首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beach profile data, covering the coast of Ras El Bar, northeast Nile Delta, collected during the years from 1990 to 2002 combined with landsat images for the area and sedimentological investigation have been used to identify beach and nearshore seafloor sediment changes. Along the coast of Ras El Bar, two accretion sectors and one of erosion have been recognized. The first accretion sector is located west of Damietta harbour, where the harbour jetties have halted the littoral transport, while the second one is behind a system of detached breakwaters protecting Ras El Bar resort. Both the two sectors are characterized by growing shoreline with maximum rates ∼15 and 10 m/year, respectively. Also, they have maximum nearshore seafloor accretion rates of ∼18 and 22 cm/year, respectively. The erosion sector is located east of Damietta port and has a maximum rate of shoreline retreat ∼−10 m/year. Erosion of its nearshore seafloor is indicated recording a maximum rate of ∼−20 cm/year. The rate of net sediment volume change in the area indicates shifting of the accretion sector (II) westward, responding to installation of the new breakwaters unit. The two accretion sectors are characterized by dominance of moderately sorted fine sands in their shore area which change seaward into less sorting very fine sands. Beach sands of the eroded sector are poorly sorted medium grain size. The dominant constituents of heavy mineral species in beach and sea-bottom sands are the characteristic assemblages of the Nile deposits. The sands of the eroded zone are relatively enriched in monazite, zircon, tourmaline, garnet, and rutile.  相似文献   

2.
The present study investigates the impact of wave energy and littoral current on shorelines along the south-west coast of Kanyakumari, Tamil Nadu, India. The multi-temporal Landsat TM, ETM+ images acquired from 1999 to 2011 were used to demarcate the rate of shoreline shift using GIS-based Digital Shoreline Analysis System. The statistical analysis such as net shoreline movement and end point rate were determined from the multi-temporal shoreline layers. Moreover, the wave energy and seasonal littoral current velocity were calculated for each coastal zone using mathematical equations. The results reveal that the coastal zones, which include Kanyakumari, Kovalam, Manavalakurichi and Thengapattinam coasts, consisting of maximum wave energy along with high velocity of littoral current, have faced continuous erosion processes. The estimated wave energy along these zones ranges from 6.5 to 8.5 kJ/km2 and the observed current velocity varies from 0.22 to 0.32 m/s during south-west and north-east monsoons. The cumulative effect of these coastal processes in the study area leads to severe erosion that is estimated as 300.63, 69.92, 54.12 and 66.11 m, respectively. However, the coastal zones, namely Rajakkamangalam, Ganapathipuram, Muttam and Colachel, have experienced sediment deposits due to current movement during the north-east monsoon. However, the trend changes during the south-west monsoon as a result of sediment drift through backwash. The spatial variation of shoreline and its impact on wave energy and the littoral current have been mapped using the geo-spatial technology. This study envisages the impact of coastal processes on site-specific shorelines. Hence, the study will be effective for sustainable coastal zone management.  相似文献   

3.
Wadi Feiran is an important drainage basin in southern Sinai Peninsula covering an area of about 1785 \(\hbox {km}^{2}\), its streams drain into the Gulf of Suez crossing variety of rocks and sedimentary units varied in age from Precambrian to Quaternary. Field investigations, geographic information systems (GIS) and remote sensing studies including Landsat-7 ETM+, Radarsat-1, and SRTM DEM were integrated to reveal its lithologic, geologic and geomorphic features. Besides the field investigations, rock units including basement and pre- and syn-rift sedimentary units were discriminated using band ratios and principal component analysis techniques (PCA). Such techniques revealed that the crystalline rocks covering W. Feiran are unaltered rocks lacking OH-bearing minerals. Radar data successfully displayed the structures and geomorphic features related to topography. Moreover, the techniques allowed the extraction of the dyke-like structures along faults and shear zones. This also characterized the topographic variations through analysis of the shaded terrain and the altitudinal profiles. The results of data integration, lineament analysis and lineament density maps revealed that the structural grain in the present study has four different trends: N20–45E, N30–45W, N–S and E–W. Based on analysis of radar data and geomorphic indices, W. Feiran is an asymmetrical basin, its left side occupies \(\sim \)34% of the total area that leads to a supposedly massive tilt towards the south which caused the southwestward slope.  相似文献   

4.
Systematic planning for groundwater exploration using modern techniques is essential for the proper utilization, protection and management of this vital resource. Enhanced Thematic Mapper Plus (ETM+) images, a geographic information system (GIS), a watershed modeling system (WMS) and weighted spatial probability modeling (WSPM) were integrated to identify the groundwater potential areas in the Sinai Peninsula, Egypt. Eight pertinent thematic layers were built in a GIS and assigned appropriate rankings. Layers considered were: rainfall, net groundwater recharge, lithology or infiltration, lineament density, slope, drainage density, depth to groundwater, and water quality. All these themes were assigned weights according to their relative importance to groundwater potentiality and their corresponding normalized weights were obtained based on their effectiveness factors. The groundwater potentiality map was finally produced by WSPM. This map comprises five gradational groundwater potentiality classes ranging from very high to very low. The validity of this unbiased GIS-based model was tested by correlating its results with the published hydrogeological map of Egypt and the actual borehole yields, where a concordant justification was reached. The map declared that the Sinai Peninsula is generally of moderate groundwater potentiality, where this class encompasses an area of 33,120?km2 which represents 52% of its total area.  相似文献   

5.
6.
The present study is the first attempt in Egypt to assess feasibility of using of dredging material from Damietta Harbor in the northwestern Nile Delta for erosion control. The study also provides an economic evaluation for the shoreline management alternatives selected to mitigate for the effects of coastal erosion at two pilot eroding areas (namely, A and B) located near the Damietta Harbor. Results of compatibility analysis reveal that the dredging material is fairly compatible with the native sand of the nearby eroding beaches. In addition to soft nourishment by dredged sand, other types of coastal engineering measures which are often used in erosion management area were also evaluated as alternatives for erosion control and mitigation solution. Economic feasibility assessment by means of cost-benefit analysis of direct and indirect items has been carried out to facilitate comparison between these alternatives. Analysis of alternatives has been also supported by other criteria to select the cost-effective and environmentally acceptable option to protect the eroding pilot areas. These criteria include the high total cost paid for maintenance of the Damietta Harbor channel with no use, anticipated impacts on the littoral system, sustainability, future plans for protection of the existing coastlines, and lessons learned from previous shore protection works in the Nile Delta. The final selection of the best viable alternative indicates that the procedure of beach nourishment is the most appropriate form for protection area A, while a combination of groins and sand nourishment is more relevant for area B. In any case, material dredged from the navigation approach of the Damietta Harbor should be utilized as a borrow material in the nourishment schemes and excluding use of the terrestrial sources.  相似文献   

7.
Shoreline is one of the rapidly changing landform in coastal area. So, accurate detection and frequent monitoring of shorelines are very essential to understand the coastal processes and dynamics of various coastal features. The present study is to investigate the shoreline changes along the coast between Kanyakumari and Tuticorin of south India, where hydrodynamic and morphologic changes occur continuously after the December 2004 tsunami. Multi-date satellite data of Indian Remote Sensing (IRS) satellites (1999, 2000, 2003, 2005, and 2006) are used to extract the shorelines. The satellite data is processed by using the ERDAS IMAGINE 9.1 software and analyzed by ArcGIS 9.2 workstation. The different shoreline change maps are developed and the changes are analyzed with the shoreline obtained from the Survey of India Toposheets (1969). The present study indicates that accretion was predominant along the study area during the period 1969–1999. But recently (from 1999 onwards), most of the coastal areas have experienced erosion. The study also indicates the reversal of shoreline modifications in some coastal zones. The coastal areas along the headlands have experienced both erosion and accretion. Though the coastal erosion is due to both natural and anthropogenic activities, the coastal zones where sand is mined have more impacts and relatively more rate of erosion than that of other zones. Improper and in-sustainable sand mining leads to severe erosion problem along this area. So the concept of sustainable management should be interpreted in the management of the near-shore coastal sand mining industry.  相似文献   

8.
One of the most effective means of monitoring the cumulative effects of natural processes and human activities on the shoreline is to study the patterns of shoreline change over time. An attempt has been made to study the shoreline changes along Al Batinah, Sultanate of Oman, at the outlet of Wadi Al Hawasnah. The previous studies showed that Al Batinah coastline is generally stable except where coastal engineering structures like harbors, corniches, ports, and recharge dams are present. Remote sensing and GIS techniques are widely used in the coastal geomorphology because they provide the best sources to study the long-term shoreline changes. Rapid shoreline changes at the mouth of Wadi Al Hawasnah have been measured using proxy data derived mainly from satellite images from 2000 to 2005. The mouth of Wadi Al Hawasnah is now completely blocked after the construction of recharge dam at the upper stream of Wadi Al Hawasnah and Wadi Bani Umar in 1995. There has been no discharge to the sea after the construction of the dam. Furthermore, beach profiles of this area show erosion close to the south of the tidal inlet and accretion further south. The shorelines in the northwest of the tidal inlet remained stable.  相似文献   

9.
Three types of hydrothermal alterations are recorded in Wadi El Regeita area, argillic, phyllic, and propylitic. Whole-rock analysis of representative samples of the alteration halo (1) shows a Cu, Au, and Ag content up to 1.7 wt.%, 1.6 g/t, and 4 g/t, respectively; in the alteration halo (2), these metal contents are up to 1.3 wt.%, 1.4 g/t, and 3 g/t, following the same order. The integrated remote sensing and geophysical data, as well as geological field verification, show that Wadi El Regeita area includes promising Cu ores within two hydrothermal alteration haloes. Spatial data analyses of lineaments from Landsat Enhanced Thematic Mapper (ETM) band ratio image (7/5, 5/4, 3/1) reveal the presence of alteration haloes that potentially may host Cu mineralization at south and north of El Regita Cu mine. Gravity interpretation indicates that the surveyed area is dissected by NE–SW fault zones in the central part, near Wadi El Regeita Cu mine. Ground magnetic survey data revealed that the surveyed area includes six magnetic bodies at depths ranging from 32 to 90 m, possibly recording the presence of mineralized and hydrothermally altered andesitic dykes. The half length of these dykes ranges from 600 to 1,070 m; their half thickness from 30 to 123 m and their half width from 48 to 531 m. Dyke locations coincide with surface alteration haloes (1) and (2) as indicated by the ETM band ratio image processing. The final assessment of the area, however, needs more detailed geological and geophysical studies with contributions of remote sensing techniques.  相似文献   

10.
Um Bogma area is the most famous mineralized locality in Sinai, Egypt. It is characterized by the presence of manganese, iron, and copper deposits. Apart from the mill tailings and spoil heaps, the results indicated the decrease of soil contamination downstream. As a result of random manganese mining activity in Um Bogma area, many hazardous elements such as iron, copper, manganese, lead, and zinc as well as many others associating heavy metals such as arsenic, selenium, and sulfur are dispersed in the environment. This study assesses and monitors the environmental impacts of such mining activities in the west central Sinai, using multitemporal spectral remote-sensing sensors (MSS 1972, TM 1986, and ETM+7 2000). The results have shown the very high potential of temporal imagery in mining-related contamination either directly through mineral and rock mapping of the mining waste and residues and related contaminated areas.  相似文献   

11.
12.
This paper applied the Revised Universal Soil Loss Equation (RUSLE), remote-sensing technique, and geographic information system (GIS) to map the soil erosion risk in Miyun Watershed, North China. The soil erosion parameters were evaluated in different ways: the R factor map was developed from the rainfall data, the K factor map was obtained from the soil map, the C factor map was generated based on a back propagation (BP) neural network method of Landsat ETM+ data with a correlation coefficient (r) of 0.929 to the field collected data, and a digital elevation model (DEM) with a spatial resolution of 30 m was derived from topographical map at the scale of 1:50,000 to develop the LS factor map. P factor map was assumed as 1 for the watershed because only a very small area has conservation practices. By integrating the six factor maps in GIS through pixel-based computing, the spatial distribution of soil loss in the upper watershed of Miyun reservoir was obtained by the RUSLE model. The results showed that the annual average soil loss for the upper watershed of Miyun reservoir was 9.86 t ha−1 ya−1 in 2005, and the area of 47.5 km2 (0.3%) experiences extremely severe erosion risk, which needs suitable conservation measures to be adopted on a priority basis. The spatial distribution of erosion risk classes was 66.88% very low, 21.90% low, 6.19% moderate, 2.90% severe, and 1.84% very severe. Among all counties and cities in the study area, Huairou County is in the extremely severe level of soil erosion risk, about 39.6% of land suffer from soil erosion, while Guyuan County in the very low level of soil erosion risk suffered from 17.79% of soil erosion in 2005. Therefore, the areas which are in the extremely severe level of soil erosion risk need immediate attention from soil conservation point of view.  相似文献   

13.
This paper examines the soil loss spatial patterns in the Keiskamma catchment using the GIS-based Sediment Assessment Tool for Effective Erosion Control (SATEEC) to assess the soil erosion risk of the catchment. SATEEC estimates soil loss and sediment yield within river catchments using the Revised Universal Soil Loss Equation (RUSLE) and a spatially distributed sediment delivery ratio. Vegetation cover in protected areas has a significant effect in curtailing soil loss. The effect of rainfall was noted as two pronged, higher rainfall amounts received in the escarpment promote vegetation growth and vigour in the Amatole mountain range which in turn positively provides a protective cover to shield the soil from soil loss. The negative aspect of high rainfall is that it increases the rainfall erosivity. The Keiskamma catchment is predisposed to excessive rates of soil loss due to high soil erodibility, steep slopes, poor conservation practices and low vegetation cover. This soil erosion risk assessment shows that 35% of the catchment is prone to high to extremely high soil losses higher than 25 ton ha−1 year−1 whilst 65% still experience very low to moderate levels of soil loss of less than 25 ton ha−1 year−1. Object based classification highlighted the occurrence of enriched valley infill which flourishes in sediment laden ephemeral stream channels. This occurrence increases gully erosion due to overgrazing within ephemeral stream channels. Measures to curb further degradation in the catchment should thrive to strengthen the role of local institutions in controlling conservation practice.  相似文献   

14.
Most efforts in the study of sea-marginal sabkhas have concentrated on the Persian Gulf, but little is known about the sediments and mineralogy of sabkhas marginal to other seas. The purpose of this paper was to present some geochemical and mineralogical observations in a recent sabkha on the coast of Sinai along the Gulf of Suez. The sabkha is composed of coarse clastic sediments with marine-derived groundwater at depth of about 1 m. The general morphology, climate and water salinity of the Gulf of Suez resemble those of the Persian Gulf, despite the fact that the content of authigenic evaporites in this sabkha is more sparse. The evaporite minerals accumulated only in the upper 30–40 cm of the sabkha, below that and down to the groundwater table, there is no accumulation of evaporites. Laterally, the salinity of the groundwater in the sabkha and the concentration of evaporites in the sediments above it increase constantly with distance from the shore. In contrast to the Persian Gulf where anhydrite is a major evaporite mineral, in Belayim gypsum is the only calcium sulphate mineral in the recent sabkha. Anhydrite is found only in an old elevated sabkha where it recrystallized from gypsum. The gypsum occurs as interstitial crystal concentrations or lithified horizons almost exclusively at the depth of 20–40 cm below the sabkha surface. Above that, in the uppermost horizons, there is in situ accumulation of interstitial halite crystals. The total concentrations of gypsum and halite are almost equal in this sabkha. The sea water recharge in El Belayim is almost exclusively by seepage through the sabkha sediments and not by flooding. The groundwater under this sabkha is only slightly more saline than the Gulf water, thus, not heavy enough for extensive downward refluxing. The major hydrodynamic process must be upward migration of the brines from the groundwater, precipitating on the way gypsum and later halite with some magnesite. Since the sediments of the sabkha are too coarse to support extensive capillary movement, the brines must, therefore, migrate upwards due to ‘evaporative pumping’.  相似文献   

15.
Land degradation is one of the most common issues in the eastern part of the Nile Delta area that threatens the ongoing agricultural activities and prohibits further reclamation expansions. The different degradation types and the associated risk assessment of some soils types of western Suez Canal region during the period from 1997 to 2010 is discussed. The assessment of the different degradation degrees in the investigated area has been carried out through integrating remote sensing, GIS and GLASOD approaches. Results revealed that the salinization, alkalization, soil compaction and water logging are the main types of land degradation in the area. The main causative factors of human induced land degradation types are; over irrigation, human intervention in natural drainage, improper time use of heavy machinery and the absence of conservation measurements. Low and moderately clay flats, gypsifferous flats, have high to very high risk in both salinization sodication and physical degradation. Values such as EC, ESP, and ground water level reach 104.0 dS/m, 176? % and 60 cm, respectively. These results will be of great help and be basic sources for the planners and decision makers in sustainable planning. The spatial land degradation model was developed based on integration between remote sensing data, geographic information system, soil characteristics and DEM.  相似文献   

16.
One of the most important aspects of coastal zone management is the analysis of shoreline dynamics. Over the last years, beaches of the Ravenna coast (NE Italy) experienced large modifications, in some places narrowing or even being completely lost, thus threatening tourism, coastal assets and nature. Coastal erosion has direct consequences for Ravenna tourist-based economy, which largely depends on the attraction provided by sandy beaches. In this study, long-term (>?50 years) coastal analysis was used to identify the sectors along the coast where the shoreline position has changed, either advancing or retreating. Shoreline changes were measured on GIS environment by means of Digital Shoreline Analysis System (DSAS) extension. Net Shoreline Movement (NSM) and Linear Regression Rate (LRR) strategies were employed to examine shoreline variability and reveal erosional/accretional trends. The results show that significant shoreline changes affected the entire coastal region, with most of the study area under retreat, mainly in the most valuable tourist assets of the littoral. The effects were found to be worsened by impacts of land subsidence, presence of harbor infrastructure and deficit in sediment budget. A simple shoreline classification was performed over the DSAS results and cross-checked with local knowledge of the area. The measurement of erosion or accretion rates in each studied segment is found to be useful for land use planning and coastal management plans, especially regarding the prediction of future shoreline positions. Especially important is the potential of the classification to identify areas of significant position change, with current and future implications for the design of sustainable shoreline management and mitigation measures.  相似文献   

17.
Wadi El Raiyan depression represents a discharge area of excess wastewater from the Faiyum province. It comprises two lakes: the upper lake connects the lower one through a channel. The intensive agriculture in the area hazardously affects both lakes. To assess the status of these lakes, this work studies the change detection using image classification and post-classification comparison, physicochemical parameters, concentration of trace elements, and microbiological contents. The classified images indicate a maintained constant area of the upper lake from 1990 to 2012 and decreased by 1.6% in 2014. The lower lake area increased by 4.8% between 1990 and 2001, then decreased till 2014 and increased again by 8.4% in 2015. The change detection concluded that the lake could be disappeared by 2019 if the exploitation of water from the upper lake continues, or the lake could be rebounded if the government planned to increase the recharge. The factor analysis implies that the total Fe, Mn, Ni, Ba, and As are controlled by pH–Eh relationship, Cu by TDS, Pb by temperature, while Cd is attributed to anthropogenic factor. The upper and lower lake samples exhibit biological oxygen demand (BOD) and chemical oxygen demand (COD) values lower than fish farm samples. The high BOD and COD values were coupled by high nitrate contents in the studied water samples. The cultivated land drains and the fish farms samples have total coliform (TC) and fecal coliform (FC) higher than the samples collected from the upper lake.  相似文献   

18.
The basement rocks of Abu Marawat area comprise serpentinites (oldest), metavolcanics and their equivalent pyroclastics, intrusive metagabbro–diorite complex, synkinematic granitoids, Hammamat sediments and basic intrusion (youngest). Remote sensing ETM+ data of Abu Marawat area were analyzed, and band ratios technique was applied to discriminate between different varieties of these basement rocks. Serpentinites are represented by lensoidal bodies tectonically incorporated in the metavolcanics. On band ratio 5/7 image, they are characterized by very bright image signature. The metavolcanics comprise basalts, andesite and subordinate dacites together with their equivalent pyroclastics. They were regionally metamorphosed up to the greenschist facies and exhibit dark grey image signatures on band ratio 5/7 image. The metagabbro–diorite complex is made up of metagabbros, diorites and quartz diorites, whereas the synkinematic granitoids are formed of tonalites and granodiorites. The band ratio 5/7 image illustrates tonalites with dark image signature, whereas metagabbro–diorites and granodiorites exhibit grey image signature. The metavolcanic suites are of island arc setting, where metabasalts are of tholeiitic affinity, while the meta-andesites and metadacites are of calc-alkaline character. The metagabbroic and granitoid rocks are of I-type, calc-alkaline affinity and were formed in arc tectonic setting. They are enriched in LIL elements and depleted in Nb and HFS elements, a characteristic feature of subduction-related magmatism. The regular variation trends among the major and trace elements as well as the coincidence of the plotted samples favor the assumption that they are comagmatic and formed by processes such as fractional crystallization.  相似文献   

19.
Flash floods are considered to be one of the worst weather-related natural disasters. They are dangerous because they are sudden and are highly unpredictable following brief spells of heavy rain. Several qualitative methods exist in the literature for the estimations of the risk level of flash flood hazard within a watershed. This paper presents the utilization of remote sensing data such as enhanced Thematic Mapper Plus (ETM+), Shuttle Radar Topography Mission (SRTM), coupled with geological, geomorphological, and field data in a GIS environment for the estimation of the flash flood risk along the Feiran–Katherine road, southern Sinai, Egypt. This road is a vital corridor for the tourists visiting here for religious purposes (St. Katherine monastery) and is subjected to frequent flash floods, causing heavy damage to man-made features. In this paper, morphometric analyses have been used to estimate the flash flood risk levels of sub-watersheds within the Wadi Feiran basin. First, drainage characteristics are captured by a set of parameters relevant to the flash flood risk. Further, comparison between the effectiveness of the sub-basins has been performed in order to understand the active ones. A detailed geomorphological map for the most hazardous sub-basins is presented. In addition, a map identifying sensitive sections is constructed for the Feiran–Katherine road. Finally, the most influenced factors for both flash flood hazard and critical sensitive zones have been discussed. The results of this study can initiate appropriate measures to mitigate the probable hazards in the area.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号