首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Within the 2500 km stretch of the Himalayas, a narrow window between longitudes 88.185°E and 88.936°E in the frontal Himalayas in North Bengal, crisscrossed by several active fault traces, presents an interesting region for crustal deformation study. We have estimated velocities of 8 GPS stations located in this area and the accumulating strain rate by two different methods. A total shortening of 11.1 ±1.5 mm yr−1 is occurring across a set of four E–W running faults: Gorubathan, Matiali, Chalsa and Baradighi. The strain rate becomes higher in the NE part of the network, reaching −(0.25 ± 0.12) μstrain yr−1 with azimuth 21°. A statistically significant extension of 10.9 ± 1.6 mm yr−1 is estimated across the Gish transverse fault with a maximum strain rate of 0.36 ± 0.08 μstrain yr−1 with azimuth 103°. The accumulating strain will be probably released through future earthquakes.  相似文献   

2.
The Aleutian island arc collides with the Kuril–Kamchatka arc in the area of the Cape Kamchatka peninsula. Field studies of neotectonic structures and apatite fission track analysis provide evidence for crustal plate shortening onshore the Cape Kamchatka peninsula. Tectonic blocks show differential mean exhumation rates varying from 0.18 ± 0.04 mm yr−1 in the north up to 1.2 ± 0.18 mm yr−1 in the south of the peninsula. A few of the fission track length data point to an unsteady exhumation rate. The blocks are separated by major dextral fault zones splaying off from Aleutian island arc fault zones. Across the western segment of the North American–Pacific Plate boundary the strain is partitioned along the fault zones and increases from north to south. Results from this study suggest that indentation and accretion of island arc fragments has recently occurred in the southeastern part of the Cape Kamchatka peninsula.  相似文献   

3.
We report in-situ produced 10Be data from the Gorge du Diable (French Western Alps) to date and quantify bedrock gorge incision into a glacial hanging valley. We sampled gorge sidewalls and the active channel bed to derive both long-term and present-day incision rates. 10Be ages of sidewall profiles reveal rapid incision through the late Holocene (ca 5 ka) at rates ranging from 6.5 to 13 mm yr−1. Present-day incision rates are significantly lower and vary from 0.5 to 3 mm yr−1 within the gorge. Our data imply either delayed initiation of gorge incision after final ice retreat from internal Alpine valleys at ca 12 ka, or post-glacial surface reburial of the gorge. Our results suggest that fluvial incision rates >1 cm yr−1 into crystalline bedrock may be encountered in transient landscape features induced by glacial-interglacial transitions.  相似文献   

4.
Glacial landforms on the Barton and Weaver peninsulas of King George Island in the South Shetland Islands, West Antarctica were mapped and dated using terrestrial cosmogenic 36Cl methods to provide the first quantitative terrestrial record for late Quaternary deglaciation in the South Shetland Islands. 36Cl ages on glacially eroded and striated bedrock surfaces range from 15.5±2.5 kyr to 1.0±0.7 kyr. The 36Cl ages are younger with decreasing altitude, indicating progressive downwasting of the southwestern part of the Collins Ice Cap at a rate of ∼12 mm yr−1 since 15.5±2.5 kyr ago, supporting the previously published marine records for the timing and estimate of the rate of deglaciation in this region.  相似文献   

5.
A displacement history and slip rates were determined for the Reelfoot fault in the New Madrid seismic zone from a seismic reflection profile and trench data. Based on calculations from the seismic reflection line the average slip rate over the last 80 million years is 0.0009 mm year−1. Slip rate during the Late Cretaceous was 0.0007 mm year−1, 0.002 mm year−1 during the Paleocene Midway Group, 0.001 mm year−1 during Paleocene–Eocene Wilcox Formation time, 0.0003 mm year−1 during the post-Wilcox/pre-Holocene period, and a Holocene slip rate of 1.8 mm year−1. Based on trench data, slip rate on the Reelfoot fault has been 4.4 mm year−1 over the last 2400 years and a maximum of 6.2 mm year−1 during the two most recent earthquake cycles between AD 900 and AD 1812. The Holocene slip rate is at least four orders of magnitude higher than the average Late Cretaceous and Cenozoic slip rates for the Reelfoot fault. It would appear that there has been a Quaternary change in the stress field in the central United States or the Reelfoot fault is experiencing a short-lived burst of seismic activity.  相似文献   

6.
The eastern flank of Mt. Etna volcano rests on Pleistocene marine sediments, which unconformably cover the Apenninic–Maghrebian Chain units. A quantitative biostratigraphic analysis was carried out based on the calcareous nannofossil content of the Pleistocene deposits outcropping along the S and NE periphery of the volcano. Sediments were constrained to the MNN19e and MNN19f biozones, deposited from 1.2 to 0.589 Ma. According to the depth of deposition and the present altitude of the Pleistocene succession, uplift rates are estimated between 1.1 and 1.7 mm yr−1 for the northeastern sector of the Etna edifice, and between 0.36 and 0.61 mm yr−1 for the southern one. This inhomogeneous long-term uplift rate affecting the Etna region, probably results from a buried thrust below the northern flank of Etna, which is related to the post-Tortonian geodynamic evolution of NE Sicily.  相似文献   

7.
ABSTRACT Data are presented about modern sediment discharge of the Swiss rivers and related to the size of catchments. The information reveals that the Central Alps have experienced denudation rates of ≈0.15 mm yr−1 in the foreland, and ≈0.5 mm yr−1 in the Alpine core. Mapping, however, indicates that modern erosion only affects 30–50% of the Alpine surface, and that fluvial and associated hillslope processes have focused erosion in 50–200-m-deep valleys. These valleys are incised into the glacial surface. If this limited spatial extent of erosion is considered, then effective erosion rates are significantly higher than average denudation rates. These effective rates equal or locally exceed modern rates of rock uplift. This implies that the modification of erosional processes related to the Pleistocene/Holocene climate change has resulted in an increase in the relief at a local scale. At a drainage basin scale, however, the relief appears not to change at present.  相似文献   

8.
Apatite fission track dating from a central transect in the Argentera massif (southernmost External Crystalline Massif = ECM) yielded ages between 8.05 ± 0.6 and 2.4 ± 0.2 Myr, with a positive age/altitude correlation above 3 Ma, 1200 m. Recognising a thermal peak at c . 250°C, 33 Ma, based on stratigraphic, metamorphic and 39Ar/40Ar data, the present results suggest a slow cooling rate (8–5°C) for the Argentera massif during the Oligocene–early Pliocene. This rate compares with that from the Pelvoux massif, but contrasts with those observed in the northern ECM (Mont-Blanc and Aar: up to 14°C Myr−1) for the same time interval. This can be related to the different location of the ECM within the collided European margin. At about 3–4 Ma, the denudation rate would have increased up to c . 1 mm yr−1 in the Argentera massif, reaching the same value as in the Belledonne and northern ECM, likely a consequence of Penninic thrust inversion.  相似文献   

9.
ABSTRACT Distribution patterns of benthic foraminiferal faunas from ODP Leg 170 Sites 1041 and 1042 show that the Costa Rican convergent margin subsided from coastal to abyssal depth from Middle Miocene to Present. This favours the model of a margin undergoing active subduction erosion. We propose that subduction erosion leads to the removal of material from the base of the forearc wedge and, as a consequence, to progressive subsidence of the forearc. A mean subsidence rate is estimated to be approximately 0.4 mm yr−1.  相似文献   

10.
The NW–SE-trending Dinar fault is an active normal fault upon which the 1 October 1995 earthquake ( M  = 6.1) occurred. The 1995 earthquake resulted in a c. 10-km-long surface rupture with the south side down-thrown by 50 cm. Investigations of two trench sites perpendicular to the 1995 rupture suggest at least two prior large earthquakes in historical times. Radiocarbon dates and historical records constrain the age of events between 1500 bc and ad 53, event 2 possibly coinciding with the earthquake that damaged Dinar (the ancient city of Apamea Kibotos) in c. 80 bc and event 1 around 1500 bc. Surface displacements determined for events 1 and 2, compared to the 1995 surface faulting, indicate that M > 6.8 earthquakes were associated with each rupture. Using the total displacement in trenches, a slip rate of about 1 mm yr−1 can be estimated for the Dinar fault. Observations suggest that the return period for large earthquakes in the Dinar area is about 1500–2000 years.  相似文献   

11.
At the eastern margin of the Bohemian Massif (Variscan belt of Central Europe), large bodies of felsic granulite preserve mineral assemblages and structures developed during the early stages of exhumation of the orogenic lower continental crust within the Moldanubian orogenic root. The development of an early steep fabric is associated with east–west-oriented compression and vertical extrusion of the high-grade rocks into higher crustal levels. The high-pressure mineral assemblage Grt-Ky-Kfs-Pl-Qtz-Liq corresponds to metamorphic pressures of ∼18 kbar at ∼850 °C, which are minimum estimates, whereas crystallization of biotite occurred at 13 kbar and ∼790 °C during decompression with slight cooling. The late stages of the granulite exhumation were associated with lateral spreading of associated high-grade rocks over a middle crustal unit at ∼4 kbar and ∼700 °C, as estimated from accompanying cordierite-bearing gneisses. The internal structure of a contemporaneously intruded syenite is coherent with late structures developed in felsic granulites and surrounding gneisses, and the magma only locally explored the early subvertical fabric of the felsic granulite during emplacement. Consequently, the emplacement age of the syenite provides an independent constraint on the timing of the final stages of exhumation and allows calculation of exhumation and cooling rates, which for this part of the Variscan orogenic root are 2.9–3.5 mm yr−1 and 7–9.4 °C Myr−1, respectively. The final part of the temperature evolution shows very rapid cooling, which is interpreted as the result of juxtaposition of hot high-grade rocks with a cold upper-crustal lid.  相似文献   

12.
We present a marine palaeoseismology analysis of a dense network of very high resolution seismic profiles along the Gondola Fault Zone (GFZ), a right-lateral, E–W-striking, active fault system in the Adriatic foreland. This case-study aims to show how time and space variations in the activity of a dominantly right-lateral fault system can be assessed using the vertical component of slip. The GFZ has been investigated for a length of 50 km. It includes two parallel subvertical fault sets and two main anticlines. The late Middle Pleistocene to Holocene vertical component of displacement along the fault is bell-shaped, suggesting that in the long-term the fault zone acts as a single, kinematically coherent structure. Slip rates are 0–0.18 mm a−1 and vary temporally on individual segments. This variability is consistent with a model in which individual fault segments rupture independently during earthquakes with magnitudes up to 6.4 and 1.3–1.8 ka recurrence intervals.  相似文献   

13.
The development of 10–30  m wide mylonite zones at mid-crustal depths in late Proterozoic granitoids on King Island, Tasmania, was associated with pervasive infiltration of low δ18O-fluids (+5 to +7) on the scale of the shear zones. Syndeformational fluid–rock interaction produced substantial differences in mineral composition and bulk rock chemistry among several adjacent shear zones which are hosted by the same granite. In a shear zone at Cape Wickham with a normal slip component, changes in whole-rock chemistry between granite and mylonites indicate a gain of Ca, and losses of K and Na during deformation, which was nearly isovolumetric. Notable losses of K, Rb and Si occurred during partial retrograde alteration of mylonites near the western margin of this shear zone. The alteration suggests a component of up-temperature fluid flow. In contrast, 3  km to the south east, in a strike-slip shear zone at Disappointment Bay, complete albitization of plagioclase was associated with Na-gain and Ca-loss. Deformation also involved losses of Mg and Fe. Up to 60% volume gain occurred during the formation of closely spaced mesoscopic to microscopic quartz veins during mylonitization. The substantial silica-gain in this, as well as in two mylonite zones further south east, is interpreted to have been associated with upward flow of aqueous fluids along these shear zones. On the basis of a gradient reaction model, minimum time-integrated fluid-fluxes of 106  m3/m2 are estimated for the Disappointment Bay (West) Shear Zone.  相似文献   

14.
Garnet from a kinzigite, a high-grade gneiss from the central Black Forest (Germany), displays a prominent and regular retrograde diffusion zoning in Fe, Mn and particularly Mg. The Mg diffusion profiles are suitable to derive cooling rates using recent datasets for cation diffusion in garnet. This information, together with textural relationships, thermobarometry and thermochronology, is used to constrain the pressure–temperature–time history of the high-grade gneisses. The garnet–biotite thermometer indicates peak metamorphic temperatures for the garnet cores of 730–810  °C. The temperatures for the outer rims are 600–650  °C. Garnet–Al2SiO5–plagioclase–quartz (GASP) barometry, garnet–rutile–Al2SiO5–ilmenite (GRAIL) and garnet–rutile–ilmenite–plagioclase–quartz (GRIPS) barometry yield pressures from 6–9  kbar. U–Pb ages of monazite of 341±2  Ma date the low- P high- T metamorphism in the central Black Forest. A Rb/Sr biotite–whole rock pair defines a cooling age of 321±2  Ma. The two mineral ages yield a cooling rate of about 15±2  °C Ma−1. The petrologic cooling rates, with particular consideration of the f O2 conditions for modelling retrograde diffusion profiles, agree with the geochronological cooling rate. The oldest sediments overlying the crystalline basement indicate a minimum cooling rate of 10  °C Ma−1.  相似文献   

15.
This study provides new constraints on fast cooling and exhumation rates of high-pressure metamorphic rocks in young active mountain belts. Ion microprobe (SHRIMP) U–Pb analysis of zircon in a pyroxenite layer of the Cerro del Almirez ultramafic rocks (Nevado-Filábride Complex, southern Spain) gave an age of 15.0 ± 0.6 Myr (95% c.l.). Mineral inclusions demonstrate that zircon formed close to the high-pressure peak. Combined with previous fission track data, the 15 Myr age suggests high cooling (˜ 80 °C Myr−1) and exhumation (˜1.2 cm yr−1) rates for the unit. The new results indicate that both the Nevado-Filábride Complex and the overlying Alpujárride Complex, with somewhat higher ages and exhumation rates, underwent similar metamorphic evolutions at different times. This implies that the Alpujárride rocks were exhumed when the Nevado-Filábride was subducting and that the same tectonic scenario propagated from one portion of the Betic Cordilleras to another.  相似文献   

16.
Two granitoid intrusions within the Bu Khang extensional complex in central Vietnam have been dated by U–Pb and Rb–Sr geochronology. A monazite U–Pb age of 26.0 ± 0.2 (2σ) Myr was obtained for the Bu Khang pluton and 23.7 + 1.6/–1.7 Myr for monazite, allanite and zircon from the Dai Loc intrusion. These ages date crystallization of magmas previously assigned Precambrian to Devonian. Rb–Sr analyses of K-feldspar and biotite fractions from the samples yield ages of 19.8 ± 0.6 (2σ) Myr and 19.6 ± 0.5 Myr, respectively. The thermal history recorded by the different geochronometers implies an average exhumation rate of ∼2 mm yr−1 corresponding to ∼9 km of unroofing. Magmatism was either (i) induced passively by lithospheric thinning driven by changes in regional tectonic stresses, or (ii) triggered actively by an ascending plume. Tertiary exhumation and magmatism documented elsewhere in Indochina (e.g. Ailao Shan-Red River and Wang Chao shear zones) favours a regional tectonic cause for extension and granitoid magmatism in the Bu Khang complex. On the other hand, the presence of an upwelling thermal anomaly since at least 35 Ma, causing mantle melting below Indochina, is supported by shear-wave velocity variations in the mantle, and source geochemistry of both the Bu Khang plutons and the Red River belt intrusions. In either case, Tertiary exhumation of the Bu Khang complex can account for previously undocumented NE–SW-directed extension, which is required in northern Vietnam to account for structural changes related to the opening of the South China Sea.  相似文献   

17.
Timing constraints on shear zones can provide an insight into the kinematic and exhumation evolution of metamorphic belts. In the Musgrave Block, central Australia, granulite facies gneisses have been affected, to varying degrees, by mylonitic deformation, some of which attained eclogite facies. The Davenport Shear Zone is a dominant strike-slip system that formed at eclogite facies conditions ( T  ≈650  °C and P ≈12.0  kbar). Sm–Nd mineral isochrons obtained from equilibrated high-pressure assemblages, as well as 40Ar–39Ar data, show that the eclogite and greenschist facies high-strain overprints were coeval, at c .  550  Ma. Mylonitic processes do not appear to have reset the U–Pb system in zircon, but may have partially disturbed it. The thermal gradient in the Musgrave Block crust at c .  550  Ma was c .  16  °C  km−1 and at c .  535  Ma was c .  18  °C  km−1, based on P – T  estimates of eclogite and greenschist facies shear zones, respectively. These estimates are similar to present-day geothermal gradients in many stable continental shield areas, suggesting that the region did not undergo a significant transient perturbation of the geotherm. Therefore, in the Musgrave Block, cooling subsequent to eclogite facies metamorphism appears to have been controlled by exhumation, rather than by the removal of a heat source. Estimated exhumation rates in the range 0.2 to ≥1.5  mm year−1 are comparable with other orogenic belts, rather than cratonic areas elsewhere.  相似文献   

18.
Romundset, A., Lohne, Ø. S., Mangerud, J. & Svendsen, J. I. 2009: The first Holocene relative sea-level curve from the middle part of Hardangerfjorden, western Norway. Boreas , 10.1111/j.1502-3885.2009.00108.x. ISSN 0300-9483.
The first relative sea-level (RSL) curve from the mid-Hardangerfjorden area covering the entire Holocene is presented. The curve is based on a series of AMS 14C dates on terrestrial plant macrofossils across the isolation level in each of five lakes located between 3.5 and 74.5 m a.s.l. During the first 1200 years, the RSL fell very rapidly from the marine limit at 98 m a.s.l. to 33 m a.s.l., i.e. at a rate of 5.4 cm yr−1. The emergence rate then slowed considerably and was close to standstill 8000–6500 cal. yr BP. However, an emergence of 16.5 m has taken place during the past 6000 years. Radiocarbon dates of terrestrial plant macrofossils from the basal strata in a lake above the marine limit and mollusc shells from glaciomarine silt in the isolation basins yielded a mean age for the local ice-margin retreat of 11 300 cal. yr BP. This verifies that Hardangerfjorden was glaciated during the Younger Dryas – an interpretation that has recently been disputed. The ice margin retreated at a rate of about 300 m yr−1 from the position of the Younger Dryas moraine to this site some 60 km further into the fjord.  相似文献   

19.
Petrological and geochronological data of six representative samples of exotic blocks of amphibolite and associated tonalite-trondhjemite from the serpentinitic mélange of the Sierra del Convento (eastern Cuba) indicate counterclockwise P–T paths typical of material subducted in hot and young subduction zones. Peak conditions attained were ∼750 °C and 15 kbar, consistent with the generation of tonalitic partial melts observed in amphibolite. A tonalite boulder provides a U-Pb zircon crystallization age of 112.8 ± 1.1 Ma, and Ar/Ar amphibole dating yielded two groups of cooling ages of 106–97 Ma (interpreted as cooling of metamorphic/magmatic pargasite) and 87–83 Ma (interpreted as growth/cooling of retrograde overprints). These geochronological data, in combination with other published data, allow the following history of subduction and exhumation to be established in the region: (i) a stage of hot subduction 120–115 Ma, developed upon onset of subduction; (ii) relatively fast near-isobaric cooling (25 °C Myr−1) 115–107 Ma, after accretion of the blocks to the upper plate lithospheric mantle; (iii) slow syn-subduction cooling (4 °C Myr−1) and exhumation (0.7 km Myr−1) in the subduction channel 107–70 Ma; and (iv) fast syn-collision cooling (74 °C Myr−1) and exhumation (5 km Myr−1) 70–60 Ma.  相似文献   

20.
ABSTRACT In February and March 1981, three successive destructive earthquakes occurred at the eastern end of the Gulf of Corinth. The third shock (March, 4, Ms ≈ 6.4) ruptured the Kaparelli fault. About 40 cm of a limestone fault scarp was exhumed by the earthquake. Each major prehistoric earthquake has added new surface to this cumulative scarp exposing fresh material to cosmic-ray bombardment. Using 36Cl cosmic ray exposure dating we have obtained the continuous exposure history for this 4–5-m-high limestone surface at two sites about 50 m apart. The results suggest that the Kaparelli fault has ruptured three times prior to 1981 at 20 ± 3 ka, 14.5 ± 0.5 ka and 10.5 ± 0.5 ka with slip amplitudes between 0.6 m and 2.1 m. The Kaparelli fault appears to have been inactive for 10 thousand years prior to the 1981 event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号