_{\rm 4} {\rm SiO}_4 = 1.02\;{\rm Anl} + 0.83\,\;{\rm Na}^ + + 0.83\;{\rm Al(OH)}_4^ - can be used to model the replacement process quantitatively, provided it occurred in a more or less closed system. Progress of this reaction leads to successively increasing pH of the fluid during fluid-rock interaction and stabilizes minerals such as ussingite and tugtupite. Transferring the two processes to a larger scale, it is proposed that the extreme 'hyper-agpaitic' assemblages at Ilimaussaq or at the Kola peninsula, which include copious amounts of very basic, water-soluble minerals such as trona, villiaumite or thermonatrite, are formed either in this way by autometasomatic reactions of late-magmatic fluids or melts (or supercritical fluid-melt-mixtures) with earlier crystallized rocks of the same plutonic complex or by large-scale vapour unmixing in the very final stages of magmatism.  相似文献   

5.
6.
Experimental research on the chemical weathering of alkaline-olivine basalt from Huangyi Mountain,Kuandain County,Liaoning.Province and olivine basalt from Dayangke,Mingxi County,Fujian Province has shown that the acidity of the solution tends to become neutral regardless of what the acidity of the starting solution would be during basalt0-water interaction.We call this phenome-non“pH neutralized Effect”.The dissolved species in the solution were determined and unreacted and reacted sample-surface chemical components involved or uninvolved in reaction were analyzed using X-ray photoelectron spectroscopy(XPS).The results revealed two different mechanisms of dissolution of basalt in acidic and basic solutions.  相似文献   

7.
The dissolution of labradorite, microcline, enstatite, augite and forsterite in acidified deionized water was investigated at near standard temperature and pressure and constant pH of 4.00 to determine the kinetics of the release of silica, and cations. Saturation indices and mass balance calculations suggest that after 700 hours, the release of silica from forsterite and augite was controlled by the precipitation of a solid silica phase, whereas silica mass transfer from the feldspars and enstatite was essentially as silicic acid. Iron release from the pyroxenes and olivine was probably controlled by the precipitation of iron oxyhydroxide phases. Linear-rate constants calculated after 700 hours for release of magnesium ranged from 10?15.2 to 10?14.4 M · cm?2 s?1 for augite and forsterite respectively. Linear-rate constants for the release of cations from feldspars ranged from 10?15.8 to 10?15.3 M · cm?2 s?1.  相似文献   

8.
观察了三种吸附剂吸附亚砷酸根离子过程中溶液pH值随时间的变化。氢氧化铁在吸附过程中的pH值变化大致可分为三个阶段,0~6分钟为第一阶段,体系的pH值快速上升,指示亚砷酸根置换了固相中的氢氧根;7~40分钟为第二阶段,pH值变化不大,指示Fe(OH)3凝胶对亚砷酸根离子的吸附达到动态平衡;40分钟后为第三阶段,溶液的pH值呈单边下降趋势,这一阶段吸附剂与被吸附的阴离子之间发生了缩合反应,并释放出H+。Mg-Al-LDO在吸附亚砷酸根的反应过程中pH值持续上升,它具有从水溶液中获取阴离子以恢复其前驱体结构的能力,这一反应中有氢氧根生成;Mg-Fe-LDO兼有前两者的吸附机理,吸附反应过程pH值的变化趋势此介于二者之间。氢氧化铁在加热前后吸附容量变化不大,25C和90C时分别为69.7mg/g和73.7mg/g,而Mg-Al-LDO和Mg-Fe-LDO的吸附容量在25C时分别为62.4mg/g和82.5mg/g,在90C时分别增加到114.9 mg/g和199.0 mg/g。Mg-Al-LDO和Mg-Fe-LDO在90C条件下吸附容量的大幅增加,可能和溶解CO2的干扰被抑制有关。  相似文献   

9.
This paper presents an investigation of the capacity of four different plants to remove and assimilate ferri-cyanide at different pH conditions. Detached roots of weeping willows (Salix babylonica L.), rice (Oryza sativa L. cv. JY 98), soybean (Glycine max L. cv. WH) and maize (Zea mays L. var. HK) were hydroponically exposed to ferri-cyanide in a closed system at 25?±?0.5°C for 24?h kept under darkness. Almost all applied ferri-cyanide was in the complex form in the hydroponic solution at pH????7.0 in the absence of light, while dissociation of ferri-cyanide to free cyanide and iron in solution was detected at pH????6.5. All plant species used were found to be able to remove and assimilate ferri-cyanide efficiently. The uptake and assimilation rates appeared to be inversely related to the pH, in which positive effects were observed at pH 6.0 and 6.5. Remarkable decreases in the assimilation rates were found at pH 8.0. Results presented here suggest that changes in solution pH have a substantial influence on not only the speciation of ferri-cyanide in the plant growth media, but also the uptake and assimilation mechanisms of ferri-cyanide by plants.  相似文献   

10.
The effect of heat and illumination with visible light on the oxidation of pyrite with dissolved molecular oxygen in solutions between pH 2 and 6 has been investigated using a combination of surface science experiments and batch oxidation experiments. The rate of the oxidation of pyrite is strongly dependent on temperature. It is, however, not possible to cast the temperature dependence in a simple Arrhenius equation because the magnitude of the activation energy depends on the progress variable chosen. Activation energies based on proton release rate, sulfate release rate, and total iron release rate vary by as much as 40 kJ mol-1, suggesting that the oxidation mechanism of the sulfur and iron component of pyrite are largely independent of each other. This difference in mechanism can also explain why the reaction rates on the basis of these three different progress variables do not show the same pH dependence. Exposed to visible light, the rate of pyrite oxidation is under most conditions accelerated by less than a factor of two. Some of this acceleration may be accounted for by a light-induced heating of the pyrite surface. Surface science experiments employing photoelectron spectroscopy show no evidence for significant changes in the chemical composition of the surface as a function of exposure to visible light. The batch sorption experiments show, however, that the reaction stoichiometry changes somewhat, which indicates that there might be a change in reaction mechanism as a result of exposure to visible light.  相似文献   

11.
12.
Spectrophotometric measurements of the pH in natural waters such as seawater have been shown to yield precise results. In this paper, the sulfonephthalein indicator m-cresol purple (mCP, H2I) has been used to determine the pH of NaCl brines. The indicator has been calibrated in NaCl solutions from 5 to 45 °C and ionic strengths from 0.03 to 5.5 m. The calibrations were made using TRIS buffers (0.03 m, TRIS/TRIS-HCl) with known dissociation constants pKTRIS in NaCl solutions [Foti C., Rigano C. and Sammartano S. (1999) Analysis of thermodynamic data for complex formation: protonation of THAM and fluoride ion at different temperatures and ionic strength. Ann. Chim. 89, 1-12]. The values of pH were determined from
pH=pKmCP+log{(R-e1)/(e2-Re3)}  相似文献   

13.
Mineral dissolution and precipitation reactions actively participate in controlling fluid chemistry during water–rock interaction. In this study, the changes in the biotite and muscovite basal surface nano-morphology were evaluated during interaction with fluids of different pH (pH = 1.1, 3.3 and 5.7) at different temperatures (T = 25°, 120°, and 200 °C). Results show that at the nanometre scale resolution of the atomic force microscope (AFM), dissolution generates etch pits with a stair-shaped pattern over the (0 0 1) surface. The flux of dissolved elements decreases when pH increases. However, at pH 5.7, a change was found in the flux after 42 h of reaction when abundant gibbsite and kaolinite coat the dissolving mineral surface. This phenomenon was widely observed at edges of the etch pits by AFM. It was also found that an increase in temperature produces an enhancement in the elemental flux in both micas. Dissolution regime changes after less than one day of interaction at high temperature because of abundant coating formation over the etch pits and edges. The results demonstrate the key role of nanometre size neogenic phases in the control of elemental flux from mica surfaces to solution. The formation of nanometre size coatings, blocking the sites active for dissolution, appears to control the alteration of phyllosilicates even at the early stage of the interaction.  相似文献   

14.
生物膜作用下沉积物-水界面溶液中pH和磷含量变化   总被引:1,自引:0,他引:1  
采集城市排污水渠中的沉积物样品和底栖生物样品,应用微电极原位pH测量技术测量沉积物-水界面溶液的pH值,电感耦合等离子体发射光谱法测定沉积物提取液中上覆水和空隙水中生物可利用磷的含量,研究了沉积物表面的生物膜对城市河流沉积物-水界面微环境中pH值和磷含量的影响。研究表明沉积物表面的生物膜由藻类(蓝藻门颤藻属Oscillatoria和硅藻门的菱形藻Nitzschia)和微生物组成,由于藻类的光合作用和微生物作用,沉积物空隙水中的溶解氧和CO2发生变化,因而改变了界面附近的pH值、氧化还原电位等物理化学条件,同时改变了界面附近溶液中磷的浓度和浓度梯度。在生物膜作用下,剖面中空隙水的pH和pH变化梯度、磷的浓度和浓度梯度高于非生物作用条件下。磷在生物藻垫的空隙水中高度富集。在生物膜存在情况下,在空隙水中形成了与非生物作用下相反的pH值和磷浓度的耦合关系。无生物作用的沉积物空隙水中pH越偏离中性,沉积物中磷的释放量增加,空隙水中磷含量增加;在生物膜作用下,pH由弱酸性向中性变化时,沉积物中磷的释放量增加,空隙水中磷含量增加。依据界面附近pH值和磷的变化规律,可以将沉积物-水界面附近的生物作用分为生物膜的固定作用区和攫取作用区。  相似文献   

15.
Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures.  相似文献   

16.
17.
The three approaches to defining pH scales for use in sea water: the N.B.S. scale, the pH(SWS) or ‘total’ hydrogen ion concentration scale and the ‘free’ hydrogen ion concentration scale are described, and it is shown how these arise as a direct consequence of alternative experimental procedures for determining practical acidity constants. The advantages of conceptual simplicity and of experimental precision inherent in the use of concentration products to describe proton-transfer reactions in saline media are emphasised. In addition, the problems of theoretical interpretation and of reproducibility which result from the conventional nature of the N.B.S. pH scale are described, and the effect on the corresponding ‘apparent’ constants outlined. Insofar as it is concentration products rather than ‘apparent’ constants that are amenable to prediction using models for activity coefficients, the deliberate use of a ‘free’ hydrogen ion concentration scale should be applicable to many areas of aqueous geochemistry in addition to marine chemistry.  相似文献   

18.
以粉煤灰浸出液与自来水混合为例,结合水文地球化学模拟,分析了在混合作用下,pH值对单相混合溶液中矿物溶解/沉淀作用的影响。结果表明,由于混合作用,溶液pH值发生改变引起CO3^2-活度变化,从而影响方解石和白云石的饱和指数,随着混合比例从0.1到0.9的增加,实验和模拟单相混合溶液中白云石和方解石的饱和指数呈现不同规律的下降;在混合溶液pH值的影响下,玉髓饱和指数随混合比例的增大,呈现先上升后下降的变化趋势。  相似文献   

19.
简单体系水溶液包裹体pH和Eh的计算   总被引:2,自引:0,他引:2  
刘斌 《岩石学报》2011,27(5):1533-1542
流体包裹体pH和Eh参数的计算一直处于探索阶段。已经发表的计算公式,由于缺少高压(>1bar)环境下化学组分反应平衡常数,常常利用常压(1大气压)下化学组分反应平衡常数代替而推导出的,对于大多数自然界捕获的包裹体,不可避免地产生较大计算误差。根据水溶液包裹体中离子反应热力学特征,结合前人推导的计算公式,我们分别建立简单体系水溶液包裹体pH和Eh计算公式。由于利用较高压(>1bar)化学反应平衡常数,基本上解决不同条件下、特别在较高温度、压力下捕获的水溶液包裹体pH和Eh的计算难题。4种简单体系水溶液包裹体pH计算公式:① H2O包裹体:pH=pKw② CO2-H2O包裹体: 3-(mCO2Ka,1+KW)· -2mCO2Ka,1Ka,2=0③ NaCl-H2O包裹体: 2= ④ CO2-H2O-NaCl包裹体: 3+ 2-(mCO2·Ka,1+Kw)· -2mCO2·Ka,1·Ka,2- =0计算数值精度分析表明:CO2-H2O和NaCl-H2O包裹体的pH值按照公式计算,相同或接近于实际测定的天然酸雨、海水pH数值范围。CO2-H2O-NaCl包裹体与Crerar(1978)公式计算误差不超过10%。4种简单体系水溶液包裹体Eh的计算,引用Ryzhenko and Bryzgalin (1984)年推导的Eh公式。文中列举了3个实例,详细叙述不同类型包裹体捕获温度、压力下pH和Eh计算过程。自然界中水溶液包裹体成分十分复杂,本文涉及的只是自然界几种简单体系水溶液包裹体,给出的pH和Eh公式只对特定组分组合反应平衡条件有效,它不适合另外一种组分组合平衡条件下的关系,因此使用时务必注意平衡的组分组合条件。  相似文献   

20.
杨希  岳晓岚  李靖  朱丹  陈菊 《贵州地质》2021,38(4):466-471
近年来土壤污染问题日益严峻,特别是土壤中重金属污染对土壤肥力、植物生长都有着极大的威胁,为了了解pH值对土壤重金属污染的影响及提高测定的准确性,本文系统地分析了土壤pH值与重金属污染物之间的关系,分别讨论了土壤pH值对重金属污染物存在形态、转化迁移及污染治理三方面的影响,并针对土壤pH值测定过程中的影响因素,提出了相应的测定条件及操作方法以保证土壤pH值的准确测定。结果表明,土壤pH值对重金属存在形态、转化迁移及污染治理都有着极大的影响,是土壤重金属污染的重要影响因素,为重金属污染土壤的筛选、判断及后期治理提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号