首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Two C28H48-pentacyclic triterpanes were isolated from Monterey shale. X-ray crystallography of a crystal containing both compounds proved their structures as 17β,18α,21α(H)-28,30-bisnorhopane and 17β,18α,21β(H)-28,30-bisnorhopane. Several differences are found between 28,30-bisnorhopanes and the regular hopanes. Unlike the regular hopane epimers, for practical purposes the three epimeric 28,30-bisnorhopanes [17α,21β(H)-, 17β,21α(H)-, and 17β,21β(H)-]cannot be distinguished by their mass spectra. Special conditions are needed to separate them by gas chromatography. The diagenetically first-formed epimer is thought to be 17α,21β(H)- because it predominates in immature shales. The order of thermodynamic stability is 17β,2lα(H) < > 17α,21β(H) > 17β,21β(H), and all three epimers are present in petroleum. 25,28,30-Trisnorhopanes can be analyzed in similar fashion and are found to have similar thermodynamic characteristics. The percent of the ring D/E cis epimer of 28,30-bisnorhopane and/or 25,28,30-trisnorhopane is a useful maturation parameter similar to the 20S/20R sterane ratio. Evidence indicates 25-demethylation of 28,30-bisnorhopane to 25,28,30-trisnorhopane during advanced stages of biodegradation. Hence, percent ring DEcis 25,28,30-trisnorhopane has an application to maturation assessment in heavily biodegraded oils.  相似文献   

2.
Earlier studies have shown that an unusual C27 triterpane is abundant in sediments from the Norwegian Continental Shelf and the North Sea. This compound was assigned the tentative structures 24,28,30-trisnormoretane or 25,28,30-trisnormoretane, but we have now shown from detailed retention time measurements and a reinterpretation of the mass spectral data that its correct structure is 17α(H),18α (H),21β(H)-25,28,30-trisnorhopane. Two other triterpanes, 25,28,30-trisnormoretane and 28,30-bisnormoretane, have also been identified as minor constituents of extracts of sediments from the North Sea. Possible origins for these compounds are discussed.  相似文献   

3.
Novel biological marker parameters are applied to problems of geochemical correlation of crude oils in the McKittrick Field, California. An attempt is described to distinguish four diagenetic parameters; namely, source input, source maturation, migration and ‘in reservoir’ maturation. The tools include the absolute concentration of steranes, terpanes and paraffins (n + iso) in combination with internal ratios of individual biomarkers such as primary/secondary terpanes, 17α(H)-trisnorhopane/18α(H)-trisnorhopane II (both maturation specific), 5β/5α-steranes, 5β-steranes/17α(H)-hopanes and rearranged steranes/5α-steranes (all migration oriented), 5α/5α-steranes and a number of terpane ratios of partially unknown chemical structure (source input specific).Among other new correlation parameters are: two series of mass chromatograms (m/e 253 and 239), signaling monoaromatized steranes, a series of presumably rearranged steranes (m/e 259), and a series of methylhopanes (m/e 205).The results obtained on the molecular level exceed the degree of information obtainable from organic geochemical ‘bulk’ parameters such as yields of saturates, aromatics, sulfur compounds and C13/C12 ratios by far; however, both types of parameters are mutually supporting. All conclusions are consistent with subtle stratigraphie and overall geologic prerequisites.  相似文献   

4.
The detailed investigation of the saturated hydrocarbon fractions of two biodegraded asphalts from the Morondava Basin, Madagascar, and the comparison with a related non-biodegraded asphaltic oil revealed new information on the compositional alteration of reservoired hydrocarbons due to biodegradation. A nuclear-demethylated 17α(H)-hopane was isolated from one of the asphalts and the preferred structure is suggested to be 25-nor-17α(H)-hopane. In addition to a homologous series of 25-nor-17α(H)-hopanes and 25-normoretanes a series of tetracyclic triterpanes was detected. These are thought to be derived from 17α(H)-hopanes by ring C opening. Steranes in the biodegraded asphalts were found to be altered but not completely removed.  相似文献   

5.
The thermodynamic stability of selected alkylated, dealkylated and rearranged 17α- and 17β-hopane isomers in the C27, C28, C29, C30 and C31 families were calculated using molecular mechanics (MM2) methods and, where possible, calculated equilibrium ratios of certain isomers were compared with observed ratios of isomers in thermally mature crude oil samples. Those calculated and observed ratios having similar values include: (1) the relative distributions among 17β(H)/17α(H) and 21β(H)/21α(H)-hopanes including the absence of the 17β(H),21β(H)- and 17α(H),21α(H)-hopanes; (2) the 22R/22S ratios in 30-methyl-17α-hopane and 30-methyl-17β-moretane; (3) the relative distributions among 17α(H)/17β(H)- and 21α(H)/21β(H)-28,30-bisnorhopanes and among 25,28,30-trisnorhopanes, including the relatively greater stability of 17β(H) isomers in contrast to the regular hopane series; and (4) the ratios of 28(18−17S)abeo hopanes with respect to their unrearranged counterparts including the C27 compounds, Ts/Tm.  相似文献   

6.
Mixtures of hopane diastereomers obtained by fractionation of the organic extract from an immature oil shale have been heated in the presence of clay-containing substrates. In experiments conducted at 250°C with an extracted source rock as the substrate, the relative amounts of 17β(H),21β (H)-hopanes were found to decrease with respect to the moretanes and 17α(H),21β(H)-hopanes in a manner parallelling that observed with increasing maturity in sediments. In this case however, the change was shown to be due to the selective removal of the 17β(H),21β(H)-hopanes, rather than conversion of these compounds into the other diastereomers. In order to assess whether the use of elevated temperatures was enhancing processes other than those which operate in natural systems, a second experiment was conducted in which the sample of immature hopanes was heated at 75°C with the very catalytically active substrate aluminum montmorillonite. In this experiment also, the changes in hopane composition was shown to be due to selective removal of 17β(H),21β(H)-hopanes rather than conversion into the corresponding compounds in the other two series of diastereomers. These results suggest that the observed relative depletion of 17β(H),21β(H)-hopanes in sedimentary rocks of increasing maturity may similarly be due to removal by selective catalytic processes, and not to interconversion processes associated with isomerisation at C-17 and C-21 as had previously been believed.  相似文献   

7.
8.
Results of the analyses of twenty-three samples from the Middle Miocene to Lower Pliocene strata from DSDP Site 467, offshore California, are presented. The analyses were performed with the aim of determining the origin of the organic matter, the stratigraphic section's hydrocarbon generation potential and extent of organic diagenesis. Organic carbon contents are an order of magnitude greater than those typically found in deep sea sediments, suggesting an anoxic depositional environment and elevated levels of primary productivity. Hydrocarbon generation potentials are above average for most samples. The results of elemental analyses indicate that the kerogens are primarily composed of type II organic matter and are thermally immature. Analysis of the bitumen fractions confirms that the samples are immature. In cores from 541 to 614 meters, the gas chromatograms of the C15+ non-aromatic hydrocarbon fractions are dominated by a single peak which was identified as 17α(H), 18α(H), 21β(H)-28, 30-bisnorhopane. This interval is the same area in which the highest degrees of anoxia are observed as reflected by the lowest pristane/phytane ratios. This correlation may have some implications with regard to the origin of the bisnorhopane and its possible use as an indicator of anoxic depositional conditions within thermally immature sediments.  相似文献   

9.
The distributions of polycyclic alkanes were monitored in a Neocomian sequence (well 1-ESS-34) from the Espirito Santo Basin, southeast Brazil. The profiles included, apart from regular hopanes, significant concentrations of 18α(H), 28,30-bisnorhopane and subordinate amounts of gammacerane. Sterane concentrations, normally with hopane/sterane <5, were compatible with other geochemical data indicating a predominantly planktonic/microbial source of the deposited organic matter. Sample maturities ranged from very immature to the onset of oil generation, allowing biomarker distributions to be followed along a broad maturation range. The ability of certain molecular ratios (e.g. C27 17α(H)/17β(H)hopanes) to reflect a maturity sequence with depth in the closely-spaced strata of the immature upper levels (Jiquiá Stage) showed the value of molecular techniques over classical geochemical methods (e.g. vitrinite reflectance) for the study of immature sequences. The presence in the oils of southern Espirito Santo of 28,30-bisnorhopane, gammacerane and methyl steranes in similar concentrations as in extracts of the deepest levels of the 1-ESS-34 well qualify the Jiquia Stage as the probable source rock of oils accumulated in the basin.  相似文献   

10.
The saturated and unsaturated hydrocarbons of two samples (HD-19 and HD-21) from the same section of the Middle Eocene lacustrine Huadian oil shale in NE China were identified and shown to be mainly from algal and bacterial sources. Comparison of the two samples provided an opportunity to explore the contribution from telalginite to the hydrocarbon profiles. Cells identified from microscopy as Botryococcus in the telalginite of HD-21 were confirmed as belonging to the L race of B. braunii from the presence of monoaromatic lycopane derivatives and small amounts of several lycopadienes. Lycopane was abundant and was probably derived from biohydrogenation of lycopadienes and related lipids on the basis of δ13C values. Hopane distributions showed a dominance of those with the biological 17β,21β-stereochemistry, as expected for an immature shale, with low amounts of 17β,21α-hopanes (moretanes) and 17α,21β-hopanes. Two hopenes were also abundant and assigned as C29 and C30 neohop-13(18)-enes, which occurred together with the C29 and C30 hop-17(21)-enes. These had depleted carbon isotope values (−43.7‰ to −50.8‰), indicative of production by methane oxidizing bacteria (methanotrophs). The high proportion of hopanoids with carbon numbers < C32 indicates extensive post-depositional diagenetic alteration of bacteriohopanepolyols as well as a direct input of C30 hopanoids. The data clearly indicate that there was active utilization of methane in this lacustrine depositional setting, but isoprenoid hydrocarbon biomarkers for methanogens, such as pentamethylicosane (PMI) and squalane, were in surprisingly low abundance. It is possible that these bacterial contributions were present as polar lipids. The origins of an unusual C38 isoprenoid alkane assigned as bipristane are uncertain, but may be from methanogens. Steranes and sterenes were relatively minor components, but abundant diasterenes and 4-methyldiasterenes were present, reflecting significant conversion of the original lipid composition by way of clay-catalysed diagenesis. The biomarker data suggest that the bottom waters in the original depositional environment had low O2 content, but the sediments were probably neither sulfidic nor strongly reducing. The high content of organic matter in the shale likely reflects both high (but fluctuating) productivity due to eutrophic conditions in the overlying water and good preservation in the sediments.  相似文献   

11.
Hydrocarbon distributions and stable isotope ratios of carbonates (δ13Ccar, δ18Ocar), kerogen (δ13Cker), extractable organic matter (δ13CEOM) and individual hydrocarbons of Liassic black shale samples from a prograde metamorphic sequence in the Swiss Alps were used to identify the major organic reactions with increasing metamorphic grade. The studied samples range from the diagenetic zone (<100°C) to amphibolite facies (∼550°C). The samples within the diagenetic zones (<100 and 150°C) are characterized by the dominance of C<20n-alkanes, suggesting an origin related with marine and/or bacterial inputs. The metamorphic samples (200 to 550°C) have distributions significantly dominated by C12 and C13n-alkanes, C14, C16 and C18n-alkylcyclopentanes and to a lesser extend C15, C17 and C21n-alkylcyclohexanes. The progressive 13C-enrichment (up to 3.9‰) with metamorphism of the C>17n-alkanes suggests the occurrence of cracking reactions of high molecular weight compounds. The isotopically heavier (up to 5.6) C<17n-alkanes in metamorphic samples are likely originated by thermal degradation of long-chain homologous with preferential release of isotopically light C1 and C2 radicals. The dominance of specific even C-number n-alkylcyclopentanes suggests an origin related to direct cyclization mechanism (without decarboxylation step) of algal or bacterial fatty acids occurring in reducing aqueous metamorphic fluid conditions. The regular increase of the concentrations of n-alkylcycloalkanes vs. C>13n-alkanes with metamorphism suggests progressive thermal release of kerogen-linked fatty acid precursors and degradation of n-alkanes. Changes of the steroid and terpenoid distributions are clearly related to increasing metamorphic temperatures. The absence of 18α(H)-22,29,30-trisnorneohopane (Ts), the occurrence of 17β(H)-trisnorhopane, 17β(H), 21α(H)-hopanes in the C29 to C31 range and 5α(H),14α(H),17α(H)-20R C27, C29 steranes in the low diagenetic samples (<100°C) are characteristic of immature bitumens. The higher thermal stress within the upper diagenetic zone (150°C) is marked by the presence of Ts, the disappearance of 17β(H)-trisnorhopane and thermodynamic equilibrium of the 22S/(22S + 22R) homohopane ratios. The increase of the ααα-sterane 20S/(20S + 20R) and 20R ββ/(ββ + αα) ratios (from 0.0 to 0.55 and from 0.0 to 0.40, respectively) in the upper diagenetic zone indicates the occurrence of isomerization reactions already at <150°C. However, the isomerization at C-20 (R → S) reaches thermodynamic equilibrium values already at the upper diagenesis (∼150°C) whereas the epimerisation at C-14 and C-17 (αα → ββ) arrives to constant values in the lower anchizone (∼200°C). The ratios Ts vs. 17α(H)-22,29,30-trisnorneohopane [(Ts/(Ts + Tm)] and 18α(H)-30-norneohopane (C29Ts) vs. 17α(H),21β(H)-30-norhopane [C29Ts/(C29Ts + C29)] increase until the medium anchizone (200 to 250°C) from 0.0 to 0.96 and from 0.0 to 0.44, respectively. An opposite trend towards lower values is observed in the higher metamorphic samples.The occurrence of specific hydrocarbons (e.g., n-alkylcyclopentanes, cadalene, hydrogenated aromatic compounds) in metamorphic samples points to kerogen degradation reactions most probably occurring in the presence of water and under reducing conditions. The changes of hydrocarbon distributions and carbon isotopic compositions of n-alkanes related to metamorphism suggest that the organic geochemistry may help to evaluate the lowest grades of prograde metamorphism.  相似文献   

12.
Gel permeation chromatography (GPC) using a high performance liquid chromatography (HPLC) system was studied for the separation and enrichment of steroid and hopanoid hydrocarbons from crude oil for stable carbon isotope analysis. A crude oil sample was pretreated using silica gel chromatography and 5A molecular sieve to remove polycyclic aromatic hydrocarbons and n-alkanes. The GPC behavior of both the pretreated saturated hydrocarbon fraction of the oil and standard steroid [5α(H), 14α(H), 17α(H) C27–C29 steranes], hopanoid [17α(H) C27 trisnorhopane, 17α(H), 21β(H) C29–C32 hopanes] and triterpenoid [18α(H)-oleanane, gammacerane] mixtures were examined. The results indicate that 17α(H), 21β(H) hopanes as well as steranes could be enriched efficiently using GPC and that they could be obtained without removing n-alkanes from the oil saturated hydrocarbon fraction. The GPC behavior of steroid and triterpenoid hydrocarbons was controlled by molecular size and shape.  相似文献   

13.
This paper describes the occurrence and significance of hydrocarbons present in two bituminous marl layers and one distinct gypsum layer from a Messinian sedimentary basin, where hypersaline conditions prevailed. Several new compounds were detected and tentatively identified: of these 20R and 20S 4α, 24-dimethyl-5α(H),14β(H),17β(H) and 20R and 20S 4β,24-dimethyI-5α(H),14β(H),17β(H) cholestanes; 4-methylspirosterenes; 4,4-dimethyl-5α(H),14β(H),17β(H) pregnanes and homopregnanes are discussed in this paper. Several of these compounds might be considered as biological markers for a (hyper)saline environment. The short side chain 4-desmethylsteranes, 5α(H),14β(H),17β(H), 5α(H),14β(H),17α(H) and 5α(H),14α(H), 17α(H) pregnanes and homopregnanes, are the most abundant compounds in the extract from the gypsum sample. It is suggested that in this case these compounds do not reflect the stage of diagenesis but are related to certain organisms exclusively occurring in hypersaline environments. In addition the very low pristane/phytane ratio, often considered as an indicator for anoxicity, could also be interpreted as a useful indicator for hypersalinity.  相似文献   

14.
Comparison of biological marker alkanes in the kerogen pyrolyzate and bitumen from a sediment is a useful test for the indigenous nature of sediment extracts. For the pyrolysis conditions used, the bulk of the hydrocarbons is released from the kerogen matrix between 375° and 550°C; and its steriochemistry is almost the same as that observed in the extractable bitumen in a genuine source rock. Examples are given to demonstrate that, during pyrolysis, the sterane/terpane ratio decreases and secondary terpanes are generated at the expense of primary ones.The mechanism of artificial petroleum generation by pyrolysis differs from ‘natural’ diagenesis during geological time and is reflected in the composition of certain C27-C29 steranes, as demonstrated by simulation experiments and C29-C30 moretanes and hopanes. The -sterane ratios, jointly with 17α(H)-hopane17β(H)-moretane ratios, tricyclic terpane concentrations and 17α(H)17β(H)-trisnorhopane ratios, allow the differentiation of kerogens from adjacent stratigraphies.  相似文献   

15.
Novel side chain methylated and hexacyclic hopanes have been identified in coals and oils from around the world. Extended hopanes (>C32) with an additional methyl in the side chain (“isohopanes”) were identified by comparison with synthetic standards. The major C33-C35 isohopanes are 31-methylbishomohopanes, 32-methyltrishomohopanes and 33-methyltetrakishomohopanes. Extended hopanes methylated at C-29 were not detected. The 17α(H),21β(H)-31-methyltrishomohopanes show four peaks on gas chromatography because of the extra asymmetric carbon at C-31. Like regular hopanes, the isohopanes extend beyond C35. Low concentrations of novel hexacyclic hopanes having 35 or more carbons were also detected in oils and coal extracts. The C35 hexacyclic hopanes were identified as 29-cyclopentylhopanes. Isohopanes are released from the kerogen by hydrous pyrolysis and hydropyrolysis. The 22S/(22S + 22R) ratio for 31-methylbishomohopanes and other isohopanes is around 0.60 at equilibrium in geological samples. They isomerize slightly more slowly than regular C33 hopanes. Isohop-17(21)-enes, 2α-methylisohopanes and two series of rearranged isohopanes were tentatively identified. Isohopanes can be biodegraded to form the corresponding 25-norhopanes. When 25-norhopanes are not formed, the isohopanes are much more resistant to biodegradation than regular hopanes. In biodegraded oil seeps from Greece, 30-norisohopanes were tentatively assigned. The composition and relative abundance of C33 and C34 isohopanes in a worldwide set of coals and crude oils was determined. Isohopanes are abundant in coal and coal-generated oils, where they can account for more than 5% of all extended hopanes, and low in abundance in oils from source rocks deposited under anoxic conditions.  相似文献   

16.
A suite of reservoir cores (oil sands) from a single well in Bohai Bay Basin, East China, displayed a progressive increase in petroleum biodegradation extent on the basis of bulk composition and 25-norhopane content. This fits with the proposal that subsurface petroleum biodegradation is dominantly an anaerobic process and usually occurs at the oil–water contact. It is likely that sequential microbial degradation of hydrocarbons under anoxic conditions does not occur in a true stepwise fashion, but is controlled by various factors such as concentration and solubility of hydrocarbons and their diffusion rate to the oil/water contact. In fact, 25-norhopanes were formed prior to the complete elimination of the acyclic, and mono- and bicyclic alkanes. An inverse response of the 22S/(22S + 22R) ratio between each extended 17α(H)-hopane and its corresponding 25-norhopane was observed as severe biodegradation occurred, supporting the proposal that the 25-norhopanes originate from demethylation of hopanes. Field observation revealed that biomarkers without extended alkyl side chains, such as oleanane, gammacerane and β-carotane, have significant resistance to biodegradation and can be used as naturally occurring “internal standards” to evaluate variations in other biomarkers. The results suggest that the quantity of 25-norhopanes showed a minor increase as the hopanes decreased significantly, i.e. only partial hopane conversion to the corresponding 25-norhopanes. Alternative degradation pathways for hopanes might occur in reservoirs, in addition to C-25 demethylation.  相似文献   

17.
Organic-rich (18.2%) Monterey Formation diatomite from California was studied. The organic matter consist of 94% bitumen and 6% kerogen. Biological markers from the bitumen and from pyrolysates of the coexisting asphaltenes and kerogen were analyzed in order to elucidate the relationship between the various fractions of the organic matter. While 17 alpha(H), 18 alpha(H), 21 alpha(H)-28,30-bisnorhopane was present in the bitumen and in the pryolysate of the asphaltenes, it was not detected in the pyrolysates of the kerogen. A C40-isoprenoid with "head to head" linkage, however, was present in pyrolysates of both kerogen and asphaltenes, but not in the bitumen from the diatomite. The maturation level of the bitumen, based on the extent of isomerization of steranes and hopanes, was that of a mature oil, whereas the pyrolysate from the kerogen showed a considerably lower maturation level. These relationships indicate that the bitumen may not be indigenous to the diatomite and that it is a mature oil that migrated into the rock. We consider the possibility, however, that some of the 28,30-bisnorhopane-rich Monterey Formation oils have not been generated through thermal degradation of kerogen, but have been expelled from the source rock at an early stage of diagenesis.  相似文献   

18.
Four typical distribution patterns of pentacyclic triterpenoid hydrocarbons (types A-D) are distinguished in the low-mature source rocks from eastern China. Type A has a relatively high content of pentacyclic triterpenes. It exists in immature sediments and the distribution and abundance of triterpenes vary with the maturity of the sediments. An unknown C30 triterpene (UCT2) has also been detected in very shallow sediments. This compound is very unstable and disappears rapidly with the increase of depth. Type B is characterized by a relatively high amount of 17α(H), 21β(H)-30-homohopane. This kind of distribution pattern is common in coals and terrestrial sediments of low maturity. Type C has a relatively high content of diahopane and neohopane series. The analysis shows that this distribution pattern may have an indirect relationship with the input of higher plants despite its microbial source. There are C30-unconfirmed triterpane (UCT2) and a relatively high content of C35 hopane in type D. The dist  相似文献   

19.
Stereochemical changes of triterpanes present in extracts from an immature oil shale sequence intruded by a 3-m dolerite sill have been studied by gas chromatography-mass spectrometry (GC-MS). The steric configuration of the hopanes was observed to change from one dominated by the thermally less stable 17β(H), 21β(H) configuration at some distance from the intrusion, to one dominated by the thermally more stable 17α(H), 21β(H) and 17β(H), 21α(H) configurating in the immediate vicinity of the intrusion. In addition, severe alteration of the kerogen appeared to have taken place as a result of the contact metamorphism, and high concentrations of extractable organic matter were observed below the intrusion. Characterization of the kerogens by Curie-point pyrolysis has enabled the effects of the intrusion on the shales to be monitored.  相似文献   

20.
The aliphatic hydrocarbon composition (acyclic isoprenoids, hopanoids and steroids) of oils from the most productive fields in the southern geological Province of Cuba have been studied. This province is defined by its position with respect to the Cretaceous overthrust belt generated during the formation of oceanic crust along the axis of the proto-Caribbean Basin. The relative abundances of 18α(H)-22,29,30-trisnorneohopane, gammacerane and diasteranes suggest that Pina oils are related to the carbonate oils from the Placetas Unit in the northern province (low Ts/(Ts+Tm) and C27,29 rr/(rr+sd) ratios). The Cristales and Jatibonico oils exhibit some differentiating features such as higher Ts/(Ts+Tm) and absence of gammacerane. The oils from this province do not exhibit significant differences in either hopane, C32 22S/(S+R) and C30 αβ/(αβ+βα), or sterane, C29 αα 20S/(S+R), maturity ratios. However, the relative content of 5α(H),14β(H),17β(H)-cholestanes (C29 ββ/(ββ+αα) ratio) indicates that Pina oils are more mature than Cristales and Jatibonico oils. Several of these oils (Cristales, Jatibonico and Pina 26) are heavily biodegraded, lacking n-alkanes, norpristane, pristane and phytane (the two former oils do not contain acyclic isoprenoid hydrocarbons). Other biodegradation products, the 25-norhopanes, are found in all the oils. Their occurrence is probably due to mixing of severely biodegraded oil residues with undegraded crude oils during accumulation in the reservoir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号