首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pores in shales are mainly on a nanometer scale, and the pore-size distribution is vital with regard to the preservation and exploitation of shale gas. This study focuses on the organic-rich lower Cambrian black shale in the Upper Yangtze Platform, South China and investigates their TOC, mineralogical composition and nanopore structure. Low-pressure N2 and CO2 adsorption experiments were conducted at 77.35 K and 273.15 K, respectively, and the nanopore structures were characterised by the modified Brunauer–Emmett–Teller, Dubinin–Radushkevich, t-plot, Barrett–Joyner–Halenda and density functional theory (DFT) methods. The results indicate the following. (1) The lower Cambrian shale has a high TOC content (1.77–7.23 wt%) and a high quartz content (27.7–51.6 vol%). The total specific surface area varies from 12.02 to 28.87 m2/g. Both the total specific surface area and quartz content are positively associated with the TOC content. (2) Shale samples with a higher TOC content have a greater number of micropores, resulting in more complicated nanopore structures. Micropore volumes/surface areas and non-micropore surface areas all increase with increasing TOC content, indicating that TOC is the key factor determining the nanopore structure of the lower Cambrian shale. (3) A combination of N2 and CO2 adsorption provides the most suitable detection range (~0.3–60 nm) and is both highly reliable and accurate with regard to nanopore structure characterisation.  相似文献   

2.
3.
In this article, we describe the geological features of the Ediacaran (upper Sinian), lower Cambrian and lower Silurian shale intervals in the Upper Yangtze Platform, South China, and report on the gas potential of 53 samples from these major marine shale formations. Reflected light microscopy, total organic carbon (TOC) measurement, Rock-Eval, carbon isotope ratio analysis, thermovaporization gas chromatography (Tvap-GC), and open pyrolysis gas chromatography (open py-GC) were used to characterize the organic matter. Measured TOC in this research is normally >2% and averages 5%. TOC contents are roughly positively correlated with increasing geological age, i.e. lower Silurian shales exhibit generally lower TOC contents than lower Cambrian shales, which in turn commonly have lower TOC contents than Ediacaran shales. Kerogen has evolved to the metagenesis stage, which was demonstrated by the abundant pyrobitumen on microphotographs, the high calculated vitrinite reflectance (Ro = 3%) via bitumen reflectance (Rb), as well as δ13 C of gas (methane) inclusions. Pyrolysates from Tvap-GC and open py-GC are quantitatively low and only light hydrocarbons were detected. The lower Silurian shale generally exhibits higher generation of hydrocarbon than the lower Cambrian and Ediacaran shale. Cooles’ method and Claypool’s equations were used to reconstruct the original TOC and Rock-Eval parameters of these overmature samples. Excellent original hydrocarbon generation was revealed in that the original TOC (TOCo) is between 5% and 23%, and original S1+S2 (S1o+S2o) is ranging from 29 to 215 mg HC/g rock.  相似文献   

4.
The Upper Ordovician Wufeng-Lower Silurian Longmaxi and the Lower Cambrian Qiongzhusi shales are the major targets for shale gas exploration and development in China. Although the two organic-rich shales share similar distribution ranges and thicknesses, they exhibit substantially different exploration and development results. This work analyzed the nanopore structures of the shale reservoirs in this region. Pore development of 51 shale samples collected from various formations and locations was compared using the petromineralogical, geochemical, structural geological and reservoir geological methods. The results indicate that the reservoir space in these shales is dominated by organic pores and the total pore volume of micropores, mesopores, macropores in different tectonic areas and formations show different trends with the increase of TOC. It is suggested that organic pores of shale can be well preserved in areas with simple structure and suitable preservation conditions, and the shale with smaller maximum ancient burial depth and later hydrocarbon-generation-end-time is also more conducive to pore preservation. Organic pore evolution models are established, and they are as follows: ① Organic matter pore development stage, ② Early stage of organic matter pore destruction, and ③ late stage of organic matter pore destruction. The areas conducive to pore development are favorable for shale gas development. Research results can effectively guide the optimization and evaluation of favorable areas of shale gas.  相似文献   

5.
Middle–Lower Jurassic terrigenous shales constitute a set of significant hydrocarbon source rocks in the Kuqa Depression of the Tarim Basin. Until recently, however, most investigations regarding this set of hydrocarbon source rocks have mainly focused on conventional oil and gas reservoirs, and little research has been conducted on the formation conditions of shale gases. This research, which is based on core samples from nine wells in the Kuqa Depression, investigated the geological, geochemical, mineralogical and porosity characteristics of the shales, analysed the geological and geochemical conditions for the formation of shale gases, and evaluated the shale gas resource potential. The results show that the distribution of the Middle–Lower Jurassic shales is broad, with thicknesses reaching up to 300–500 km. The total organic carbon (TOC) content is relatively high, ranging from 0.2 to 13.5 wt% with a mean of 2.7 wt%. The remaining hydrocarbon generative potential is between 0.1 and 22.34 mg/g, with a large range of variation and a mean value of 3.98 mg/g. It is dominated by type III kerogen with the presence of minor type II1 kerogen. The vitrinite reflectance values range from 0.517 to 1.572%, indicating the shales are in a mature or highly mature stage. The shales are mainly composed of quartz (19–76%), clay (18–68%) and plagioclase (1–10%) with mean contents of 50.36 wt%, 41.42 wt%, and 3.37 wt%, respectively. The pore spaces are completely dominated by primary porosity, secondary porosity and microfractures. The porosity is less than 10% and is mainly between 0.5 and 4%, and the permeability is generally less than 0.1 mD. These results classify the shale as a low-porosity and ultra-low-permeability reservoir. The porosity has no obvious correlation with the brittle or clay mineral contents, but it is significantly positively correlated with the TOC content. The maximum adsorbed gas content is between 0.82 and 8.52 m3/t with a mean of 3.37 m3/t. In general, the shale gas adsorption content increases with increasing the TOC content, especially when the TOC content is greater than 1.0%. The volumetric method, used to calculate the geological resources of the Middle–Lower Jurassic shales in the Kuqa Depression, shows that the geological resources of the Middle and Lower Jurassic shales reach 667.681 and 988.115 × 109 m3, respectively with good conditions for the formation of shale gas and good prospects for shale gas exploration.  相似文献   

6.
四川盆地南部(简称“川南”) 广泛发育多套下古生界海相泥页岩层系,其中龙马溪组为该区一套优良的烃源岩 层,具备优越的页岩气形成条件。根据长宁和威远页岩气探区的钻井岩心、露头样品分析资料,对川南地区下志留统龙马 溪组页岩有机质特征及其对页岩气富集规律的影响进行研究后表明,川南龙马溪组页岩的有机质类型为Ⅰ~Ⅱ1型,有机 碳含量较高(平均为2.52%),热演化程度为2.0%~3.8%,达到了高-过成熟阶段;研究区的有机质特征对页岩气的富集具 有重要的影响,干酪根的类型决定着甲烷吸附能力强弱,有机质丰度和有机演化程度决定了页岩的生气量和含气量,同时 高TOC和Ro也能促进有机质微孔隙的发育,为页岩气的富集提供更多有利空间。因此,研究认为川南地区龙马溪组有机质 特征较好,有利于页岩气的富集成藏。  相似文献   

7.
Comprehensive quantitative evaluation of shale gas content and the controlling factors in different occurrence states is of great significance for accurately assessing gas-bearing capacity and providing effective well-production strategies. A total of 122 core samples from well JY-A in the Fuling shale gas field were studied to reveal the characteristics of S_1 l shale,15 of which were selected to further predict the shale gas content in different occurrence states, which are dependent on geological factors in the thermal evolution process. Geological parameters were researched by a number of laboratory programs, and the factors influential in controlling shale gas content were extracted by both PCA and GRA methods and prediction models were confirmed by the BE method using SPSS software. Results reveal that the adsorbed gas content is mainly controlled by TOC, Ro, SSA, PD and pyrite content, and the free gas content is mainly controlled by S_2, quartz content, gas saturation and formation pressure for S_1 l in well JY-A. Three methods, including the on-site gas desorption method, the empirical formula method, and the multiple regression analysis method were used in combination to evaluate the shale gas capacity of well JY-A, all of which show that the overall shale gas content of well JY-A is in the range of 2.0–5.0 m~3/t and that the free gas ratio is about 50%, lower than that of well JY-1. Cause analysis further confirms the tectonics and preservation conditions of S_1 l in the geological processes, especially the influence of eastern boundary faults on well JY-A, as the fundamental reasons for the differences in shale gas enrichment in the Jiaoshiba area.  相似文献   

8.
The Jurassic shale is an important source rock for the found gas reservoirs in the Tarim Basin, northwestern China, but has never been researched for shale gas potential. The geological effects on methane adsorption capacity for the gas shale have been investigated in this paper through the geochemical, mineralogical and adsorption analyses on samples from wells and sections. The methane adsorption capacity ranges from 0.58 to 16.57 cm3/g, and the total organic carbon (TOC) content is between 0.5 and 13.5 wt%. The organic maturity measured by Tmax is between 410 °C (immature) and 499 °C (overmature). The methane adsorption capacity of the Jurassic continental shale in the Tarim Basin is affected by many geological factors, including the TOC content, organic matter maturity, mineral composition, surface area and pore size distribution. The TOC content is the most significant factor with a positive effect on the adsorption capacity of the Jurassic shale, and the influence varies piecewise according to the TOC content. The TOC content contributes much more to the methane adsorption capacity of organic‐rich shale samples (TOC content > 0.7 wt%) than to the organic‐lean samples (TOC content < 0.7 wt%). The mineral composition is a secondary factor, and the abundance of clay content has a positive effect on the methane adsorption capacity despite its relatively weaker adsorption ability compared to TOC. The pore size distribution has different effects on surface area and pore volume. Mesopores and micropores provide the major surface area and are mainly derived from TOC and illite, which has a positive influence on the adsorption capacity. Mesopores and macropores offer the major pore volume and are mainly formed by illite, which is the major contributor for pore volume rather than surface area. In addition, the TOC and illite contents of the Jurassic shale in the Tarim Basin are closely related to the origin, maturity and diagenesis evolution of the shale: (1) both TOC and illite content variations are related to the different provenances and depositional environments of shale; (2) the decrease of TOC content with increasing maturity is also partly attributed to hydrocarbon generation; and (3) the increase of illite content with increasing maturity is due to illitization in the diagenesis of shale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
针对四川盆地长宁—威远页岩气示范区志留系龙马溪组泥页岩吸附气量大(70%~80%)的特性,对该页岩气区11口井龙马溪组优质页岩段的岩心样品作X射线衍射分析、扫描电镜和等温吸附分析测试,结合大量泥页岩含气量实测数据,统计分析及评价表明:研究区地层因素中,生烃条件如总有机碳含量(0.17%~4.3%)、有机质类型(Ⅰ、Ⅱ1型)和成熟度(2.4%~3.0%),以及储层条件如矿物成分、孔隙体积(3%~6%)、孔隙结构(中孔为主)和湿度,主要是通过改变页岩气生成量和吸附活性表面的大小而产生影响;外部因素如温度和压力主要是通过改变气体分子的活化能和结合能而对泥页岩吸附能力产生一定的影响。  相似文献   

10.
本研究设计并制造了一套可在真空条件下粉碎页岩样品并释放其中残留气的装置,该装置的粉碎系统与富集模块和气相色谱联用后,可实现残留气的有机、无机气体化学成分定量分析;同时,封存在玻璃管内的另一部分残留气可进一步开展稳定碳同位素分析,从而获得页岩残留气完整的化学成分和碳同位素组成特征。利用混合标准气体标定该装置,烃类和无机气体浓度与气相色谱响应相关系数达0.999,表明仪器状态稳定,残留气定量数据准确可信。使用不同露头页岩样品(贵州习水县下志留统龙马溪组、南京幕府山下寒武统牛蹄塘组和延安上三叠统延长组)检测该装置,页岩残留气量和碳同位素测试结果平行性良好,表明该装置系统可用于分析页岩残留气。对川南钻井龙马溪组样品残留气的测试结果表明:龙马溪组页岩残留气化学成分主要为CO2和N2等无机气体,烃类组分以CH4为主,C2H6及更高碳数烃类含量极少;其甲烷碳同位素值为-38.1‰~-33.9‰,均值为-35.8‰,该甲烷碳同位素值与已发表的同地区页岩生产气非常接近,表明了二者的同源性,川南页岩气田中的页岩气来源于龙马溪组,符合页岩气的严格定义。此外,本研究还对宜昌地区浅钻五峰组和龙马溪组页岩开展了残留气分析,结果表明:残留烃气量与总有机碳质量分数、碳酸盐岩质量分数成呈弱正相关关系,与DFT(密度泛函理论)比表面积和BJH(Barrett-Joyner-Halenda)孔体积呈负相关关系,分析认为残留气并不是简单地以吸附或游离形式存在,而是封存于封闭孔中的极少量烃类和无机气体。  相似文献   

11.
昭通国家级页岩气示范区黄金坝气田是继礁石坝和长宁—威远之后中国又一个在页岩气勘探、开发领域实现重大突破的地区,为了系统地展示黄金坝气田页岩气资源富集的储层条件,为未来的勘探工作提供参考,以五峰—龙马溪组页岩气储层为研究对象,从区域地质条件、储层岩石学、物性和地球化学4个方面对该页岩气储层进行了综合研究。结果表明稳定的区域构造和良好的顶底板条件是黄金坝地区页岩气资源富集的关键,良好的保存条件使储层维持了较高的压力(压力系数1);较高的孔隙度(平均4%)和TOC含量(目的层2%)提供了良好的储集空间,使储层具有较高的含气量(1.35~3.48 cm3/g,平均2.50 cm3/g);天然气地球化学数据表明,区内天然气主要成分为CH4(97%),其次还含有少量的C2H6、C3H8和CO2;天然气同位素数据表明烃类C同位素组成发生了倒转,表明储层具有良好的封闭性。但储层孔隙系统较为复杂,且非均质性极强,从而导致渗透率较低,在储层改造施工过程中应予以充分考虑。总体上,黄金坝气田具有较好的开发前景,生产测试表明,区内直井压裂产量为0.5×104~3.5×104m3/d/井,水平井压裂产量可达12×104~40×104m3/d/井。  相似文献   

12.
近年来上扬子地区下志留统龙马溪组页岩气勘探开发取得重大突破,属于同一大地构造单元的下扬子地区,其页岩气资源潜力和勘探前景问题日益受到关注。在下扬子地区与龙马溪组层位相当的高家边组,由于地表风化程度较强和出露情况较差等因素,其黑色页岩的分布范围和沉积厚度不甚清楚,直接影响了对下扬子地区页岩气勘探潜力的评价和预测。为此本次研究选择在江苏省南京汤山和句容仑山两地实施黑色页岩浅井钻探。基于5口钻井的岩芯提取,从黑色页岩厚度、地化、岩矿和生物地层学等多个方面揭示了下扬子地区五峰组—高家边组黑色页岩基本特征。分析结果表明:该地区黑色页岩与上扬子焦石坝地区有很好的对比性,至少有4个笔石化石带相互一致。五峰组—高家边组黑色笔石页岩厚度在汤山地区大于80.5 m,仑山地区至少39.5 m,有机质丰度较高,多数TOC含量1.2%~4%,显示了较强的生烃能力。镜质体反射率(Ro)主要在1.5%~2.6%之间,热演化程度以高—过成熟为主,进入生气阶段。黑色页岩有机质以干酪根Ⅰ、Ⅱ1型为主。因此,认为下扬子地区下志留统黑色页岩具有良好的页岩气资源潜力。  相似文献   

13.
Frontier exploration in the Kuqa Depression, western China, has identified the continuous tight-sand gas accumulation in the Lower Cretaceous and Lower Jurassic as a major unconventional gas pool. However, assessment of the shale gas resource in the Kuqa Depression is new. The shale succession in the Middle–Upper Triassic comprises the Taliqike Formation (T3t), the Huangshanjie Formation (T3h) and the middle–upper Karamay Formation (T2–3k), with an average accumulated thickness of 260 m. The high-quality shale is dominated by type III kerogen with high maturity and an average original total organic carbon (TOC) of about 2.68 wt%. An improved hydrocarbon generation and expulsion model was applied to this self-contained source–reservoir system to reveal the gas generation and expulsion (intensity, efficiency and volume) characteristics of Middle–Upper Triassic source rocks. The maximum volume of shale gas in the source rocks was obtained by determining the difference between generation and expulsion volumes. The results indicate that source rocks reached the hydrocarbon expulsion threshold of 1.1% VR and the hydrocarbon generation and expulsion reached their peak at 1.0% VR and 1.28% VR, with the maximum rate of 56 mg HC/0.1% TOC and 62.8 mg HC/0.1% TOC, respectively. The volumes of gas generation and expulsion from Middle–Upper Triassic source rocks were 12.02 × 1012 m3 and 5.98 × 1012 m3, respectively, with the residual volume of 6.04 × 1012 m3, giving an average gas expulsion efficiency of 44.38% and retention efficiency of 55.62%. Based on the gas generation and expulsion characteristics, the predicted shale gas potential volume is 6.04 × 1012 m3, indicating a significant shale gas resource in the Middle–Upper Triassic in the eastern Kuqa Depression.  相似文献   

14.
富有机质黑色页岩的孔隙结构控制了页岩气的赋存状态和储气量。中国南方地区下志留统是页岩气发育的最重要层位之一。为研究页岩的孔隙特征及其主控因素,对以下志留统龙马溪组页岩气为勘探目标的渝页1井的岩心进行系统的采样,并进行了比表面和孔径、有机质成熟度(Ro)、显微组分、总有机碳(TOC)含量、全岩X射线衍射和粘土矿物含量等一系列分析测试。结果显示,黑色页岩的孔径主要分布于2~5 nm,即以中孔隙为主;中孔体积占总体积的70%左右,微孔体积和宏孔体积分别占10%和20%左右。页岩孔隙结构(微孔体积、中孔体积和宏孔体积)和组成(碎屑矿物成分、粘土矿物成分、TOC和Ro)的相关关系分析表明:粘土矿物对微孔体积和中孔体积都具有控制作用,并且对中孔体积的控制作用更加显著;陆源碎屑含量的增加有利于宏孔体积的增加;有机质成熟度较高时和高成熟度有机碳含量都与宏孔隙体积呈正相关,这可能与高成熟有机质中nm级显微裂缝的发育导致宏孔体积增加有关。  相似文献   

15.
Knowledge of pore structure and adsorption capacity provides guidance for better studying the origin, hydrocarbon distribution, and productivity of shale gas reservoir. In this study, pore structure characteristics of six shale core plugs with different maturity from the Lower Silurian Longmaxi formation in south China were investigated using the Rock-eval analysis, X-ray diffraction, total organic carbon (TOC) content test, and scanning electron microscope (SEM) observation. To further investigate the influence of maturity, the adsorption behavior of gas shale was experimentally measured, with the maximal pressure being 20 MPa. Rock-eval analysis indicates that Ro is 0.67~1.34%. SEM results show that organic matter (OM) pores are abundant in high-maturity shale sample. The OM pores are mainly irregular to elliptical in shape, the size is 8~100 nm. The TOC content is 0.16~4.21% and shows a positive correlation with the BET surface area. A negative relationship exists between TOC content and average pore diameter, which indicates that abundant nanometer pores are related to the OM. A noticeable characteristic in the pore size distribution curve is that the content of micropores (pore width <?2 nm) increases with the increasing TOC content. Additionally, the thermal maturity results in significant difference in methane adsorption capacity. Maximal adsorption capacity of shale samples is also lineally correlated with TOC content, which increases with maturity. This study provides a quantitative understanding of how maturity affects pore structure and adsorption behavior of shale gas reservoir.  相似文献   

16.
李博  于炳松  史淼 《矿物岩石》2019,39(1):92-101
黔西北下志留统五峰—龙马溪组是我国南方海相页岩气勘探的重要目的层,其孔隙类型除了与常规储层相似的粒间孔、粒内孔、溶蚀孔等孔隙外,还发育了大量的有机质孔。近年来,越来越多的研究发现,页岩气储层中有机质孔占有十分重要的地位。本次研究中发现页岩岩石样品中占主要体积的孔隙类型是中孔(2 nm~50 nm)占比44.16%~82.39%,其次是微孔(<2 nm)占比8.57%~41.23%,宏孔(>50 nm)最少,占比4.02%~16.41%;从场发射扫描电子显微镜照片中可以看出,许多宏孔、中孔有明显的挤压变形现象,说明岩石经历了较长时间的压实作用,并可能伴随着部分孔隙被其他矿物充填的过程。由回归分析可以看出:总有机碳(TOC)含量强烈影响微孔和中孔的发育和演化,尤其是对中孔的影响明显,TOC与这两种孔隙体积之间都存在着明显的正相关关系;石英对中孔发育有一定影响,但不如前者明显,同时石英与微孔之间存在一定的负相关关系;黏土矿物与中孔发育之间存在负相关关系;Ro与微孔、中孔占总孔隙体积的百分比有着良好的正相关关系,而与宏孔占总孔隙百分比有着良好的负相关关系。  相似文献   

17.
The Upper Ordovician-Lower Silurian Longmaxi Shale in the Upper Yangtze block represents one of the most important shale gas plays in China. The shale composition, porosity, organic thermal maturity, and methane sorption were investigated at the Qilongcun section in the Dingshan area, southeastern Sichuan Basin. The results show that the Upper Ordovician-Lower Silurian Longmaxi Shale contains: (1) sapropelic I organic matter; (2) a 40-m thick bedded sequence where total organic carbon (TOC) content is > 2%; (3) a 30-m thick layer at the base of the Longmaxi Shale with a brittle mineral content higher than 50%; and (4) a mean methane adsorption capacity of 1.80 cm3/g (7 MPa pressure). A positive correlation between TOC and sorbed gas indicates that organic matter content exerts an important control on methane storage capacity. Based on the analysis of the shale reservoir characteristics, the lower member of the Longmaxi Shale can thus be considered a favorable stratum for shale gas exploration and exploitation. It has similar reservoir characteristics with the Longmaxi Shale in the Jiaoshiba area tested with a high-yield industrial gas flow. However, based on tectonic analysis, differences in the level of industrial gas flow between the low-yield study area and the high-yield Jiaoshiba area may result from different tectonic preservation conditions. Evidence from these studies indicates the shale gas potential of the Longmaxi Shale is constrained by the reservoir and preservation conditions.  相似文献   

18.
The well-developed continental shale sequences in the Western Sichuan Depression are characterised by extremely low porosity and permeability, complex lithologies and strong lateral facies changes. The overall lack of proper characterisation of the shale properties has restricted gas exploration and development in the region. In this study, shales from the fifth member of the Xujiahe Formation of the Upper Triassic (T3x5) are comprehensively characterised in terms of their organic geochemistry, mineral composition, microscopic pore structure and gas content. In addition, the influence of various geological factors on the adsorbed gas content is investigated. We proposed a new model for predicting the adsorption gas content of continental shale. The T3x5 shale sequence is found to be rich in organic matter but with variable mineral compositions, pore types and reservoir physical properties. The porosity and permeability of shales are better than those of siltstones and fine sandstones interbedded with the shale under an overall densification background. Mesopores (2–50 nm) are common in the shale sequence, followed by micropores and then macropores. The gas-adsorption capacity of organic-rich shales increases with increasing TOC and clay-mineral contents, maturity and pressure, but decreases with increasing quartz content, carbonate minerals and temperature. The gas-adsorption capacity can thus be expressed as a function of organic matter, clay-mineral content, temperature and pressure. The calculated results are in good agreement with the experiment results and indicate that adsorption gas in the studied shales accounts for 78.9% of the total gas content.  相似文献   

19.
The accumulation and productivity of shale gas are mainly controlled by the characteristics of shale reservoirs;study of these characteristics forms the basis for the shale gas exploitation of the Lower Cambrian Niutitang Formation(Fm),Southern China.In this study,core observation and lithology study were conducted along with X-ray diffraction(XRD)and electronic scanning microscopy(SEM)examinations and liquid nitrogen(N_2)adsorption/desorption and CH_4 isothermal adsorption experiments for several exploration wells in northwestern Hunan Province,China.The results show that one or two intervals with high-quality source rocks(TOC2 wt%)were deposited in the deep-shelf facies.The source rocks,which were mainly composed of carbonaceous shales and siliceous shales,had high quartz contents(40 wt%)and low clay mineral(30 wt%,mainly illites)and carbonate mineral(20 wt%)contents.The SEM observations and liquid nitrogen(N_2)adsorption/desorption experiments showed that the shale is tight,and nanoscale pores and microscale fractures are well developed.BJH volume(V_(BJH))of shale ranged from 2.144×10~(-3) to 20.07×10~(-3) cm~3/g,with an average of11.752×10~(-3) cm~3/g.Pores mainly consisted of opened and interconnected mesopores(2–50 nm in diameter)or macropores(50 nm in diameter).The shale reservoir has strong adsorption capacity for CH_4.The Langmuir volume(V_L)varied from1.63 to 7.39 cm~3/g,with an average of 3.95 cm~3/g.The characteristics of shale reservoir are controlled by several factors:(1)A deep muddy continental shelf is the most favorable environment for the development of shale reservoirs,which is controlled by the development of basic materials.(2)The storage capacity of the shale reservoir is positively related to the TOC contents and plastic minerals and negatively related to cement minerals.(3)High maturity or overmaturity leads to the growth of organic pores and microfractures,thereby improving the reservoir storage capacity.It can be deduced that the high percentage of residual gas in Niutitang Fm results from the strong reservoir storage capacity of adsorbed gas.Two layers of sweet spots with strong storage capacity of free gas,and they are characterized by the relatively high TOCcontents ranging from 4 wt%to 8 wt%.  相似文献   

20.
To reveal the effect of shale reservoir characteristics on the movability of shale oil and its action mechanism in the lower third member of the Shahejie Formation(Es3l), samples with different features were selected and analyzed using N2 adsorption, high-pressure mercury injection capillary pressure(MICP), nuclear magnetic resonance(NMR), high-speed centrifugation, and displacement image techniques. The results show that shale pore structure characteristics control shale oil movability directly. Movable oil saturation has a positive relationship with pore volume for radius > 2 μm, as larger pores often have higher movable oil saturation, indicating that movable oil is present in relatively larger pores. The main reasons for this are as follows. The relatively smaller pores often have oil-wetting properties because of organic matter, which has an unfavorable effect on the flow of oil, while the relatively larger pores are often wetted by water, which is helpful to shale oil movability. The rich surface provided by the relatively smaller pores is beneficial to the adsorption of immovable oil. Meanwhile, the relatively larger pores create significant pore volume for movable oil. Moreover, the larger pores often have good pore connectivity. Pores and fractures are interconnected to form a complex fracture network, which provides a good permeability channel for shale oil flow. The smaller pores are mostly distributed separately;thus, they are not conducive to the flow of shale oil. The mineral composition and fabric macroscopically affect the movability of shale oil. Calcite plays an active role in shale oil movability by increasing the brittleness of shale and is more likely to form micro-cracks under the same stress background. Clay does not utilize shale oil flow because of its large specific surface area and its block effect. The bedding structure increases the large-scale storage space and improves the connectivity of pores at different scales, which is conducive to the movability of shale oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号