首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clark R. Chapman 《Icarus》1976,29(4):523-524
It is premature to establish a chronology for Mars and Mercury, relative to the known lunar chronology, to better than an order of magnitude. Lunar evidence neither requires nor excludes a “cataclysmic” episode of bombardment about 4.0 b.y. ago. Such a cataclysm might have resulted naturally from tidal disruption by a planet or collisional fragmentation in the asteroid belt of either a Uranus/Neptune-scattered planetesimal or a large asteroid, in which case any lunar cataclysm would have occurred as well on other planets. There is no independent evidence in Mariner 10 imagery for (or against) an early episodic bombardment on Mercury. Crater densities on plains units of the Moon, Mars, and Mercury have not been shown to be “strikingly similar” and do not imply, in the absence of definitive dynamical calculations of planetary impact rates of plausible populations of planetesimals, any similarity in the geological chronologies for those planets. Photogeological studies alone cannot determine absolute chronologies for planets. In combination with dynamical analyses, they can help us date to no better than a factor of 3 to 10 the formation of the Caloris Basin or the epoch when the Martian rivers ran.  相似文献   

2.
S.C. Werner 《Icarus》2008,195(1):45-60
Impact basin formation ages give insight into the early evolution of a planet. The martian basins Hellas, Isidis and Argyre provide an important time-marker for the cessation of the magnetic dynamo and the crustal thickness distribution, both established before 4 Ga ago. No martian surfaces are older than 4.15 Ga based on crater count statistics, and all are younger than the oldest lunar ones. I show that the heavy bombardment period on the Moon and Mars evolved similarly, but endogenic processes have removed the oldest martian basin record. The basin-forming projectile population appears to be different from the impactor population observed today in the inner Solar System. It is yet uncertain whether the heavy bombardment period is cataclysmic or characterized by the decaying flux of planetary formation.  相似文献   

3.
Crater densities on planetary surfaces allow assessing relative ages but so far firm calibration of so‐called cratering‐chronology models is available only for the Moon and limited to the past 4.1 billion years. Most planetary geological time scales are still model‐dependent, and essentially constrained by meteorite ages or by comparison to (dynamical) solar system evolution models. Here we describe in situ calibration of the Martian cratering chronology using cosmogenic and radiogenic isotope ages obtained by the NASA Curiosity rover. We determined the cratering‐rate ratio between Moon and Mars for recent times, and extended the calibration of cratering rates to earlier times than those based exclusively on lunar data. Our preferred interpretation supports monotonic flux decay since at least 4.24 Ga and likely since about 4.45 Ga, implying orbital migration of the giant planets, and its direct, transient, dynamical effect on the planetesimal populations was initiated early. But only Martian Sample Return will provide strongly needed capability for distinction of the different models currently available.  相似文献   

4.
The solid planets assembled 4.57 Gyr ago during a period of less than 100 Myr, but the bulk of the impact craters we see on the inner planets formed much later, in a narrow time interval between 3.8 and 3.9 Gyr ago, during the so-called late heavy bombardment (LHB). It is not certain what caused the LHB, and it has not been well known whether the impactors were comets or asteroids, but our present study lend support to the idea that it was comets. Due to the Earth’s higher gravity, the impactors will have hit the Earth with ∼twice the energy density that they hit the Moon, and the bombardment will have continued on Earth longer than on the Moon. All solid surface of the Earth will have been completely covered with craters by the end of the LHB.However, almost nothing of the Earth’s crust from even the end of this epoch, is preserved today. One of the very few remnants, though, is exposed as the Isua greenstone belt (IGB) and nearby areas in Western Greenland. During a field expedition to Isua, we sampled three types of metasedimentary rocks, deposited ∼3.8 billion years ago, that contain information about the sedimentary river load from larger areas of surrounding land surfaces (mica-schist and turbidites) and of the contemporaneous seawater (BIF). Our samples show evidence of the LHB impacts that took place on Earth, by an average of a seven times enrichment (150 ppt) in iridium compared to present-day ocean crust (20 ppt). The clastic sediments show slightly higher enrichment than the chemical sediments, which may be due to contamination from admixtures of mafic (proto-crustal) sources.We show that this enrichment is in agreement with the lunar cratering rate and a corresponding extraterrestrial LHB contribution to the Earth’s Hadean-Eoarchean crust, provided the bulk of the influx was cometary (i.e., of high velocity and low in CI abundance), but not if the impactors were meteorites (i.e. had velocities and abundances similar to present-day Earth-crossing asteroids). Our study is a first direct indication of the nature of the LHB impactors, and the first to find an agreement between the LHB lunar cratering rate and the Earth’s early geochemical record (and the corresponding lunar record). The LHB comets that delivered the iridium we see at Isua will at the same time have delivered the equivalent of a ∼1 km deep ocean, and we explain why one should expect a cometary ocean to become roughly the size of the Earth’s present-day ocean, not only in terms of depth but also in terms of the surface area it covers. The total impacting mass on the Earth during the LHB will have been ∼1000 tons/m2.  相似文献   

5.
Some aspects and consequences of the theory of gravitational accretion of the terrestrial planets are examined. The concept of a “closed feeding zone” is somewhat unrealistic, but provides a lower bound on the accretion time. Safronov's relative velocity relation for planetesimals is not entirely consistent with the feeding zone model. A velocity relation which includes an initial velocity component is suggested. The orbital parameters of the planetesimals and the dimensions of the feeding zone are related to their relative velocities. The assumption of an initial velocity does not seriously change the accretion time.Mercury, Venus, and the Earth have accretion times on the order of 108yr. Mars requires well over 109yr to accrete by the same assumptions. Currently available data do not rule out a late formation of Mars, but the lunar cratering history makes it unlikely. If Mars is as old as the Earth, nongravitational forces or a violation of the feeding zone concept is required. One such possibility is the removal of matter from the zone of Mars by Jupiter's influence. The final sweeping up by Mars after this event would result in the scattering of a considerable mass among the other terrestrial planets. The late postaccretional bombardments infrerred for the Moon and Mercury may have had this source.  相似文献   

6.
We model the cratering of the Moon and terrestrial planets from the present knowledge of the orbital and size distribution of asteroids and comets in the inner Solar System, in order to refine the crater chronology method. Impact occurrences, locations, velocities and incidence angles are calculated semi-analytically, and scaling laws are used to convert impactor sizes into crater sizes. Our approach is generalizable to other moons or planets. The lunar cratering rate varies with both latitude and longitude: with respect to the global average, it is about 25% lower at (±65°N, 90°E) and larger by the same amount at the apex of motion (0°N, 90°W) for the present Earth-Moon separation. The measured size-frequency distributions of lunar craters are reconciled with the observed population of near-Earth objects under the assumption that craters smaller than a few kilometers in diameter form in a porous megaregolith. Varying depths of this megaregolith between the mare and highlands is a plausible partial explanation for differences in previously reported measured size-frequency distributions. We give a revised analytical relationship between the number of craters and the age of a lunar surface. For the inner planets, expected size-frequency crater distributions are calculated that account for differences in impact conditions, and the age of a few key geologic units is given. We estimate the Orientale and Caloris basins to be 3.73 Ga old, and the surface of Venus to be 240 Ma old. The terrestrial cratering record is consistent with the revised chronology and a constant impact rate over the last 400 Ma. Better knowledge of the orbital dynamics, crater scaling laws and megaregolith properties are needed to confidently assess the net uncertainty of the model ages that result from the combination of numerous steps, from the observation of asteroids to the formation of craters. Our model may be inaccurate for periods prior to 3.5 Ga because of a different impactor population, or for craters smaller than a few kilometers on Mars and Mercury, due to the presence of subsurface ice and to the abundance of large secondaries, respectively. Standard parameter values allow for the first time to naturally reproduce both the size distribution and absolute number of lunar craters up to 3.5 Ga ago, and give self-consistent estimates of the planetary cratering rates relative to the Moon.  相似文献   

7.
Determining absolute surface ages for bodies in the Solar System is, at present, only possible for Earth and Moon with radiometric dating for both bodies and biologic proxies such as fossils for Earth. Relative ages through cratering statistics are recognized as one of the most reliable proxies for relative ages, calibrated by lunar geologic mapping and Apollo program sample returns. In this work, we have utilized the Mars Reconnaissance Orbiter’s ConTeXt Camera’s images which provide the highest resolution wide-scale coverage of Mars to systematically crater-age-date the calderas of 20 of Mars’ largest volcanoes in order to constrain the length of time over which these volcanoes - and major volcanic activity on the planet, by extension - were active. This constitutes the largest uniform and comprehensive research on these features to date, eliminating unknown uncertainties by multiple researchers analyzing different volcanoes with varied data and methods. We confirm previous results that Mars has had active volcanism throughout most of its history although it varied spatially and temporally, with the latest large-scale caldera activity ending approximately 150 ma in the Tharsis region. We find a transition from explosive to effusive eruption style occurring in the Hesperian, at approximately 3.5 Ga ago, though different regions of the planet transitioned at different times. Since we were statistically complete in our crater counts to sizes as small as ∼60 m in most cases, we also used our results to study the importance of secondary cratering and its effects on crater size-frequency distributions within the small regions of volcanic calderas. We found that there is no “golden rule” for the diameters secondaries become important in crater counts of martian surfaces, with one volcano showing a classic field of secondaries ∼2 crater diameters from the center of its primary but not affecting the size-frequency distribution, and another clearly showing an influence but from no obvious primary.  相似文献   

8.
The thermal evolution of the Moon as it can be defined by the available data and theoretical calculations is discussed. A wide assortment of geological, geochemical and geophysical data constrain both the present-day temperatures and the thermal history of the lunar interior. On the basis of these data, the Moon is characterized as a differentiated body with a crust, a 1000-km-thick solid mantle (lithosphere) and an interior region (core) which may be partially molten. The presence of a crust indicates extensive melting and differentiation early in the lunar history. The ages of lunar samples define the chronology of igneous activity on the lunar surface. This covers a time span of about 1.5 billion yr, from the origin to about 3.16 billion yr ago. Most theoretical models require extensive melting early in the lunar history, and the outward differentiation of radioactive heat sources.Thermal history calculations, whether based on conductive or convective computation codes define relatively narrow bounds for the present day temperatures in the lunar mantle. In the inner region of the 700 km radius, the temperature limits are wider and are between about 100 and 1600°C at the center of the Moon. This central region could have a partially or totally molten core.The lunar heat flow values (about 30 ergs/cm2s) restrict the present day average uranium abundance to 60 ± 15 ppb (averaged for the whole Moon) with typical ratios of K/U = 2000 and Th/U = 3.5. This is consistent with an achondritic bulk composition for the Moon.The Moon, because of its smaller size, evolved rapidly as compared to the Earth and Mars. The lunar interior is cooling everywhere at the present and the Moon is tectonically inactive while Mars could be and the Earth is definitely active.  相似文献   

9.
Abstract— We show that at the end of the main accretional period of the terrestrial planets, a few percent of the initial planetesimal population in the 1–2 AU zone is left on highly‐inclined orbits in the inner solar system. The final depletion of this leftover population would cause an extended bombardment of all of the terrestrial planets, slowly decaying with a timescale on the order of 60 Ma. Because of the large impact velocities dictated by the high inclinations, these projectiles would produce craters much larger than those formed by asteroids of equal size on typical current near‐Earth asteroid orbits: on the Moon, basins could have been formed by bodies as small as 20 km in diameter, and 10 km craters could be produced by 400 m impactors. To account for the observed lunar crater record, the initial population of highly‐inclined leftovers would need to be a few times that presently in the main asteroid belt, at all sizes, in agreement with the simulations of the primordial sculpting of both these populations. If a terminal lunar cataclysm (a spike in the crater record ~3.9 Ga ago) really occurred on the Moon, it was not caused by the highly‐inclined leftover population, because of the monotonic decay of the latter.  相似文献   

10.
A.W. Harris  W.M. Kaula 《Icarus》1975,24(4):516-524
Numerical calculation of a simple accretion model including the effects of tidal friction indicate that coformation is tenable only if the planet's Q is less than about 103. The parameter which most strongly affects the final mass ratio of the pair is the time at which the secondary embryo is introduced. Our model yields the proper Moon-Earth mass ratio if the Moon embryo is introduced when the Earth is only about 110 of its final mass. The lunar orbit remains at about 10 Earth radii throughout most of the growth.This model of satellite formation overcomes two difficulties of the “circumterrestrial cloud” model of Ruskol (1960, 1963, 1972): (1) The difficulty of accumulating a mass as great as the entire Moon before gravitational instability reduces the cloud to a small number of moonlets is removed. (2) The differences between terrestrial and outer planet satellite systems is easily understood in terms of the differences in Q between these planets. The high Q of the outer planets does not allow a satellite embryo to survive a significant portion of the accretion process, thus only small bodies which formed very late in the accumulation of the planet remain as satellites. The low Q of the terrestrial planets allows satellite embryos of these planets to survive during accretion, thus massive satellites such as the Earth's Moon are expected. The present lack of such satellites of the other terrestrial planets may be the result of tidal evolution, either infall following primary despinning (Burns, 1973) or escape due to increase in orbit eccentricity.  相似文献   

11.
Except the old Jack Hills zircon crystals, it does not exit direct record of the first 500 Ma of the Earth history. Consequently, the succession of events that took place during this period is only indirectly known through geochemistry, comparison with other telluric planets, and numerical modelling. Just after planetary accretion several episodes were necessary in order to make life apparition and development possible and to make the Earth surface habitable. Among these stages are: the core differentiation, the formation of a magma ocean, the apparition of the first atmosphere, oceans and continents as well as the development of magnetic field and of plate tectonics. In the same time, Earth has been subject to extraterrestrial events such as the Late Heavy Bombardment (LHB) between 3.95 and 3.8 Ga. Since 4.4–4.3 Ga, the conditions for pre-biotic chemistry and appearance of life were already met (liquid water, continental crust, no strong meteoritic bombardment, etc...). This does not mean that life existed as early, but this demonstrates that all necessary conditions assumed for life development were already present on Earth.  相似文献   

12.
Shock metamorphism of the lunar samples is discussed. All types of lunar glasses formed by various-size collision-type impact are found as impact glass, ropy glass and agglutinates. The agglutinates bonded by crystal and glassy materials contain hydrogen and helium from the solar wind components. Lunar shocked minerals of plagioclase and silica show anomalous compositions and densities. There are typical two formation processes on planetary materials formed by shock events; that is (1) shocked quartz formed by silica-rich target rocks (esp. on evolved planets of the Earth and Mars), and (2) shocked silica with minor Al contents formed from plagioclase-rich primordial crusts of the Moon. The both shocked silica grows to coarse-grain normal crystals after high-temperature metamorphism which cannot distinguish the original main formation event of impact process.  相似文献   

13.
Multiple large impact basins on the lunar nearside formed in a relatively-short interval around 3.8-3.9 Gyr ago, in what is known as the Lunar Cataclysm (LC; also known as Late Heavy Bombardment). It is widely thought that this impact bombardment has affected the whole Solar System or at least all the inner planets. But with non-lunar evidence for the cataclysm being relatively weak, a geocentric cause of the Lunar Cataclysm cannot yet be completely ruled out [Ryder, G., 1990. Eos 71, 313, 322-323]. In principle, late destabilization of an additional Earth satellite could result in its tidal disruption during a close lunar encounter (cf. [Asphaug, E., Agnor, C.B., Williams, Q., 2006. Nature 439, 155-160]). If the lost satellite had D>500 km, the resulting debris can form multiple impact basins in a relatively short time, possibly explaining the LC. Canup et al. [Canup, R.M., Levison, H.F., Stewart, G.R., 1999. Astron. J. 117, 603-620] have shown that any additional satellites of Earth formed together with (and external to) the Moon would be unable to survive the rapid initial tidally-driven expansion of lunar orbit. Here we explore the fate of objects trapped in the lunar Trojan points, and find that small lunar Trojans can survive the Moon's orbital evolution until they and the Moon reach 38 Earth radii, at which point they are destabilized by a strong solar resonance. However, the dynamics of Trojans containing enough mass to cause the LC (diameters >150 km) is more complex; we find that such objects do not survive the passage through a weaker solar resonance at 27 Earth radii. This distance was very likely reached by the Moon long before the LC, which seems to rule out the disruption of lunar Trojans as a cause of the LC.  相似文献   

14.
The origin and evolution of the Earth-Moon system is studied by comparing it to the satellite systems of other planets. The normal structure of a system of secondary bodies orbiting around a central body depends essentially on the mass of the central body. The Earth with a mass intermediate between Uranus and Mars should have a normal satellite system that consists of about half a dozen satellites each with a mass of a fraction of a percent of the lunar mass. Hence, the Moon is not likely to have been generated in the environment of the Earth by a normal accretion process as is claimed by some authors.Capture of satellites is quite a common process as shown by the fact that there are six satellites in the solar system which, because they are retrograde, must have been captured. There is little doubt that the Moon is also a captured satellite, but its capture orbit and tidal evolution are still incompletely understood.The Earth and the Moon are likely to have been formed from planetesimals accreting in particle swarms in Kepler orbits (jet streams). This process leads to the formation of a cool lunar interior with an outer layer accreted at increasingly higher temperatures. The primeval Earth should similarly have formed with a cool inner core surrounded in this case by a very strongly heated outer core and with a mantle accreted slowly and with a low average temperature but with intense transient heating at each individual impact site.  相似文献   

15.
It is known that most of the craters on the surface of the Moon were created by the collision of minor bodies of the Solar System. Main Belt Asteroids, which can approach the terrestrial planets as a consequence of different types of resonance, are actually the main responsible for this phenomenon. Our aim is to investigate the impact distributions on the lunar surface that low-energy dynamics can provide. As a first approximation, we exploit the hyberbolic invariant manifolds associated with the central invariant manifold around the equilibrium point L 2 of the Earth–Moon system within the framework of the Circular Restricted Three-Body Problem. Taking transit trajectories at several energy levels, we look for orbits intersecting the surface of the Moon and we attempt to define a relationship between longitude and latitude of arrival and lunar craters density. Then, we add the gravitational effect of the Sun by considering the Bicircular Restricted Four-Body Problem. In the former case, as main outcome, we observe a more relevant bombardment at the apex of the lunar surface, and a percentage of impact which is almost constant and whose value depends on the assumed Earth–Moon distance dEM. In the latter, it seems that the Earth–Moon and Earth–Moon–Sun relative distances and the initial phase of the Sun θ 0 play a crucial role on the impact distribution. The leading side focusing becomes more and more evident as dEM decreases and there seems to exist values of θ 0 more favorable to produce impacts with the Moon. Moreover, the presence of the Sun makes some trajectories to collide with the Earth. The corresponding quantity floats between 1 and 5 percent. As further exploration, we assume an uniform density of impact on the lunar surface, looking for the regions in the Earth–Moon neighbourhood these colliding trajectories have to come from. It turns out that low-energy ejecta originated from high-energy impacts are also responsible of the phenomenon we are considering.  相似文献   

16.
The circular maria - Orientale, Imbrium, Serenitatis, Crisium, Smythii, and Tsiolkovsky -lie nearly on a lunar great circle. This pattern can be considered the result of a very close, non-capture encounter between Moon and Earth early in solar-system history. Of critical importance in analyzing the effects of such an encounter is the position of the weightlessness limit of the Earth-Moon System which is located at about 1.63R e, measured from the center of Earth to center of Moon. Within this weightlessness limit, material can be pulled from the lunar surface and interior by Earth's gravity and either escape from the Moon or be redistributed onto the lunar surface. In the case of an encounter with a non-spinning Moon, backfalling materials would be distributed along a lunar great circle. However, if the Moon is rotating during the encounter, the backfall pattern will deviate from the great circle, the amount depending on the rate and direction of spin. Such a close encounter model may be related to the pattern of circular maria if materials departing from the source region are visualized as spheroids of molten lunar upper mantle basalt. These spheroids, then, would impact onto the lunar surface to form a pattern of lava lakes. Radiometric dates from mare rocks are consistent with this model of mare formation if the older mare rock dates are considered to date the encounter and younger dates are considered to date subsequent volcanic eruptions on a structurally weakened Moon.  相似文献   

17.
To date, no accretion model has succeeded in reproducing all observed constraints in the inner Solar System. These constraints include: (1) the orbits, in particular the small eccentricities, and (2) the masses of the terrestrial planets - Mars’ relatively small mass in particular has not been adequately reproduced in previous simulations; (3) the formation timescales of Earth and Mars, as interpreted from Hf/W isotopes; (4) the bulk structure of the asteroid belt, in particular the lack of an imprint of planetary embryo-sized objects; and (5) Earth’s relatively large water content, assuming that it was delivered in the form of water-rich primitive asteroidal material. Here we present results of 40 high-resolution (N = 1000-2000) dynamical simulations of late-stage planetary accretion with the goal of reproducing these constraints, although neglecting the planet Mercury. We assume that Jupiter and Saturn are fully-formed at the start of each simulation, and test orbital configurations that are both consistent with and contrary to the “Nice model”. We find that a configuration with Jupiter and Saturn on circular orbits forms low-eccentricity terrestrial planets and a water-rich Earth on the correct timescale, but Mars’ mass is too large by a factor of 5-10 and embryos are often stranded in the asteroid belt. A configuration with Jupiter and Saturn in their current locations but with slightly higher initial eccentricities (e = 0.07-0.1) produces a small Mars, an embryo-free asteroid belt, and a reasonable Earth analog but rarely allows water delivery to Earth. None of the configurations we tested reproduced all the observed constraints. Our simulations leave us with a problem: we can reasonably satisfy the observed constraints (except for Earth’s water) with a configuration of Jupiter and Saturn that is at best marginally consistent with models of the outer Solar System, as it does not allow for any outer planet migration after a few Myr. Alternately, giant planet configurations which are consistent with the Nice model fail to reproduce Mars’ small size.  相似文献   

18.
Large impacts not only create giant basins on terrestrial planets but also heat their interior by shock waves. We investigate the impacts that have created the largest basins existing on the planets: Utopia on Mars, Caloris on Mercury, Aitken on Moon, all formed at ∼4 Ga. We determine the impact-induced temperature increases in the interior of a planet using the “foundering” shock heating model of Watters et al. (Watters, W.A., Zuber, M.T., Hager, B.H. [2009]. J. Geophys. Res. 114, E02001. doi:10.1029/2007JE002964). The post-impact thermal evolution of the planet is investigated using 2D axi-symmetric convection in a spherical shell of temperature-dependent viscosity and thermal conductivity, and pressure-dependent thermal expansion. The impact heating creates a superheated giant plume in the upper mantle which ascends rapidly and develops a strong convection in the mantle of the sub-impact hemisphere. The upwelling of the plume rapidly sweeps up the impact-heated base of the mantle away from the core-mantle boundary and replaces it with the colder surrounding material, thus reducing the effects of the impact-heated base of the mantle on the heat flux out of core. However, direct shock heating of the core stratifies the core, suppresses the pre-existing thermal convection, and cripples a pre-existing thermally-driven core dynamo. It takes about 17, 4, and 5 Myr for the stratified cores of Mars, Mercury, and Moon to exhaust impact heat and resume global convection, possibly regenerating core dynamos.  相似文献   

19.
Abstract— Here I discuss the series of events that led to the formation and evolution of our planet to examine why the Earth is unique in the solar system. A multitude of factors are involved: These begin with the initial size and angular momentum of the fragment that separated from a molecular cloud; such random factors are crucial in determining whether a planetary system or a double star develops from the resulting nebula. Another requirement is that there must be an adequate concentration of heavy elements to provide the 2% “rock” and “ice” components of the original nebula. An essential step in forming rocky planets in the inner nebula is the loss of gas and depletion of volatile elements, due to early solar activity that is linked to the mass of the central star. The lifetime of the gaseous nebula controls the formation of gas giants. In our system, fine timing was needed to form the gas giant, Jupiter, before the gas in the nebula was depleted. Although Uranus and Neptune eventually formed cores large enough to capture gas, they missed out and ended as ice giants. The early formation of Jupiter is responsible for the existence of the asteroid belt (and our supply of meteorites) and the small size of Mars, whereas the gas giant now acts as a gravitational shield for the terrestrial planets. The Earth and the other inner planets accreted long after the giant planets, from volatile-depleted planetesimals that were probably already differentiated into metallic cores and silicate mantles in a gas-free, inner nebula. The accumulation of the Earth from such planetesimals was essentially a stochastic process, accounting for the differences among the four rocky inner planets—including the startling contrast between those two apparent twins, Earth and Venus. Impact history and accretion of a few more or less planetesimals were apparently crucial. The origin of the Moon by a single massive impact with a body larger than Mars accounts for the obliquity (and its stability) and spin of the Earth, in addition to explaining the angular momentum, orbital characteristics, and unique composition of the Moon. Plate tectonics (unique among the terrestrial planets) led to the development of the continental crust on the Earth, an essential platform for the evolution of Homo sapiens. Random major impacts have punctuated the geological record, accentuating the directionless course of evolution. Thus a massive asteroidal impact terminated the Cretaceous Period, resulted in the extinction of at least 70% of species living at that time, and led to the rise of mammals. This sequence of events that resulted in the formation and evolution of our planet were thus unique within our system. The individual nature of the eight planets is repeated among the 60-odd satellites—no two appear identical. This survey of our solar system raises the question whether the random sequence of events that led to the formation of the Earth are likely to be repeated in detail elsewhere. Preliminary evidence from the “new planets” is not reassuring. The discovery of other planetary systems has removed the previous belief that they would consist of a central star surrounded by an inner zone of rocky planets and an outer zone of giant planets beyond a few astronomical units (AU). Jupiter-sized bodies in close orbits around other stars probably formed in a similar manner to our giant planets at several astronomical units from their parent star and, subsequently, migrated inwards becoming stranded in close but stable orbits as “hot Jupiters”, when the nebula gas was depleted. Such events would prevent the formation of terrestrial-type planets in such systems.  相似文献   

20.
Data from lunar samples (Apollo, Luna, and lunar meteorites) indicate that the Moon was subjected to an intense period of bombardment around 3.85 billion year ago (Ga). Here a short review of this topic is given. Different interpretations exist, which either take this as the tail end of an intense but declining accretion period, or which consider a spike in the accretion rate at that time. The latter is the so-called Late Heavy Bombardment. Considering the enormous amount of matter that is required to accrete in the inner solar system at that time, and problems with deriving this mass from the asteroid belt, it is suggested that the Kuiper Belt objects could be a source for this bombardment spike, possibly linked to the late migration of Neptune outwards in the solar system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号