首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
The acidic and neutral NSO compounds in a series of Duvernay-sourced oils in Canada, which are believed to have migrated extensively over relatively long distances such as along the Rimbey-Meadowbrook reef trends, were characterized by negative-ion electrospray (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Heteroatomic compounds were characterized according to their class (number of nitrogen, oxygen and sulfur heteroatoms), degree of aromaticity [rings plus double bonds (DBE)] and carbon number distribution. The N1, N1O1, N1O2, N1S1, O1 and O2 classes were identified in Duvernay-sourced oils. With increasing migration distance, the relative abundance of O2, N1O1 and N1O2 showed a significant decrease, while the O1 class increased from < 10% to nearly 30% of the total. With increasing migration along the Rimbey-Meadowbrook reef trend, pyrrolic nitrogen compounds (N1 class) shows an enrichment of alkylcarbazoles (DBE = 9) relative to alkylbenzocarbazoles (DBE = 12), and of higher homologous relative to the lower homologous. O1 compounds show a relative enrichment of those with low DBE values. Additionally, the N1O1 and N1S1 compounds show a relative enrichment of those with high DBE values, and of higher homologues compared to the lower homologues, indicating great potential for developing new migration indices.  相似文献   

2.
Hydrous pyrolysis (HP) experiments were used to investigate the petroleum composition and quality of petroleum generated from a Brazilian lacustrine source rock containing Type I kerogen with increasing thermal maturity. The tested sample was of Aptian age from the Araripe Basin (NE-Brazil). The temperatures (280–360 °C) and times (12–132 h) employed in the experiments simulated petroleum generation and expulsion (i.e., oil window) prior to secondary gas generation from the cracking of oil. Results show that similar to other oil prone source rocks, kerogen initially decomposes in part to a polar rich bitumen, which decomposes in part to hydrocarbon rich oil. These two overall reactions overlap with one another and have been recognized in oil shale retorting and natural petroleum generation. During bitumen decomposition to oil, some of the bitumen is converted to pyrobitumen, which results in an increase in the apparent kerogen (i.e., insoluble carbon) content with increasing maturation.The petroleum composition and its quality (i.e., API gravity, gas/oil ratio, C15+ fractions, alkane distribution, and sulfur content) are affected by thermal maturation within the oil window. API gravity, C15+ fractions and gas/oil ratios generated by HP are similar to those of natural petroleum considered to be sourced from similar Brazilian lacustrine source rocks with Type I kerogen of Lower Cretaceous age. API gravity of the HP expelled oils shows a complex relationship with increasing thermal maturation that is most influenced by the expulsion of asphaltenes. C15+ fractions (i.e., saturates, aromatics, resins and asphaltenes) show that expelled oils and bitumen are compositionally separate organic phases with no overlap in composition. Gas/oil ratios (GOR) initially decrease from 508–131 m3/m3 during bitumen generation and remain essentially constant (81–84 m3/m3) to the end of oil generation. This constancy in GOR is different from the continuous increase through the oil window observed in anhydrous pyrolysis experiments. Alkane distributions of the HP expelled oils are similar to those of natural crude oils considered to be sourced from similar Brazilian lacustrine source rocks with Type I kerogen of Lower Cretaceous age. Isoprenoid and n-alkane ratios (i.e., pristane/n-C17 and phytane/n-C18) decrease with increasing thermal maturity as observed in natural crude oils. Pristane/phytane ratios remain constant with increasing thermal maturity through the oil window, with ratios being slightly higher in the expelled oils relative to those in the bitumen. Generated hydrocarbon gases are similar to natural gases associated with crude oils considered to be sourced from similar Brazilian lacustrine source rocks with Type I kerogen of Lower Cretaceous, with the exception of elevated ethane contents. The general overall agreement in composition of natural and hydrous pyrolysis petroleum of lacustrine source rocks observed in this study supports the utility of HP to better characterize petroleum systems and the effects of maturation and expulsion on petroleum composition and quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号