首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
The area adjoining the western part of Archaean Nellore schist belt and the eastern margin of the Proterozoic Cuddapah basin in south Peninsular India is marked by emplacement of a number of granite plutons of Proterozoic age, intermittently extending over a stretch of 350 km from Vinukonda in the north to Sri Kalahasti in the south. Vinukonda, Darsi, Podili and Anumalakonda plutons are intensely deformed particularly along the margins, while development of crude deformational fabric is noticed in Kanigiri, Rapur and Kayyuru-Vendodu plutons. Petrographically majority of these granites vary from alkali feldspar granite to granite with the exception of Rapur granite which varies from granite to granodiorite. Geochemically they exhibit calc-alkaline trend and in A/NK-A/CNK plot they are positioned at the juncture of peraluminous-metaluminous-peralkaline field. Characteristically, majority of these granites are fluorite bearing. Biotite mineral chemistry suggests high FeOT contents (31.68 to 34.69 %) and very low MgO contents (0.49 to 2.41 %). Geochemically, these are charecterised by high SiO2 (69 to 74.5 %), Na2O+K2O (8.19 to 10.11%), Zr (280–660ppm), Y (70–340 ppm), Rb content (180–370 ppm) and high REE contents (except Eu); and low CaO (0.01 to 1.99), MgO (0.01 to 0.92%) and Sr (10 ppm to 85 ppm) contents. Rare earth element studies reveal a general enrichment of LREE, pronounced negative Eu anomaly; flat and depleted HREE. Enriched LILE and HFSE contents; presence of fluorite and interstitial biotite indicate that these granites are crystallized from a fluorine saturated magma derived from enriched crustal source. The field setup, distinct mineralogy and chemical characteristics suggest that these granite plutons are emplaced along a major tectonic zone i.e. terrane boundary shear zone (TBSZ) in a late-orogenic to anorogenic tectonic setup, close to the vicinity of a collision boundary zone; western margin of NSB and eastern margin of Nallamalai Fold Belt (NFB). The Proterozoic granite magmatism reported in the present studies represents a significant event of Precambrian crustal growth at the juncture of two tectonically contrasting terranes i.e. the Archaean Nellore schist belt and the Proterozoic Cuddapah basin in eastern Dharwar craton.  相似文献   

2.
Detailed mineralogical, bulk-rock geochemical and Sr-Nd isotopic data for the recently discovered Ahobil kimberlite(Pipe-16) from the Wajrakarur kimberlite field(WKF), Eastern Dharwar craton(EDC),southern India, are presented. Two generations of compositionally distinct olivine, Ti-poor phlogopite showing orangeitic evolutionary trends, spinel displaying magmatic trend-1, abundant perovskite, Tirich hydrogarnet, calcite and serpentine are the various mineral constituents. On the basis of(i) liquidus mineral composition,(ii) bulk-rock chemistry, and(iii) Sr-Nd isotopic composition, we show that Ahobil kimberlite shares several characteristic features of archetypal kimberlites than orangeites and lamproites. Geochemical modelling indicate Ahobil kimberlite magma derivation from small-degree melting of a carbonated peridotite source having higher Gd/Yb and lower La/Sm in contrast to those of orangeites from the Eastern Dharwar and Bastar cratons of Indian shield. The TDm Nd model age(~2.0 Ga) of the Ahobil kimberlite is(i) significantly older than those(1.5~1.3 Ga) reported for Wajrakarur and Narayanpet kimberlites of EDC,(ii) indistinguishable from those of the Mesoproterozoic EDC lamproites,and(iii) strikingly coincides with the timing of the amalgamation of the Columbia supercontinent. High bulk-rock Fe-Ti contents and wide variation in oxygen fugacity fO_2, as inferred from perovskite oxybarometry, suggest non-prospective nature of the Ahobil kimberlite for diamond.  相似文献   

3.
The Baerzhe alkaline granite pluton hosts one of the largest rare metal (Zr, rare earth elements, and Nb) deposits in Asia. It contains a geological resource of about 100 Mt at 1.84 % ZrO2, 0.30 % Ce2O3, and 0.26 % Nb2O5. Zirconium, rare earth elements (REE), and Nb are primarily hosted by zircon, yttroceberysite, fergusonite, ferrocolumbite, and pyrochlore. Three types of zircon can be identified in the deposit: magmatic, metamict, and hydrothermal. Primary magmatic zircon grains occur in the barren hypersolvus granite and are commonly prismatic, with oscillatory zones and abundant melt and mineral inclusions. The occurrence of aegirine and fluorite in the recrystallized melt inclusions hosted in the magmatic zircon indicates that the parental magma of the Baerzhe pluton is alkali- and F-rich. Metamict zircon grains occur in the mineralized subsolvus granite and are commonly prismatic and murky with cracks, pores, and mineral inclusions. They commonly show dissolution textures, indicating a magmatic origin with later metamictization due to deuteric hydrothermal alteration. Hydrothermal zircon grains occur in mineralized subsolvus granite and are dipyramidal with quartz inclusions, with murky CL images. They have 608 to 2,502 ppm light REE and 787 to 2,521 ppm Nb, much higher than magmatic zircon. The texture and composition of the three types of zircon indicate that they experienced remobilization and recrystallization during the transition from a magmatic to a hydrothermal system. Large amounts of Zr, REE, and Nb were enriched and precipitated during the transitional period to form the giant low-grade Baerzhe Zr–REE–Nb deposit.  相似文献   

4.
Western Ghats Belt of western Dharwar Craton is dominated by metavolcanic rocks (komatiites, high-magnesium basalts (HMBs), basalts, boninites) with occasional metagabbros. This rock-suite has undergone post-magmatic alteration processes corresponding to greenschist- to lower-amphibolite facies conditions. Komatiites are Al-depleted, characterized by lower Al2O3/TiO2 and high CaO/Al2O3. Their trace element distribution patterns suggest most of the primary geochemical compositions are preserved with minor influence of post-magmatic alteration processes and negligible crustal contamination. Chemical characteristics of Al-depleted komatiites imply their derivation from deeper upper mantle with/without garnet involvement. HMBs and basalts are differentiated based on their magnesium content. Basalts and occasionally associated gabbroic sills have similar geochemical characteristics. HMB are characterized by light rare earth element (LREE) enrichment, with significant Nb–Ta and Zr negative anomalies. Basalts and associated gabbros display tholeiitic affinity, with LREE-enriched to slightly fractionated heavy rare earth element (HREE) patterns. Boninites are distinctive in conjunction of low abundances of incompatible elements with respect to the studied komatiites. Chondrite-normalized REE patterns of boninites show relative enrichment in LREE and HREE with respect to MREE. Prominent island arc signatures are evident in HMB, basalts, boninites, and gabbros in terms of their Nb–Ta and Zr–Hf negative anomalies, LREE enrichment and HFSE depletion. It is suggested that these HMB–basalts (associated gabbros)–boninites are the products of arc magmatism. Their REE chemistry attests to a gradual transition in melting depth varying between spinel and garnet stability field in an arc regime. The close spatial association but contrasting elemental characteristics of komatiites and HMB–basalts–boninites can be explained by a plume-arc model, in which the ~3.0 Ga komatiites are considered to be the products of plume volcanism in an oceanic setting, while the HMB, basalts, boninites, and associated gabbros were emplaced in a continental margin setting around 2.8–2.7 Ga.  相似文献   

5.
Extremely U-depleted (<1 ppm) zircons from H8 banded ores in the East Orebody of the Bayan Obo REE–Nb–Fe deposit are presented, with mineral compositions, textures, 232Th–208Pb SHRIMP ages and petrological context. Cores of East Orebody zircon contain up to 7 wt% HfO2 and are zoned, depicting bipyramidal crystal forms. A distinct generation of patchy, epitaxial rim zircon, similarly depleted in U, is intergrown with rare earth ore minerals (bastnäsite, parisite, monazite). Overprinting aegirine textures indicate paragenetically late, reactive Na-rich fluids. Chondrite-normalized REE patterns without Eu anomalies match closely with those from the Mud Tank and Kovdor carbonatitic zircons. Increased HREE in rims ((Lu/Gd)N 43–112) relative to cores ((Lu/Gd)N 6–7.5) and the localized presence of xenotime are attributable to reactive, mineralizing fluid compositions enriched in Y, REE and P. Cathodoluminescence further reveals HREE fractionation in rims, evidenced by a narrow-band Er3+ emission at 405 nm. The extreme depletion of U in core and rim zircon is characteristic for this mineral deposit and is indicative of a persistent common source. U depletion is also a characteristic for zircons from carbonatitic or kimberlitic systems. 232Th–208Pb (SHRIMP II) geochronological data reveal the age of zircon cores as 1,325 ± 60 Ma and a rim-alteration event as 455.6 ± 28.27 Ma. The combined findings are consistent with a protolithic igneous origin for zircon cores, from a period of intrusive, alkaline–carbonatitic magmatism. Fluid processes responsible for the REE–Nb mineralizations affected zircon rim growth and degradation during the widely reported Caledonian events, providing a new example in a localized context of HREE enrichment processes.  相似文献   

6.
The Jinshajiang–Red River porphyry Cu–Mo metallogenic belt is an important Cenozoic porphyry Cu–Mo mineralization concentrating zone in the eastern Indo‐Asian collision zone. New zircon U–Pb and molybdenite Re–Os ages and compilation of previously published ages indicate that porphyry Cu–Mo deposits in the belt did not form at the same time, i.e., the porphyry emplacement and relevant Cu–Mo mineralization ages of the Ailaoshan–Red River ore belt in south range from 36.3 Ma to 34.6 Ma, and from 36.0 Ma to 33.9 Ma, respectively, which are obviously younger than the porphyry emplacement ages of 43.8–36.9 Ma and the relevant Cu–Mo mineralization ages of 41.6–35.8 Ma of the Yulong ore belt in north. Tectonic studies indicated that the Jinshajiang fault system in north and Ailaoshan–Red River fault system in south of the Jinsjiang–Red river belt had different strike-slip patterns and ages. The right-lateral strike-slip motion of the Jinshajiang fault system initiated at ca. 43 Ma with corresponding formation of the Yulong porphyry Cu–Mo system, whereas the left-lateral strike-slip motion of the Ailaoshan–Red River fault system initiated at ca. 36 Ma with corresponding formation of the Ailaoshan–Red River porphyry Cu–Mo system. Therefore, the different ages of porphyry Cu–Mo systems, between in north and south of the Jinshajiang–Red River belt, indicate that the porphyry Cu–Mo mineralization is closely related to the divergent strike-slip movements between the Jinshajiang and Ailaoshan–Red River strike-slip faulting resulted from the Indo‐Asian collision. The tanslithospheric Jinshajiang–Red River faulting caused partial melting of the enriched mantle sources of alkali-rich porphyries by depressurization or/and asthenospheric heating, and facilitated the migration of alkali-rich magmas and the corresponding formation of alkali-rich porphyries and relevant Cu–Mo deposits in the belt.  相似文献   

7.
We present data on the composition of metasedimentary rocks from the greenstone belt of the Onot terrane (Sharyzhalgay uplift) and results of U–Pb dating (SHRIMP II) and Lu–Hf isotope study of detrital zircon from garnet–staurolite schists. The metasedimentary rocks of the Onot greenstone belt are dominated by garnet- and staurolite-bearing schists alternating with amphibolites (metabasalts) in the upper part of the section. Compositionally the protoliths of garnet–staurolite schists correspond to sedimentary rocks, ranging from siltstone to pelitic mudstone. The trace-element characteristics of the garnet–staurolite schists indicate that the terrigenous material was derived from three different rock types, such as tonalite–trondhjemite plagiogneisses (elevated Gd/Yb ratios), mafic rocks (elevated Cr/Th ratios and reduced Th/Sc ratios), and felsic igneous rocks formed by crustal melting (the presence of a Eu minimum), which agrees with the set of potential source rocks from the Onot terrane. The age of predominant detrital zircon reflects the erosion of mainly Neoarchean igneous rocks; this fact, combined with the poor rounding of zircon and tectonically active sedimentation conditions accompanied by mafic volcanism, suggests that the probably depositional age is ca. 2.7 Ga. Older source rocks (2.80–3.35 Ga) contributed to the sediment deposition along with the Neoarchean ones. According to the Hf isotope composition of detrital zircon from the garnet–staurolite schists, the source provenances had different crustal prehistories. The source provenances include Paleoarchean and juvenile Neoarchean crust and rocks formed by the mixing of melts from ancient and juvenile crustal sources.  相似文献   

8.
Linear, north–south trending Peddavura greenstone belt occurs in easternmost part of the Dharwar Craton. It consists of pillowed basalts, basaltic andesites, andesites (BBA) and rhyolites interlayered with ferruginous chert that were formed under submarine condition. Rhyolites were divided into type-I and II based on their REE abundances and HREE fractionation. Rb–Sr and Sm–Nd isotope studies were carried out on the rock types to understand the evolution of the Dharwar Craton. Due to source heterogeneity Sm–Nd isotope system has not yielded any precise age. Rb–Sr whole-rock isochron age of 2551 ± 19 (MSWD = 1.16) Ma for BBA group could represent time of seafloor metamorphism after the formation of basaltic rocks. Magmas representing BBA group of samples do not show evidence for crustal contamination while magmas representing type-II rhyolites had undergone variable extents of assimilation of Mesoarchean continental crust (>3.3 Ga) as evident from their initial ε Nd isotope values. Trace element and Nd isotope characteristics of type I rhyolites are consistent with model of generation of their magmas by partial melting of mixed sources consisting of basalt and oceanic sediments with continental crustal components. Thus this study shows evidence for presence of Mesoarchean continental crust in Peddavura area in eastern part of Dharwar Craton.  相似文献   

9.
Zircon formation and modification during magmatic crystallization and high-grade metamorphism are explored using TIMS and LA-ICP-MS U–Pb geochronology, Lu–Hf isotope chemistry, trace element analysis and textural clues on zircons from the Koraput alkaline intrusion, Eastern Ghats Belt (EGB), India. The zircon host-rock is a granulite-facies nepheline syenite gneiss with an exceptionally low Zr concentration, prohibiting early magmatic Zr saturation. With zircon formation occurring at a late stage of advanced magmatic cooling, significant amounts of Zr were incorporated into biotite, nearly the only other Zr-bearing phase in the nepheline syenite gneisses. Investigated zircons experienced a multi-stage history of magmatic and metamorphic zircon growth with repeated solid-state recrystallization and partial dissolution–precipitation. These processes are recorded by complex patterns of internal zircon structures and a wide range of apparently concordant U–Pb ages between 869 ± 7 Ma and 690 ± 1 Ma. The oldest ages are interpreted to represent the timing of the emplacement of the Koraput alkaline complex, which significantly postdates the intrusion ages of most of the alkaline intrusion in the western EGB. However, Hf model ages of TDM = 1.5 to 1.0 Ga suggest an earlier separation of the nepheline syenite magma from its depleted mantle source, overlapping with the widespread Mesoproterozoic, rift-related alkaline magmatism in the EGB. Zircons yielding ages younger than 860 Ma have most probably experienced partial resetting of their U–Pb ages during repeated and variable recrystallization events. Consistent youngest LA-ICP-MS and CA-TIMS U–Pb ages of 700–690 Ma reflect a final pulse of high-grade metamorphism in the Koraput area and underline the recurrence of considerable orogenic activity in the western EGB during the Neoproterozoic. Within the nepheline syenite gneisses this final high-grade metamorphic event caused biotite breakdown, releasing sufficient Zr for local saturation and new subsolidus zircon growth along the biotite grain boundaries.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号