首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper aims at developing a modal approach for the non-linear analysis of sloshing in an arbitrary-shape tank under both horizontal and vertical excitations. For this purpose, the perturbation technique is employed and the potential flow is adopted as the liquid sloshing model. The first- and second-order kinematic and dynamic boundary conditions of the liquid-free surface are used along with a boundary element model which is formulated in terms of the velocity potential of the liquid-free surface. The boundary element model is used to determine the natural mode shapes of sloshing and their corresponding frequencies. Using the modal analysis technique, a non-linear model is presented for the calculation of the first- and second-order potential which can be used to obtain a reduced-order model for the sloshing dynamics. The results of the presented model are verified with the analytical solution for the second-order analysis of sloshing in a rectangular tank and very good results were obtained. Also, the second-order sloshing in some other example tanks with complex bed shapes is studied. The second-order resonance conditions of liquid sloshing in the example tanks are investigated and some conclusions are drawn.  相似文献   

2.
A coupled finite element (FEM) and boundary element (BEM) method is developed to analyse the nonlinear interaction between bodies and water waves. The former is used away from the body while the latter is used in a region near body. The combination is based on consideration of the efficiency of FEM and BEM in computation and mesh generation, respectively. Results for wave/body interactions are obtained by using auxiliary functions to decouple the mutual dependence of the body acceleration and the wave force.  相似文献   

3.
Y. Kim  B.W. Nam  D.W. Kim  Y.S. Kim 《Ocean Engineering》2007,34(16):2176-2187
This study considers the coupling effects of ship motion and sloshing. The linear ship motion is solved using an impulse-response-function (IRF) method, while the nonlinear sloshing flow is simulated using a finite-difference method. The IRF method requires the frequency-domain solution prior to conversion to time domain, but the computational effort is much less than that of direct time-domain approaches. The developed scheme is verified by comparing the motion RAOs between the frequency-domain solution and the solution obtained by the IRF method. Furthermore, a soft-spring concept and linear roll damping are implemented to predict more realistic motions of surge, sway, yaw, and roll. For the simulation of sloshing flow in liquid tanks, a physics-based numerical approach adopted by Kim [2001. Numerical simulation of sloshing flows with impact load. Applied Ocean Research 23, 53–62] and Kim et al. [2004. Numerical study on slosh-induced impact pressures on three-dimensional prismatic tanks. Applied Ocean Research 26, 213–226] is applied. In particular, the present method focuses on the simulation of the global motion of sloshing flow, ignoring some local phenomena. The sloshing-induced forces and moments are added to wave-excitation forces and moments, and then the corresponding body motion is obtained. The developed schemes are applied for two problems: the sway motion of a box-type barge with rectangular tanks and the roll motion of a modified S175 hull with rectangular anti-rolling tank. Motion RAOs are compared with existing results, showing fair agreement. It is found that the nonlinearity of sloshing flow is very important in coupling analysis. Due to the nonlinearity of sloshing flow, ship motion shows a strong sensitivity to wave slope.  相似文献   

4.
This paper aims to validate a numerical seakeeping code based on a 3D Rankine panel method by comparing its results with experimental data. Particularly, the motion response and hull-girder loads on a real modern ship, a 6500 TEU containership, are considered in this validation study. The method of solution is a 3D Rankine panel method which adopts B-spline basis function in the time domain. The numerical code is based on the weakly nonlinear scheme which considers nonlinear Froude-Krylov and restoring forces. The main focus of this study is given to investigate the nonlinear characteristics of wave-induced loads, and to validate this present scheme for industrial use in the range of low Froude number. The comparisons show that the nonlinear motions and hull-girder loads, computed by the present numerical code, have good overall agreements with experimental results. It is found that, for the better accuracy of computational results, particularly at extreme waves in oblique seas, the careful treatment of soft-spring (or compatible) system is recommended to the control of non-restoring motions such as surge, sway, and yaw.  相似文献   

5.
The effects of LNG-tank sloshing on the global motions of LNG carriers   总被引:1,自引:0,他引:1  
The coupling and interactions between ship motion and inner-tank sloshing are investigated by a time-domain simulation scheme. For the time-domain simulation, the hydrodynamic coefficients and wave forces are obtained by a potential-thoery-based three-dimensional (3D) diffraction/radiation panel program in frequency domain. Then, the corresponding simulations of motions in time domain are carried out using convolution integral. The liquid sloshing in a tank is simulated in time domain by a Navier–Stokes solver. A finite difference method with SURF scheme is applied for the direct simulation of liquid sloshing. The computed sloshing force and moment are then applied as external excitations to the ship motion. The calculated ship motion is in turn inputted as the excitation for liquid sloshing, which is repeated for the ensuing time steps. For comparison, we independently developed a coupling scheme in the frequency domain using a sloshing code based on the linear potential theory. The hydrodynamic coefficients of the inner tanks are also obtained by a 3D panel program. The developed schemes are applied to a barge-type FPSO hull equipped with two partially filled tanks. The time-domain simulation results show similar trend when compared with MARIN's experimental results. The most pronounced coupling effects are the shift or split of peak-motion frequencies. It is also found that the pattern of coupling effects between vessel motion and liquid sloshing appreciably changes with filling level. The independent frequency-domain coupled analysis also shows the observed phenomena.  相似文献   

6.
This study investigates the coupling effects of six degrees of freedom in ship motion with fluid oscillation inside a three-dimensional rectangular container using a novel time domain simulation scheme. During the time marching, the tank-sloshing algorithm is coupled with the vessel-motion algorithm so that the influence of tank sloshing on vessel motions and vice versa can be assessed. Several factors influencing the dynamic behavior of tank–liquid system due to moving ship are also investigated. These factors include container parameters, environmental settings such as the significant wave height, current velocity as well as the direction of wind, wave and flow current acting on the ship. The nonlinear sloshing is studied using a finite element model whereas nonlinear ship motion is simulated using a hybrid marine control system. Computed roll response is compared with the existing results, showing fair agreement. Although the two hull forms and the sea states are not identical, the numerical result shows the same trend of the roll motion when the anti-rolling tanks are considered. Thus, the numerical approach presented in this paper is expected to be very useful and realistic in evaluating the coupling effects of nonlinear sloshing and 6-DOF ship motion.  相似文献   

7.
三自由度晃荡模拟装置及其模态分析   总被引:1,自引:0,他引:1  
晃荡现象是海洋工程和船舶设计中值得关注的问题,它涉及到自由液面大幅度运动的一系列非线性问题,很难获得一个完全的理论解,相应的试验是主要方法,本文介绍三个自由度的模拟装置,并运用MSC/NASTRAN软件对该装置进行了结构有限元分析,重点在于模态分析。  相似文献   

8.
We investigated the use of numerical methods to predict liquid sloshing phenomena in a moving tank and compared our results to model test measurements. The numerical techniques for the free surface, based on the so-called finite Volume-of-Fluid (VoF) approach, comprised an incompressible VoF method, an incompressible coupled Level-Set and Volume-of-Fluid (clsVoF) method, and a compressible VoF method. We assessed the capability of these three numerical methods to achieve suitable numerical predictions of sloshing phenomena, specifically, air pockets and bubbles on the free surface inside a test tank. To observe the described sloshing phenomena, we simulated tank motions leading to well defined single impact wave motions. We performed repeated physical tests for validation purposes. Computed velocity and pressure time histories were compared to experimental data we obtained from Particle Image Velocimetry (PIV) and pressure sensor measurement. Grid sensitivity and turbulence model studies were performed. We demonstrated that the compressible VoF method was the most suitable method to obtain accurate predictions of sloshing phenomena.  相似文献   

9.
A two-dimensional nonlinear random sloshing problem is analyzed by the fully nonlinear wave velocity potential theory based on the finite element method. A rectangular container filled with liquid subjected to specified horizontal random oscillations is studied. Both wave elevation and hydrodynamic force are obtained. The spectra of random waves and forces have also been investigated, and the effects of the peak frequencies and spectral width of the specified spectrum used for the generation of the random oscillations are discussed. It is found that the energy mainly concentrates at the natural frequencies of the container and is dominant at the ith order natural frequency when the peak frequency is close to the ith order natural frequency. Some results are compared between the fully nonlinear solutions, the linear solutions and the linear plus second-order solutions.  相似文献   

10.
从无旋运动的理论出发,并利用微扰法,推导了液舱三维晃荡运动二阶共振问题的理论解。考虑纵荡和横荡运动情况,对液舱三维晃荡二阶共振问题进行了分析。当两个晃荡方向的和频(即其外部激发频率的和)或差频(即其外部激发频率的差值)等于液舱固有频率时,二阶共振发生;当某一晃荡方向(横荡或纵荡)外部激发频率与另一晃荡方向(纵荡或横荡方向)液舱某一固有频率的和或差值等于液舱另一固有频率时,二阶共振也会发生。进一步研究了各个二阶共振激发频率下水深变化对晃荡振幅的影响。结果表明,对于两个晃荡方向外部激发频率的和频和单一晃荡方向(纵荡或横荡)某一个激发频率与另一晃荡方向(横荡或纵荡)某一个属于奇模的固有频率的和频所引发的共振情况,水深变化对共振振幅大小的影响比较大;而对于相应差频所引发的共振情况,水深变化对共振振幅大小的影响比较小。  相似文献   

11.
Many researchers have studied a wide range of nonlinear equations of motion describing a ship rolling in waves. In this study, a form of nonlinear equation governing the motion of a rolling ship subjected to synchronous beam waves is suggested and solved by the generalized Duffing's method in the frequency domain. Various representations of damping and restoring terms found in the literature are investigated and their solutions are analyzed by the above-mentioned method. Comparative results of nonlinear roll responses are obtained for four distinct vessel types at resonance conditions which constitute the worst situation. The results indicate the importance of roll damping and restoring, when constructing a nonlinear roll model. An inappropriate selection of damping and restoring terms may lead to serious discrepancies with reality, especially in peak roll amplitudes.  相似文献   

12.
13.
A new hybrid method for the time-domain nonlinear simulation of the hydroelastic load effects and the peak-over-threshold (POT) method for the calculation of the short-term extreme responses are briefly described and applied to a flexible containership of the latest design. Statistical analysis has been carried out to study the sensitivity of the predicted extreme vertical bending moments and vertical shear forces to the changes in the threshold of the POT method, as well as the statistical uncertainty in the prediction due to the limited duration of the nonlinear simulation. It is recommended that 90%–95% quantile should be used as the threshold in the POT method and more than 100 h of time-domain simulation should be carried out in order to obtain satisfactory predictions of the short-term extreme nonlinear load effects.  相似文献   

14.
The semi-Lagrangian procedure is widely used for updating the fully-nonlinear free surface in the time domain. However, this procedure is only available to cases when the body surface is vertical near the waterline. Present study introduces an improved semi-Lagrangian procedure which removes this ‘vertical-wall’ limitation. Coupling with the boundary element method, the improved semi-Lagrangian procedure is applied to the simulation of fully-nonlinear sloshing waves in non-wall-sided tanks. From the result comparison with the open source CFD software OpenFOAM, it is confirmed that this numerical scheme could guarantee a sufficient accuracy. Further series studies on 2D and 3D fully-nonlinear sloshing waves in wedged tanks are performed. Featured phenomena are observed which are distinct from those in wall-sided tanks.  相似文献   

15.
It is well known in the field of marine hydrodynamics that the added mass, damping and wave exciting forces are functions of frequency (Newman, 1977. Marine Hydrodynamics. MIT Press, Cambridge). Although most previous studies of nonlinear ship rolling motion have assumed that these forces do not vary with frequency, in this study the frequency dependent added mass and damping coefficients are approximated in the time domain with extended state space variables. Using numerical time simulation (integration), the extended state space model is compared to the constant coefficient model with a constant frequency forcing and the results for two constant value approximations of the added mass and damping are compared to the extended state space model with a multiple component pseudo random forcing.  相似文献   

16.
The resonance phenomenon of fluid motions in the gap between ship section, seabed and vertical quay wall is studied numerically and experimentally. The natural frequency of the fluid motions in the gap is derived. A two-dimensional time-domain coupled numerical model is developed to calculate the non-linear wave forces acting on a ship section against vertical quay in a harbor. The fluid domain is divided into an inner domain and an outer domain. The outer domain is the area between the left side of ship section and the incident boundary, where flow is expressed by Boussinesq equations. The rest area is the inner domain, which is the domain beneath the ship section plus the domain between the right side of ship section and vertical quay wall. The flow in the inner domain is expressed by Newton's Second Law. Matching conditions on the interface between the inner domain and the outer domain are the continuation of volume flux and the equality of pressures. The numerical results are validated by experimental data.  相似文献   

17.
This paper proposes a new approximation to energy dissipation in time domain simulation of sloshing waves by use of a linear potential theory.The boundary value problem is solved by the NURBS(non-uniform rational B-spline) higher-order panel method,in which a time-domain Green function is employed.The energy dissipation is modeled by changing the boundary condition on solid boundaries.Model experiments are carried out in a partially filled rectangular tank with forced horizontal motion.Sloshing-induced internal pressures and horizontal force obtained numerically and experimentally are compared with each other.It is observed that the present energy dissipation approximation can help produce a fair agreement between experimental forces and those of numerical simulations.  相似文献   

18.
液体晃荡现象在诸多工程领域具有深刻的研究意义,并引起了广泛的关注。基于Level-set方法,借助流场通度的概念,模拟了流场内具有障碍物的液体晃荡现象。选取不同形式的防晃结构分析研究对晃荡的抑制效果,得到几点关于防晃结构的设计与选择的重要结论。计算结果表明,通度系数法与Level-set方法的结合使用,能够有效地处理流场内带有障碍物的液体晃荡问题,该方法具有一定的可行性和应用前景。  相似文献   

19.
系泊船非线性波浪力时域计算:二维模型   总被引:6,自引:1,他引:6  
王大国  邹志利 《海洋学报》2004,26(2):104-117
为找到具有工程实用价值的港口系泊船波浪力的时域计算方法,建立了在港口中存在系泊船时非线性波浪力时域计算的垂直二维耦合模型:用Boussinesq方程计算船的两侧的外域,用欧拉方程计算船底面下的内域,两域在交界面处的连接条件是流量连续和压力相等.将复平面内的边界元方法应用于所研究问题,对耦合模型进行了验证.进行了相关模型实验,实验结果与数值计算结果比较表明这两种数值计算模型都具有满意的精度,但耦合模型的计算效率要远远高于边界元方法的计算效率.本耦合模型的数学处理简单,可适用于工程计算.  相似文献   

20.
MingKang Wu  Torgeir Moan 《Ocean Engineering》2007,34(11-12):1745-1756
A new hybrid method for the time-domain nonlinear simulation of the hydroelastic load effects and the peak over threshold (POT) method for the calculation of the short-term extreme responses are briefly described and applied to a flexible SL-7 class containership and a flexible liquefied natural gas (LNG) ship. Three stiffness levels, three stiffness distributions and three modal damping ratios are used to study the influence of the hull flexibility and structural damping on the short-term prediction of extreme vertical hydroelastic load effects. The results give justification for some simplified treatment of the first vertical flexible mode in early design stage when structural details are not available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号