首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《New Astronomy Reviews》2002,46(2-7):349-351
Our HST WFPC2 survey of 110 BL Lac objects, from six complete X-ray-, radio-, and optically-selected catalogs, probes the host galaxies of low-luminosity radio sources in the redshift range 0<z<1.35. The host galaxies are luminous ellipticals, well matched in radio power and galaxy magnitude to FR I radio galaxies. Similarly, the host galaxies of high luminosity quasars occupy the same region of this plane as FR II radio galaxies (matched in redshift). This strongly supports the unification of radio-loud AGN, and suggests that studying blazars at high redshift is a proxy for investigating less luminous (to us) but intrinsically identical radio galaxies, which are harder to find at high z. Accordingly, the difference between low-power jets in BL Lac objects and high-power jets in quasars can then be related to the FR I/FR II dichotomy; and the evolution of blazar host galaxies or their nuclei (jets) should correspond to the evolution of radio galaxies.  相似文献   

3.
4.
5.
6.
The calculation of mass outflow rates of active galactic nuclei (AGN) winds is of great importance in understanding the role that such winds play in AGN-galaxy feedback processes. The mass outflow rates are, however, difficult to estimate since the volume filling factors of the winds are unknown. In this paper, we use constraints imposed by the observed radio emission to obtain upper limits to the volume filling factors of wind components in certain nearby AGN. We do this by predicting the 1.4 GHz radio flux densities emitted by those components, assuming a uniform wind, and then comparing these with the observed flux densities for each AGN at this frequency. We find that the upper limits to the volume filling factors are in the range of  10−4–0.5  .  相似文献   

7.
8.
A sample of 11 thousand galaxies with radial velocities V LG < 3500 km/s is used to study the features of the local distribution of luminous (stellar) and dark matter within a sphere of radius of around 50 Mpc around us. The average density of matter in this volume, ?? m,loc = 0.08 ± 0.02, turns out to be much lower than the global cosmic density ?? m,glob = 0.28 ± 0.03. We discuss three possible explanations of this paradox: 1) galaxy groups and clusters are surrounded by extended dark halos, the major part of the mass of which is located outside their virial radii; 2) the considered local volume of the Universe is not representative, being situated inside a giant void; and 3) the bulk of matter in the Universe is not related to clusters and groups, but is rather distributed between them in the form of massive dark clumps. Some arguments in favor of the latter assumption are presented. Besides the two well-known inconsistencies of modern cosmological models with the observational data: the problem of missing satellites of normal galaxies and the problem of missing baryons, there arises another one??the issue of missing dark matter.  相似文献   

9.
We review the most important findings on AGN physics and cosmological evolution as obtained by extragalactic X‐ray surveys and associated multiwavelength observations. We briefly discuss the perspectives for future enterprises and in particular the scientific case for an extremely deep (2–3 Ms) XMM survey. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The notion of discrete scale transformations is invoked to suggest strong links between fundamental interactions and cosmology giving rise to a hierarchy of cosmic scales.  相似文献   

11.
12.
13.
Comparison of the large-scale density and velocity fields in the local universe shows detailed agreement, strengthening the standard paradigm of the gravitational origin of these structures. Quantitative analysis can determine the cosmological density parameter, , and biasing factor,b; there is virtually no sensitivity in any local analyses to the cosmological constant,. Comparison of the dipole anisotropy of the cosmic microwave background with the acceleration due to theIRAS galaxies puts the linear growth factor in the range 0.6 /b = 0.6 –0.3 +0.7 (95% confidence). A direct comparison of the density and velocity fields of nearby galaxies gives = 1.3 –0.6 +0.7 , and from nonlinear analysis the weaker limit > 0.45 forb > 0.5 (again 95% confidence). A tighter limit, > 0.3 (4–6), is obtained by a reconstruction of the probability distribution function of the initial fluctuations from which the structures observed today arose. The last two methods depend critically on the smooth velocity field determined from the observed velocities of nearby galaxies by thePOTENT method. A new analysis of these velocities, with more than three times the data used to obtain the above quoted results, is now underway and promises to tighten the uncertainties considerably, as well as reduce systematic bias.  相似文献   

14.
15.
We study the dynamics of extended shells of relatively low-mass particles around and inside the orbit of two heavy centres of gravity (a binary) by computer simulations. The binary components are surrounded byN = 16 000 small mass particles in uniform random distribution on few spherical envelopes with different radii expanding with respective velocities. Some shells are inside the orbit of binary.We apply this model to binary galaxy systems with baryonic dark matter, e.g., massive black holes. In principle, we can apply this model to different kinds of objects (from binary star systems until superclusters of galaxies).It is shown that the shell expands homologously with a decreasing velocity and then, falls back into the binary system forming zones of compressed matter. At some moment of time there could be a collapse of these particles on to the heavier component of the binary. Further in time, some part of particles which were outside the binary orbit escape from the system. Other particles which were initially inside of the orbit are captured by binary components.We consider a number of different models with different initial parameters. For models with smaller radii of shells, about one-half of the particles escape from systems; whereas for larger values the shell disrupts as a whole. Escaping particles form collimated flows in planes of orbits of binaries. Positions of flows and directions of motion depend on positions of heavier components of binaries at the moment of a closest approach of particles and on ratios of masses of binary components.We show that during evolution of our models different kinds of structures of systems often are very similar to the observed structures of galaxies: spiral and elliptical galaxies, interacting galaxies, different kinds of flows and jets. Totally systems are expanding - after 40 periods of rotation of the binary the system expands by 300 times.  相似文献   

16.
17.
We discuss the optical properties, X-ray detections and active galactic nucleus (AGN) populations of four clusters at   z ∼ 1  in the Subaru–XMM Deep Field (SXDF). The velocity distribution and plausible extended X-ray detections are examined, as well as the number of X-ray point sources and radio sources associated with the clusters. We find that the two clusters that appear virialized and have an extended X-ray detection contain few, if any, AGN, whereas the two pre-virialized clusters have a large AGN population. This constitutes evidence that the AGN fraction in clusters is linked to the clusters' evolutionary stage. The number of X-ray AGN in the pre-virialized clusters is consistent with an overdensity of a factor of ∼200; the radio AGN appear to be clustered with a factor of 3 to 6 higher. The median K -band luminosities of   LK = 1.7 ± 0.7 L *  for the X-ray sources and   LK = 2.3 ± 0.1 L *  for the radio sources support the theory that these AGN are triggered by galaxy interaction and merging events in sub-groups with low internal velocity distributions, which make up the cluster environment in a pre-virialization evolutionary stage.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号