首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 152 毫秒
1.
汉江兴隆水利枢纽运行后,坝下游近坝段枯水位较建坝前下降明显,500~800 m3/s流量下,2021年较运行前坝下水位累计下降2.47~2.55 m,对工程安全及效益发挥带来不利影响。基于水文、断面、水下地形等观测资料,对枯水位下降的原因进行深入剖析。结果表明,兴隆水利枢纽的拦沙作用有限,皇庄以上沙量减少是兴隆以下河床冲刷加剧的重要原因,高水调平导致的年内枯水上滩几率下降和航道整治护滩工程是强冲刷过程中“滩淤槽冲”的核心因素。坝下游河段枯水河槽冲刷及汉口最低水位下降是造成兴隆近坝段枯水位下降的直接原因。随机森林算法分析显示,对兴隆坝下水位变化影响最大的因素为兴隆站输沙率的锐减。此外,航道整治工程、河床边界条件对枯水位下降也有十分重要的驱动作用。兴隆坝址及下游河段的河床组成偏细,2012-2022年虽然河床剧烈冲刷,但床沙组成没有出现粗化的现象,预计河床仍将继续冲刷下切,枯水位尚未达到稳定状态。  相似文献   

2.
三峡及其上游干支流梯级水库建成运用后,大坝下游“清水下泄”引起了长江中下游河道发生长时间、长距离的冲刷。2001—2021年期间宜昌至长江口已累计冲刷了50.3亿m3,需厘清河道冲刷对河势、防洪、航运等方面产生影响。分析表明:三峡工程运用后,长江中下游河势总体稳定,弯道段出现切滩撇弯、汊道段出现塞支强干等现象;河道槽蓄量的持续增加,进一步增大了河道调蓄和行洪能力,但水流顶冲点的变化和近岸河床的冲刷下切,使得河道崩岸频发,并影响河势稳定和防洪安全;在河道冲刷、河势控制与航道工程综合作用下,长江中下游航道条件总体得到改善,但河道不均衡冲刷使得坝下游砂卵石河段出现“坡陡流急”,沙质河段出现洲滩散乱、航槽移位等现象,影响航道条件;同流量下枯水位呈下降态势,逢极枯年份影响长江中下游用水安全;江湖关系发生新变化,“三口”分流道由原淤积转为冲刷,两湖湖区水位不同程度的降低,枯水位出现时间有所提前,不利于湖区水资源和生态环境的安全与可持续发展;三峡工程实施枯水期补水调度和“压咸潮”调度以及长江口北支淤积减缓,对于遏制长江口咸潮入侵有利,入海泥沙显著减少引起长江口近岸河床冲刷,影响...  相似文献   

3.
三峡水库调节典型时段对鄱阳湖湿地水情特征的影响   总被引:1,自引:4,他引:1  
三峡工程建成运行将改变下游的水文过程,影响通江湖泊湿地生态系统.本文选取水文情势变化大且可能对植被乍长产生较大影响的汛末蓄水和汛前腾空两个时段,运用长江中游江湖耦合水动力模型计算了三峡水库不同凋节流量下湖泊水位变化特征,并结合湖泊高程和面积关系曲线,分析了不同增减下泄流量对洲滩湿地淹没出露的影响.结果表明,三峡水库汛末...  相似文献   

4.
长江中游的泥沙淤积问题   总被引:8,自引:0,他引:8  
长江上游年产泥沙5.12×108 t, 经宜昌输入中游, 长江中游干流及各支流年产沙约 0.80×108 t. 这两部分中约1.24×108 t沉积于中游河湖中, 4.68×108 t经大通输入下游, 沉淤于河道及长江三角洲或入海. 长江中游的泥沙, 总体是淤大于冲, 但是冲淤的地理分布、时间段分布和河床断面分布不均衡. 长江干流的宜昌-城陵矶段、九江-大通段冲大于淤或冲淤平衡. 淤积主要发生在长江干流以武汉为中心的螺山-武汉-黄石段以及洞庭湖区和鄱阳湖区. 即使在主要淤积江段, 也有局部时段和江段以冲刷为主. 主泓所在的河槽以冲刷为主, 而河道两侧或河道之间的洲滩, 则以淤为主, 形成高而平的漫滩, 往往被人为改造成圩垸. 荆江以北的江汉平原因有大堤从长江隔开, 只有汉水少量泥沙供应, 冲淤量很小, 再加上构造沉降的累计效应, 其地面高程绝大部分低于干流洲滩数米. 螺山-武汉-黄石段的淤积导致该段及以上江段洪水位抬高. 干流断面冲槽淤滩使长江中游河道的典型形态呈深河谷、高漫滩, 靠干堤保护堤内平原. 这种断面在洪水时成为在同等水量下, 水位不断抬高的原因. 高水位要高堤防来防堵, 这就增加了堤防压力、水头压力, 容易导致管涌、渗漏等险情. 堤外滩及洪水位与构造沉降的堤内平原间的高差不断增大. 三峡工程建成后, 水库拦沙及中游河道冲深, 可使同流量下水位大幅度降低, 但城陵矶-武汉段冲刷量很小, 不能解决该段及以下江段的泥沙淤积问题, 因此江汉平原因相对于洪水位地势过低而造成的洪涝灾害及相关环境问题, 仍将是中游长远的重大隐患.  相似文献   

5.
[专稿]近年长江中下游径流节律变化、效应与修复对策   总被引:1,自引:0,他引:1  
周建军  张曼 《湖泊科学》2018,30(6):1471-1488
近十余年长江上游大量兴建大型水库,蓄水、调节和拦沙对中下游河川径流和泥沙产生了深刻影响.河川径流减少,径流季节提前,伏秋(特别是10月)流量显著降低、变差系数增大,97%严重干旱频率情景变成80%~85%.同时,宜昌和出海输沙量分别减少93%和70%,中下游河槽冲刷下降1~3 m,三峡蓄水后仅13年清水冲刷幅度和范围已超过三峡预期30年的冲刷上限,目前仍呈加速趋势.干流各站平均水位下降2~4 m,与此同时河道同流量洪水位反而升高.水库调节是水位降低的主要原因,河道冲刷更加剧水位降低,当前水位变化对防洪和生态都不利.汛后流量和干流水位提前降低使洞庭湖和鄱阳湖(两湖)提前干枯、松滋等"三口"入湖水量减少,伏秋高热季节两湖生态环境面貌发生了根本变化.汛后流量减少甚至显著增加长江大通十月流量小于15000 m3/s几率和上海长江水源受咸潮影响风险,10月咸潮入侵变成最严重时段必须引起高度重视.我们认为,径流和径流节律变化是当前长江生态环境最主要问题之一.建议以"水资源工程"重新定位上游大型工程、以"水资源优先"优化流域管理和切实回归既定三峡工程运行原则等统一调度和改善中下游水情;通过水库挖泥等措施修复长江物质通量,抑制中下游剧烈冲刷和稳定河流格局;加强中下游蓄滞洪区等防洪能力建设,为最大限度降低上游水库防洪和蓄水压力创造条件;主要通过改善上游水库调度维护两湖环境条件,"引清水入洞庭"和"增加供水设施建设"加强两湖适应能力.这是长江修复和保护重点.  相似文献   

6.
系统解析长江中游河湖交汇区域航道水深资源的变化,可支撑“黄金航道”的可持续发展。本研究以洞庭湖-荆江交汇段为对象,研究洞庭湖分汇区域水沙条件、荆江河段滩槽演变与河湖交汇段航道水深资源的关系。研究表明:三峡工程运行以来,洞庭湖三口分流量和分沙量延续了三峡工程运行前的减少态势,伴随洞庭湖分流量减少,相对增加的长江干流径流量增强了河床冲刷强度,反馈使得洞庭湖三口分流量和分沙量均处于较低值;荆江河段河床冲刷给航道尺度提升奠定了有利基础,河湖分汇区域不满足4.5 m×200 m(水深×宽度)的长度为12.6 km,占荆江河段碍航总长度的68.35%。碍航驱动机制上:松滋口分流区段(枝城-昌门溪)的4.5 m水槽贯通但宽度不足200 m,汊道分流关系不稳定及洲滩萎缩制约航道条件稳定,枯水位下降及“坡陡流急”现象仍然严峻,不利于航道条件保障及船舶安全航行;太平口分流区段水位下降、洲滩萎缩、汊道交替发展使得枯水航路不稳定或水深不足4.5 m;藕池口分流区域的洲滩崩退、洲滩冲刷引起的向下游泥沙输移,碍航表现为航宽不足200 m或出现水深不足4.5 m的浅滩;洞庭湖入汇影响区段(熊家洲-城陵矶)受弯道冲淤...  相似文献   

7.
三峡工程蓄水对洞庭湖水情的影响格局及其作用机制   总被引:1,自引:12,他引:1  
赖锡军  姜加虎  黄群 《湖泊科学》2012,24(2):178-184
三峡工程建成投入运行后,汛末蓄水将使坝下河湖水情发生变化,长江中下游秋季来水减少成为常态.为客观分析三峡蓄水对洞庭湖水情的影响分量、空间格局及其作用机制,选取三峡工程典型的蓄水过程,运用长江中游江湖耦合水动力学模型计算了因上游来水变化引起的洞庭湖水情时空变化.结果表明:1)三峡汛末蓄水对洞庭湖水位影响具有明显的"北高南低,东强西弱"的格局,即东洞庭湖最为显著、南洞庭湖东部和西洞庭湖北部次之,南洞庭湖西部和西洞庭湖南部最小.2)洲滩湿地受蓄水影响最明显的主要为东洞庭湖、南洞庭湖和湖泊洪道两侧的条带状洲滩.3)三峡蓄水对洞庭湖水位的影响机制有二:长江干流水位快速消落加速湖泊水体下泄以及削减长江三口分流补给湖泊的水量.  相似文献   

8.
三峡工程运行后,坝下游河道发生持续冲刷。本文研究了长江中游(955 km)不同河段沿程演变差异及其原因。总体而言,河床形态调整幅度自上而下减弱,这是因为在河床持续冲刷过程中,水流含沙量沿程恢复,故越往下游冲刷相对缓慢。平面形态方面,长江中游岸线崩退及洲滩变形的强度均呈沿程减弱趋势,且在荆江河段最为显著。断面形态方面,河床冲深幅度在宜枝下段>荆江河段>宜枝上段>城汉河段>汉湖河段。理论上距离三峡工程最近的河段冲刷应最为剧烈,但由于宜枝上段床沙粗化显著,限制了冲刷的进一步发展。过流能力方面,宜枝河段由于距洞庭湖较远,并未受到入汇顶托作用,故其平滩流量的调整基本由进口水沙条件控制,并随着河床冲深下切而增大;对于荆江、城汉和汉湖河段,河床冲刷虽显著,但支流或湖泊的入汇顶托对平滩流量产生的影响大于前者,故平滩流量总体随上下游水位差同步波动。  相似文献   

9.
三峡水库蓄水前后长江中下游流量特征变化及其对造床作用的影响一直受到学者的关注.采用枝城等6个水文站日均流量资料,分别统计了各站流量的经验频率分布,检验了8种概率密度函数的适用性,并讨论了三峡水库蓄水前后流量频率分布特征与造床流量的关系.研究表明:长江中下游干流洪中枯各级流量的频率分布具有分段特性,无法用皮尔逊Ⅲ型或对数...  相似文献   

10.
付湘  赵秋湘  孙昭华 《湖泊科学》2019,31(6):1713-1725
长江干流与洞庭湖存在复杂的并联型分汇关系,当三峡水库调度改变长江径流过程时,会引起洞庭湖年内槽蓄量的变化,对于洞庭湖地区防洪、水资源配置和水环境保护产生显著的影响.本文建立了枝城至螺山站的荆江-洞庭湖水流模型,利用2008-2017年的三峡水库实际调度日数据,分析有、无三峡水库调度两种情况下洞庭湖槽蓄量的变化过程,同时利用建库前和近期的水位流量关系反映河道过流能力,分析了河道调整的影响.结果表明:由河道调整引起的槽蓄量变化在汛前消落期、汛期、汛末蓄水期和枯水期分别为-3.06%、0.12%、-0.01%和-13.31%.有三峡水库影响情况下,汛前消落期由于荆江"三口"进入洞庭湖的多年平均总径流增加23.94%,洞庭湖出口处城陵矶多年平均水位升高0.53 m,阻碍了洞庭湖出流,洞庭湖多年平均槽蓄量增长13.30%;汛期由于荆江"三口"分流量减少3.54%,城陵矶水位降低0.02 m导致出湖流量增多,因此洞庭湖多年平均槽蓄量减少0.20%;在汛末蓄水期,荆江"三口"分入洞庭湖的多年平均总径流量减少37.18%,城陵矶多年平均水位降低1.33 m,导致出湖流量增多,因而洞庭湖多年平均槽蓄量减少27.74%;在枯水期,荆江"三口"多年平均总径流量增加5.61%,城陵矶多年平均水位上升0.07 m,最终洞庭湖多年平均枯期槽蓄量增加2.96%.  相似文献   

11.
Construction of large dams is attractive because of their great benefits in flood control,hydropower generation,water resources utilization,navigation improvement,etc.However,dam construction may bring some negative impacts on sediment transport and channel dynamics adjustments.Due to the effects of recent water and soil conservation projects,sediment retention in the newly constructed large upstream reservoirs,and other factors,the sedimentation in the Three Gorges Reservoir(TGR)is quite different from the amount previously predicted in the demonstration stage.Consequently,based on the measured data,characteristics of sedimentation and the related channel deformation in the TGR were analyzed.The results imply that sediment transport tended to be reduced after the Three Gorges Project(TGP).Sedimentation slowed dramatically after 2013 and indicated obvious seasonal characteristics.Due to the rising water level in the TGR in the flood season,the yearly sediment export ratio(Eratio)was prone to decrease.The water level near the dam site should be reasonably regulated according to the flow discharge to improve the sediment delivery capacity and reduce sedimentation in the TGR,and to try to avoid situations where the flood retention time is close to 444 h.The depositional belt was discontinuous in the TGR and was mainly distributed in the broad reaches,and only slight erosion or deposition occurred in the gorge reaches.Sedimentation in the broad and gorge reaches accounted for 93.8% and 6.2% of the total sedimentation,respectively.The estuarine reach located in the fluctuating backwater area experienced alternate erosion-deposition,with a slight accumulative deposition in the curved reach.Sedimentation mainly occurred in the perennial backwater area.The insight gained in this study can be conducive to directly understanding of large reservoir sedimentation and mechanism of channel adjustment in the reservoir region in the main channel of large river.  相似文献   

12.
Over the last century, geomorphic processes along the Middle Rio Grande have been altered by flood control and bank stabilization projects, intensified land and water use, and climate change. In response to potential risks to infrastructure and ecological integrity, recent (1985–2008) adjustment was investigated and historic (1918–1985) changes in Rio Grande channel planform through the Albuquerque, New Mexico, area were reviewed, especially in relation to changes in annual peak discharge and river engineering measures. Using a GIS, channel characteristics were digitized from georeferenced photographs and analyzed with particular attention to quantifying potential measurement error and its propagation. Error associated with average channel widths and channel area ranged between 4 and 13%. For smaller polygons, e.g. islands, error was higher (11 to 40% for width and >200% for area) because width error is large relative to polygon width. Between 1918 and 1963, average channel widths decreased 8 m/yr, from 516 ± 67 m to 176 ± 7 m, mostly due to decreasing peak flows and the implementation of flood control and other engineering measures. From 1985 to 2008, widths decreased 0·7 m/yr, from 176 ± 23 m to 146 ± 5 m, accompanied by an increase in vegetated island area which largely coincided with low flow periods. Narrowing was concentrated at tributary inputs and in the upstream part of the reach, where bedload trapping by Cochiti Dam has caused degradation. Bank protection structures and dense vegetation limit bank erosion in the reach, but erosion is significant where expanding islands, incision, and increased meandering force water against banks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
荆江三口的分流对于洞庭湖区的水资源、河湖生态系统安全等均具有重要的影响.受到人类活动和气候变化双重影响,荆江三口分流发生显著变化,亟需明确其变化特征及适应性对策.基于实测数据分析了荆江三口径流变化特征,采用数值模拟评估了水库不同下泄方案对推迟荆江三口断流的影响.结果表明:荆江三口年径流量呈递减趋势,2003年以后分流比...  相似文献   

14.
《国际泥沙研究》2023,38(5):662-672
The evaluation of the trend of flood stage changes in alluvial rivers downstream of dams is important for flood management. However, the flood stage associated with a given discharge generally is nonstationary in river reaches with multiple tributaries. This is not only because of the dam-induced shifting in the cross-sectional area and/or channel roughness but also because of the backwater induced by high flows from the tributaries. To determine the total trend of the flood stage and quantify the separate contributions of hydrological and geomorphic effects, the current study proposed a framework approach consisting of hydrological analysis and multiscenario numerical modeling. By this means, the trend in the flood stage could be distinguished from the stage oscillation driven by varying factors, including extreme hydrologic events. The effects of chronic changes, including channel incision and flow resistance increase, also were quantitatively separated. This framework was applied to the Chenglingji–Datong (CD) reach downstream of the Three Gorges Dam (TGD) in the Yangtze River, China. The results indicated that the effect of the roughness increase counterbalanced the effect of channel incision when the flow discharge was beyond the bankfull level. The backwater effect induced by tributary inflow was the major cause of the flood stage rise in recent years. The method presented in the current study provides a useful tool for managers and engineers to obtain better insight into the driving mechanisms of flood stage changes in river reaches that are downstream of dams. These findings indicate that the flood stage may not decline or may even occasionally increase, although the cross-sectional area was enlarged by channel incision. Special attention should be given to the flood risk situation in the study reach after the TGD began operation.  相似文献   

15.
Abstract

A study on the suspended sediment transportation downstream from the Danjiangkou Reservoir in China has shown that the dynamics of suspended sediment grain size are complicated. During the period when the reservoir was used for flood retention, the suspended sediment median size decreased gradually; after entering the period when the reservoir was used for water storage, the median size started to increase, reaching a maximum, and then decreased again. These variations correspond to different stages of channel adjustment. At the stage with dominant downcutting, most of the downstream reservoir sediment comes from bed downcutting, and thus the suspended sediment median size becomes coarser and coarser; at the succeeding stage with dominant channel widening, a majority of the suspended sediment comes from bank erosion, and so its median size becomes finer. This phenomenon can be regarded as a reflection of the complex response of channel adjustment in the characteristics of suspended sediment transportation downstream from a reservoir.  相似文献   

16.
I. INTRODUCTIONThe Yellow River is a heavily sediment--laden river. The sediment load of the Yellow River ranks the first in the world while its annual runoff is only of medium size. Toharness the river, it is necessary to build reservoirs for regulating runoff to meet the demands of economic development. Since the founding of PRC in 1949, I S4 large and medium--sized reservoirs have been constructed on the main stem and the tributaries with atotal storage capacity of 84.5 billion m3.…  相似文献   

17.
The frequency of floods has been projected to increase across Europe in the coming decades due to extreme weather events. However, our understanding of how flood frequency is affected by geomorphic changes in river channel capacity remains limited. This paper seeks to quantify the influence of trends in channel capacity on flood hazards. Measuring and predicting the effect of geomorphic changes on freshwater flooding is essential to mitigate the potential effects of major floods through informed planning and response. Hydrometric records from 41 stream gauging stations were used to measure trends in the flood stage (i.e. water surface elevation) frequency above the 1% annual exceedance threshold. The hydrologic and geomorphic components of flood hazard were quantified separately to determine their contribution to the total trend in flood stage frequency. Trends in cross‐sectional flow area and mean flow velocity were also investigated at the same flood stage threshold. Results showed that a 10% decrease (or increase) in the channel capacity would result in an increase (or decrease) in the flood frequency of approximately 1.5 days per year on average across these 41 sites. Widespread increases in the flood hazard frequency were amplified through both hydrologic and geomorphic effects. These findings suggest that overlooking the potential influence of changing channel capacity on flooding may be hazardous. Better understanding and quantifying the influence of geomorphic trends on flood hazard will provide key insight for managers and engineers into the driving mechanisms of fluvial flooding over relatively short timescales. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.

The assessment of flood risk under climate change impacts is necessary for sustainable flood management strategies at national level. Referring to the aforesaid statement, this research aims to evaluate the potential impacts of climate change on reservoir operations in the Huong River Basin, Vietnam. To enable further representation of climate change impacts, the HadGEM3-RA Regional Climate Model (RCM) under Representative Concentration Pathways (RCPs) 8.5 climate change scenario was used in this study. For assessing the level of flood risk posed to the study area, a coupled HEC-HMS hydrologic model and HEC-RAS hydrodynamic model was used to represent the behaviour of flow regimes under climate change impacts in the Huong River Basin. The key results demonstrated that the mean temperature and mean annual rainfall would be increased in the future from 0.2–0.8°C, and 4.8–6.0%, respectively. Consequently, the mean annual runoff and mean water level would also be increased from 10–30%, and 0.1–0.3 m above mean sea level, respectively. Moreover, the proposed reservoir operation rules corresponding to flood control warning stages was also derived to reduce peak flows downstream during the rainy season. Finally, the main findings of this study can be a good example for future planning of flood control reservoir systems in Vietnam.

  相似文献   

19.
长时间序列水沙数据分析有助于科学评价流域尺度水土保持减流减沙效应,为科学开展区域水土保持成效评估提供实现路径.本文选取南方红壤区水土保持工程最为集中、持续时间最长的典型流域——平江流域,基于1975-2014年的逐日降水量、流量、含沙量数据,综合应用预置白M-K检验法、Theil-Sen趋势度估计法、Pettitt检验...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号