首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advanced Geostructural Survey Methods Applied to Rock Mass Characterization   总被引:3,自引:1,他引:2  
The location and orientation of rock discontinuities, which are traditionally obtained from geological surveys with obvious drawbacks (safety, rock face accessibility, etc.), may also be derived from a detailed and accurate photogrammetric or laser scanning survey. Selecting from the point cloud determined on the rock face a set of points distributed on a particular discontinuity, location, dip, and dip direction can be computed from the least-squares estimate of the plane interpolating the set of points. Likewise, the normal vector to the surface may be computed from an interpolation or approximation of the surface by appropriate functions. To become a real alternative (both in terms of productivity as well as accuracy) to a traditional survey, interactive or automated software tools are necessary, to allow the efficient selection of the point sets on the discontinuities or the interpretation of the normal vector pattern. After introducing the two best technologies available today for data acquisition and their performance, the paper presents an approach, based on the random sample consensus (RANSAC) procedure, to the segmentation of the point cloud into subsets, each made of points measured on a discontinuity plane of the rock face. For each subset, the plane’s equations coefficients are first determined by robust estimation and then refined by least-squares estimation after outlier removal. The segmentation algorithm has been implemented in RockScan, a software tool developed to facilitate the interaction with the point cloud in the identification of the discontinuities; rather than using the three-dimensional (3D) data, selection of regions of interest is performed on oriented images of the rock face. Finally, application of RockScan to four different test sites is discussed and results presented. The sites differ in size (from tens to hundreds of meters), rock surface characteristics, and the technology used to produce the point cloud (in three cases photogrammetry, in the fourth laser scanning), giving the opportunity to test the methodology in different contexts. In the first and in the fourth site an extensive traditional survey has been performed, providing reference data to validate the RockScan results.  相似文献   

2.
本文分别以非接触式测量与三维裂隙网络模拟技术对汶川县绵虒镇大溪沟沟口高陡斜坡的结构面系统进行了深入研究。以无人机、数字近景摄影测量与三维激光扫描方法建立了现场斜坡的三维DEM模型并识别与解译了斜坡的结构面系统。尤其是采用无人机与近景摄影测量技术,识别并解译了整体斜坡的长大控制性结构面与坡面上的6663条随机构造结构面。基于以上数据,本文提出了一种适用于高陡斜坡分析的超大窗口三维裂隙网络模拟方法,采用概率统计与空间几何推导的方法,建立了岩体三维结构面的直径、产状与密度计算方法。这种方法更加简便且针对性强,现场验证也表明其具有较高的模拟精度。  相似文献   

3.
This paper reviews the application of close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Terrestrial remote sensing techniques are being increasingly used as a complement to traditional scanline and window mapping methods. They provide more comprehensive information on rock cuts, allow surveying of inaccessible outcrops, and increase user safety. Selected case studies are used to estimate the accuracy of several 3D model registration approaches and the most time-, effort- and cost-effective methods are highlighted. It is shown that simple registration networks are able to provide adequate measurement of discontinuity orientation for engineering purposes. The case studies presented also illustrate the effects of sampling bias and limitations related to discontinuity characterization using remote sensing techniques. Vertical orientation bias and occlusion can be of particular concern when persistent discontinuities dip at the same angle as the camera/scanner line-of-sight. Major advantages of the techniques are presented illustrating how terrestrial remote sensing techniques provide rapid spatial measurements of discontinuity location, orientation and curvature and are well suited to the quantification of persistence magnitudes greater than 3 m.  相似文献   

4.
岩体结构要素分形几何研究   总被引:5,自引:1,他引:4  
本文研究了岩体结构诸要素, 包括结构面形态、结构面厚度、结构面分布、产状分布、孔隙分布颗粒表面形态等的分形表征, 目的是提高岩体结构的定量描述程度, 为岩体工程的定量评价提供新的途径。  相似文献   

5.
王旭  晏鄂川  余子华 《岩土力学》2006,27(4):601-604
分析结构面在岩体中的分布和组合特征是研究岩体稳定性的前提。根据结构面网络随机模拟方法,通过对岩体表面结构面的测量,可以建立岩体结构面空间分布的概率统计模型,从而确立了岩体结构面的网络结构模型。在此基础上分析了局部临空块体的空间几何形态,指出了块体的可能破坏形式,从宏观角度对块体系统整体稳定性进行了预测。  相似文献   

6.
Several high-altitude slope instability phenomena, involving rock blocks of different volumes, have been observed in recent years. The increase in these phenomena could be correlated to climatic variations and to a general increase in temperature that has induced both ice melting with consequent water seepage and glacial lowering, with a consequent loss of support of the rock face. The degradation of the high-altitude thermal layer, which is known as “permafrost”, can determine the formation of highly fractured rock slopes where instabilities can concentrate. The present research has developed a methodology to improve the understanding and assessment of rock slope stability conditions in high mountain environments where access is difficult. The observed instabilities are controlled by the presence of discontinuities that can determine block detachments. Consequently, a detailed survey of the rock faces is necessary, both in terms of topography and geological structure, and in order to locate the discontinuities on the slope to obtain a better geometric reconstruction and subsequent stability analysis of the blocky rock mass. Photogrammetric surveys performed at different times allow the geostructure of the rock mass to be determined and the rock block volumes and detachment mechanisms to be estimated, in order to assess the stability conditions and potential triggering mechanisms. Photogrammetric surveys facilitate both the characterisation of the rock mass and the monitoring of slope instabilities over time. The methodology has been applied in a case study pertaining to the North Face of Aiguilles Marbrées in the Mont Blanc massif, which suffers from frequent instability phenomena. A slope failure that occurred in 2007 has been back-analysed using both the limit equilibrium method (LEM) and 3D distinct element modelling (DEM). The method has been supported and validated with traditional in situ surveys and measurements of the discontinuity orientation and other rock mass features.  相似文献   

7.
Practical visualization of rock structure   总被引:12,自引:0,他引:12  
The conventionally applied method for visualizing the structure of a rock mass is limited to plotting the orientation of individual discontinuities by using the Schmidt stereographic net. Their spacing is not illustrated and other structural features, such as undulation and twisting, cannot be interpreted from such sterographic views. A new mode of visual presentation of rock structural features of one or several different types in rock volumes of any size that makes all this possible is proposed in the present report. The primary purpose is to quantify, for all elements of a rock mass where the structure has been evaluated by borehole investigations or mapping in the course of underground excavation, the orientation and average spacing of defined discontinuities like hydraulically and mechanically active fractures. These local structural patterns, which are plotted on three of the six faces of cubical boxes with defined edge length and with one edge oriented N−S can be combined by applying the mathematical tool for connecting faces with which certain visualization codes like Alias Sketch are equipped. This combines different local rock structures to form regional patterns that can reveal undulation and twisting and important variations in spacing of major discrete discontinuities. Visualization can be given in true perspective or orthographic form and larger discontinuities that have been identified in the field, such as fracture zones, can be introduced in the model for correlation with smaller features. Furthermore, the stress situation at all sites where rock stress measurements have been made can be visualized in the model in the form of principal planes. The proposed models can be visualized from any “camera angle” and also shown in Quick Time VR form, i.e. as being slowly rotated around any predetermined axis. This facilitates definition and selection of the rock structure, local or regional, for numerical calculations.  相似文献   

8.
Traditional surveying methods are often not sufficient to achieve a complete geomechanical characterization of the rock mass, to analyze the instability mechanisms threatening the cultural heritage of hilltop historic towns. In Pitigliano (Tuscany, Central Italy), terrestrial laser scanning was employed complementarily to conventional geomechanical techniques. The overall 3D survey of the exposed surfaces was combined with scanlines of the inner walls of the subterranean cavities running underneath the historic centre. The rock mass discontinuities geometry was extracted, and the most critical instability mechanisms were mapped, with particular interest in the potential impacts on the ancient buildings located along the cliff edge. The geomechanical analysis of the surveyed joint sets confirmed a structural control on the cliff morphology by two main joint sets. Thanks to the laser scanner-based kinematic analysis, flexural toppling and wedge failure were found as the main hazardous instability mechanisms in Pitigliano. Finally, the conservation criticalities were identified and a pilot monitoring system was installed in a sector highly susceptible to block detachment.  相似文献   

9.
The rock mass structure determines the possible unstable blocks that can induce rock fall phenomena. The stability analyses must therefore be based on an accurate geo-structural survey. In this work, the stability conditions of several steep slopes along a motorway in the Far East have been evaluated through key block analysis based on traditional surveys and on laser scanner acquisitions. Discontinuity orientations and positions on the rock face are derived from the point cloud in order to perform the reconstruction of the rock mass and to identify blocks in the slope. Results obtained from both the traditional and the new method is in good agreement. Stability analyses have been performed for evaluating the kinematic feasibility of different failure mechanisms. The rock block shapes and volumes are computed by performing 2D and 3D analyses whereas the failure mechanisms are examined using the key block method. Parametrical analyses have been carried on to evaluate the influence of slope angle variation. DEM models have also been set up. The relative hazard is determined by statistically evaluating the kinematical feasibility of different failure mechanisms. Hazard mapping has been utilized to identify the best methodology for risk mitigation.  相似文献   

10.
因长期遭受地质作用和构造力的改造作用,地下岩体中存在大量的软弱破碎带,隧道开挖穿越这一地带很容易出现较大的变形,甚至出现塌方等事故。论文采用TGP超前地质预报与掌子面围岩调查相结合的方法进行隧道掌子面及前方未开挖岩体的精细化地质调查,获取了隧道围岩的Hoek-Brown参数。采用FLAC3D数值模拟方法,分析了破碎带围岩在既定支护条件下的稳定性,并与现场监测数据进行对比,验证此方法的正确性。研究结果表明,数值模拟结果与实际监测结果较为吻合,可以将此方法用于指导未开挖段隧道的稳定性预测,以确保隧道掘进过程的施工安全。  相似文献   

11.
12.
在应用数字近景摄影测量进行岩体结构面几何信息快速获取时,需要在岩体上布设一定数量的控制点,但特殊区域岩体(隧道、硐室、采石场)的结构面相对破碎、特征点极不明显,并且受施工进度的影响,无法在岩体上布设控制点。针对这一问题,本文应用自行设计的活动控制架,在控制架上布设28个控制点,将控制架和岩体结构面一起摄影,然后在VZ(VirtuoZo)工作站上进行内业解译,获取岩体结构面上特征点的空间坐标,再依据所给产状公式获取结构面信息。以净月二采石场岩体边坡为研究对象,进行了活动控制架安装与检验、外业数据采集与内业数据处理等工作;同时基于误差理论点位精度评定方法,对解译的控制点坐标与岩体结构面产状(倾向、倾角)同实测值对比并进行精度分析。结果表明,该方法测量的岩体结构面产状中误差:m倾向=±4°,m倾角=±3°,满足岩体结构面精度测量要求。  相似文献   

13.
Rock Mass Rating (RMR) measurements from 65 sites within Huntly East underground coal mine are presented. All measurements are in coal, for which the dominant discontinuities are vertical cleat. Basic RMR values using two discontinuity spacings are presented: overall RMR based on the average spacing of all individual discontinuities; and cleat zone RMR based on the average spacing between zones of cleat. Cleat orientations are highly variable, but on average approximately parallel horizontal stress axes (face cleat follows maximum horizontal stress axis, butt cleat follows minimum horizontal stress axis).Contours of RMR variations throughout the mine are used to compare rock mass conditions with geological structure. It is apparent that: (1) RMR is least within downthrown fault blocks, and particularly immediately on the downthrown sides of faults, and greatest in upthrown fault blocks; and (2) RMR contours parallel horizontal stress axes within fault-bounded blocks, and bend to parallel faults at block boundaries. From similar contours for parameters contributing to RMR, the Rock Quality Designation (RQD), groundwater rating, and discontinuity condition rating create most of the observed variations in RMR. RQD is determined from the measured discontinuity frequency and hence is a measure of the degree of fracturing of the rock mass. This is interpreted as influencing the groundwater and condition parameters directly by allowing greater water ingress. Discontinuity frequency is greatest (least spacing) in the immediate vicinity of faults, and in downthrown fault blocks, generating low RMR values. Within fault blocks RQD varies little, so RMR contours align with cleat orientations.As RMR contours, faults, stress field and cleat orientation are clearly interrelated, there is unequivocally a connection between RMR and structural geology; this allows some predictive capacity in terms of ground conditions. If geological features can be accurately defined through either drilling programs or seismic surveys, then ground conditions may be predicted before panels are driven.  相似文献   

14.
高速远程滑坡的演化机制与运动过程受控于岩体结构.以重庆市武隆县鸡尾山滑坡为例,采用地面激光扫描技术,获取岩体结构面几何信息,基于离散元数值模拟方法,考虑岩体结构特征,分析高速远程滑坡演化过程及其致灾范围.研究结果表明:(1) 岩体结构特征由岩体内部发育的结构面所决定,针对点云数据开展空间几何计算与聚类分析,可以快速精细地获取岩体结构面产状信息,从而进行岩体结构面识别与组别划分;(2) 将岩体结构特征评价结果导入离散元模型中,能够实现高速远程滑坡致灾范围的快速评价目的,并且取得了与实际滑动距离较为吻合的结果.   相似文献   

15.
The visualization of rock structure is a very useful and important technique in many aspects in geological and geotechnical engineering such as investigating and evaluating the stability of a high rock slope. The conventional method used to visualize rock structure is limited to plotting the orientation of individual discontinuities by using the Schmidt stereographic net. The present paper shows a new technique to visualize the three-dimensional structure of rock masses. The fitting function for three-dimensional rock structure was established based on data gathered from field survey. Two fitting methods by which the discontinuous points gathered from a plane and discrete points from field survey were fitted respectively are suggested. The technique to visualize the three-dimensional structure of rock masses includes many aspects such as projection transformation, blanking and mutual cutting, are investigated. Based on the visualizing technique, the rock structure at the site of Xilupdu dam which is being built in Southwest of China was investigated.  相似文献   

16.
何秉顺  丁留谦  刘昌军 《岩土力学》2006,27(Z2):643-648
地面三维激光扫描技术是一项较新的数据收集与分析技术,它可以快速扫描目标,获得高密度,高精度的目标空间坐标,配合后处理软件,进行各种测绘、分析、仿真工作。介绍了三维激光扫描技术的原理,对目前的主要激光扫描硬件进行了比较,最后介绍了三维激光扫描技术在岩土工程应用的主要两个方面:边坡变形监测与岩石裂隙面勘察。相比常规监测和地质调查技术,三维激光扫描技术具有高精度、速度快、节省人工的优势,具有较大的应用潜力。  相似文献   

17.
The primary objective of this paper is to present a semiautomatic procedure that, integrated with traditional methods, can be useful for a rapid definition of rock fall susceptibility scenarios with the purpose of civil protection. Due to its morphology (steep slopes and narrow valleys), regional seismicity, and rock mass characteristics, the Nera Valley (Valnerina, Umbria Region, Italy) is characterized by high rock fall risk. With the aim of covering a wide range of features and investigating the main advantages and drawbacks of the proposed approach, data collection (terrestrial laser scanning (TLS) and geomechanical surveys) was carried out at three different slopes. Detailed three-dimensional (3D) models were created to reconstruct the shape and volume of the most unstable blocks, to define the position of the main rock fall source areas, and to precisely distinguish the outcropping materials and the position of the elements at risk for reliable runout analyses. The proposed approach can be useful in supporting proper maintenance and land management programs both in ordinary and in emergency circumstances.  相似文献   

18.
陈庆发  尹庭昌  高远 《岩土力学》2019,40(8):3181-3188
针对现有岩体结构均质区划分方法应用于地下矿山时存在细节辨识能力偏弱等问题,开展地下矿山岩体结构均质区三维精确划分方法研究。以广西铜坑矿锌多金属矿体3^#矿块为例,从岩体空间结构展布特性出发,构建由确定性与随机性结构面耦合的裂隙岩体三维模型;将岩体模型正交网格离散化,并选取模型网格子区的块体化程度值为均质区划分判据;利用K-means算法衡量不同数据源(网格)的相似性,结合误差平方和(SSE)度量聚类质量;最后重构三维岩体结构均质区,形成了一种地下矿山岩体结构均质区三维划分方法。研究成果表明:利用该方法能够从三维角度精确划分地下矿山岩体结构均质区,可为后续岩体质量评价及岩体离散元模拟的模型构建等工作提供有益参考。  相似文献   

19.
A Methodology for Reliability-Based Design of Rock Slopes   总被引:10,自引:0,他引:10  
Summary A reliability-based methodology for the design of rock slopes, that can easily be implemented by the practicing engineers is proposed. The advanced first-order second-moment (AFOSM) method is adopted as the reliability assessment model and its application is illustrated for the case of plane failure. A model is developed within the framework of first-order second-moment approach to analyze the uncertainties underlying the in situ shear strength properties of rock discontinuities. Here, particular emphasis is given on the assessment of uncertainties related to the shear characteristics of clean, unfilled rock discontinuities under low normal stress levels. An extensive literature survey on the shear characteristics of discontinuities is carried out in order to collect data for the quantification of uncertainties. The data extracted from this literature survey are classified and reprocessed so that they can be utilized in the uncertainty analysis model. A user friendly software called ROCKREL is developed to carry out the numerical computations and to make the proposed design format more practical. Received April 16, 2001; accepted June 10, 2002; Published online November 19, 2002 Authors' address: Prof. Celal Karpuz, Middle East Technical University, Faculty of Engineering, Department of Mining Engineering, 06531 Ankara, Turkey; e-mail: karpuz @metu.edu.tr  相似文献   

20.
Hidden subvertical discontinuities oriented parallel to subparallel to the exposed faces of outcropping sandstone were effectively mapped at three different study sites in central Missouri using a ground-penetrating radar system (GPR) equipped with a 400-MHz monostatic antenna and a survey wheel. At each site, a suite of 2-D ground-penetrating radar profiles were acquired along multiple closely spaced traverses on relatively smooth exposed rock surfaces. Time-zero correction was applied to the raw GPR data which were then processed using band-pass filtering, range and display gain, color transformation, and deconvolution techniques. Pseudo 3D images of each identified discontinuity at each site were constructed based on the interpretation of the nonmigrated ground-penetrating radar profiles. These pseudo 3D images were hand-migrated and transformed into true 3D images which depict variable depths at “perpendicular horizontal distance” to each discontinuity relative to the exposed rock face. The results demonstrate that GPR can be used to detect and map hidden discontinuities. This information can then be used for rock slope stability analysis and rock engineering purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号