首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Gondwana Research》2013,23(3-4):828-842
Whether any Grenvillian magmatic records are preserved in the North China Craton (NCC) is a key issue to understand the Proterozoic tectonic evolution of the NCC and its correlation to the supercontinent Rodinia. Meso- to Neo-proterozoic sedimentary series is well exposed in the NCC, but magmatic events in this period, especially of 1.3–1.0 Ga, have seldom been reported. New U–Pb isotopic dating and Hf isotopic composition analyses have been carried out in this study using SIMS and LA–ICP-MS methods on detrital zircons from sandstones of the Tumen Group in the Shandong Peninsula and quartz sandstones of the Sangwon System in the Phyongnam Basin, North Korea. The age populations of the detrital zircons of the Tumen Group are at ~ 2.5 Ga, ~ 1.85 Ga, ~ 1.7 Ga, ~ 1.58 Ga, ~ 1.5 Ga, ~ 1.36 Ga and ~ 1.2 Ga and those of the Sangwon System are at 1.88–1.86 Ga, ~ 1.78 Ga, 1.62–1.58 Ga, 1.46–1.41 Ga, ~ 1.32 Ga, ~ 1.17 Ga and ~ 980 Ma. Most of the age peaks of Neoarchean and Proterozoic correspond to the significant tectonic-magmatic-thermal events previously recognized in the NCC, revealing that the main provenances of the Tumen Group and the Sangwon System are Early Precambrian basement and Late Paleo- to Meso-proterozoic magmatic rocks of the NCC. Furthermore, the youngest detrital zircon ages of ~ 1.1 Ga from the Tumen Group and 984 Ma from the Sangwon System, as well as 910 Ma Rb–Sr whole rock isochron age of a limestone from the Tumen Group and 899 Ma mafic sills intruding the Sangwon System suggest that both groups were deposited in the Neoproterozoic, coevally with the Qingbaikou System in the Yanliao Aulacogen. The common zircon ages of 1.3–1.0 Ga from the Tumen Group and the Sangwon System, as well as the contemporaneous Penglai and Yushulazi Group in the eastern margin of the NCC, indicate that during the deposition of these sediments there have been significant contributions from Grenvillian magmatic rocks in the eastern NCC. This may provide clues to understand the possible relationship of the NCC and the supercontinent Rodinia. Moreover, the positive εHf (t) and ~ 2.8 Ga crust model ages of detrital magmatic zircons of 2.8–2.4 Ga suggest that there have been significant crustal growth at ~ 2.8 Ga in the eastern margin of the NCC, same as in other areas of the NCC.  相似文献   

2.
The Guelb Moghrein copper–gold deposit in the Islamic Republic of Mauritania reopened in 2006 and has produced copper concentrate and gold since then. The deposit is hosted in Neoarchaean–Palaeoproterozoic Fe–Mg carbonate-dominated metamorphic rocks interpreted as carbonate-facies iron formation. It forms tabular orebodies controlled by shear zones in the hanging wall and footwall of this meta-iron formation. Copper and gold are hosted in a complex sulfide ore in tectonic breccia replacing Fe–Mg carbonate and magnetite. Hydrothermal monazite dates the mineralization at 2492 ± 9 Ma. Two types of aqueous fluid inclusions suggest fluid mixing at 0.75–1.80 kbar and ~ 410 °C as the mineralization and precipitation mechanism, which is temporally coincident with regional retrograde metamorphism at 410 ± 30 °C (garnet-biotite). Distal alteration zones are enriched in K, Rb and Cu, whereas orebodies are depleted in K, Rb, Sr and Ba. The copper–gold mineralization at Guelb Moghrein formed during retrograde shearing in metamorphic rocks and contemporaneous hydrothermal alteration. The stable isotope signature of alteration and ore minerals suggest an external crustal fluid source. Fluids were focused in the reactive and competent meta-iron formation. Potassium alteration, magnetite and copper–gold mineralization suggest an IOCG mineral system akin similar deposits in Australia and Brazil.  相似文献   

3.
《Gondwana Research》2014,25(3):1202-1215
The South China Block, consisting of the Yangtze and the Cathaysia blocks, is one of the largest Precambrian blocks in eastern Asia. However, the early history of the Cathaysia Block is poorly understood due largely to intensive and extensive reworking by Phanerozoic polyphase orogenesis and magmatism which strongly overprinted and obscured much of the Precambrian geological record. In this paper, we use the detrital zircon U–Pb age and Hf isotope datasets as an alternative approach to delineate the early history of the Cathaysia Block. Compilation of published 4041 Precambrian detrital zircon ages from a number of (meta)sedimentary samples and river sands exhibits a broad age spectrum, with three major peaks at ~ 2485 Ma, ~ 1853 Ma and ~ 970 Ma (counting for ~ 10%, ~ 16% and ~ 24% of all analyses, respectively), and four subordinate peaks at ~ 1426 Ma, ~ 1074 Ma, ~ 780 Ma and ~ 588 Ma. Five of seven detrital zircon age peaks are broadly coincident with the crystallisation ages of ~ 1.89–1.83 Ga, ~ 1.43 Ga, ~ 1.0–0.98 Ga and ~ 0.82–0.72 Ga for known igneous rocks exposed in Cathaysia, whereas, igneous rocks with ages of ~ 2.49 Ga and ~ 0.59 Ga have not yet been found. The Hf isotopic data from 1085 detrital zircons yield Hf model ages (TDMC) between ~ 4.19 Ga and ~ 0.81 Ga, and the calculated εHf(t) values between − 40.2 and 14.4. The Archean detrital zircons are exclusively oval in shape with complicated internal textures, indicating that they were sourced by long distance transportations and strong abrasion from an exotic Archean continent. In contrast, the majority of detrital zircons in age between ~ 1.9 and ~ 0.8 Ga are euhedral to subhedral crystals, indicative of local derivation by short distance transportations from their sources. The oldest crustal basement rocks in Cathaysia were most likely formed by generation of juvenile crust and reworking of recycled Archean components in Late Paleoproterozoic at ~ 1.9–1.8 Ga, rather than in the Archean as previously speculated. Reworking and recycling of the continental crust are likely the dominant processes for the crustal evolution of Cathaysia during the Mesoproterozoic to Neoproterozoic time, with an intervenient period of significant generation of juvenile crust at ~ 1.0 Ga.Precambrian crustal evolutions of the Cathaysia Block are genetically related to the supercontinent cycles. By comparing detrital zircon data from Cathaysia with those for other continents, and integrating multiple lines of geological evidence, we interpret the Cathaysia Block as an orogenic belt located between East Antarctica, Laurentia and Australia during the assembly of supercontinent Columbia/Nuna at ~ 1.9–1.8 Ga. The Cathaysia Block amalgamated with the Yangtze Block to form the united South China Block during the Sibao Orogeny at ~ 1.0–0.89 Ga. The Laurentia–Cathaysia–Yangtze–Australia–East Antarctica connection gives the best solution to the paleo-position of Cathaysia in supercontinent Rodinia. The significant amount of ~ 0.6–0.55 Ga detrital zircons in Cathaysia and West Yangtze have exclusively high crustal incubation time of > 300 Ma, indicating crystallisation from magmas generated dominantly by crustal reworking. This detrital zircon population compares well with the similar-aged zircon populations from a number of Gondwana-derived terranes including Tethyan Himalaya, High Himalaya, Qiangtang and Indochina. The united South China–Indochina continent was likely once an integral part of Gondwanaland, connected to northern India by a “Pan-African” collisional orogen.  相似文献   

4.
The Beaverlodge district in northern Saskatchewan is known for “vein-type” uranium mineralization. Most of the uranium deposits are spatially related to major structures, and hosted by ca. 3.2–1.9 Ga granitic rocks (and albitite derived from them) and by ca. 2.33 Ga Murmac Bay Group amphibolite, all of which are unconformably overlain locally by deformed but unmetamorphosed redbeds of the ca. 1.82 Ga Martin Group, and by the flat-lying ca. 1.75–1.5 Ga Athabasca Group. The uranium mineralization is mainly hosted in fault rocks (breccias) and carbonate ± quartz ± albite veins, referred to as breccia-style and vein-style mineralization, respectively, with the latter being the focus of this study. Most of the mineralized veins occur in the basement rocks, although some crosscut the Martin Group. This study examines the field, petrographic, fluid inclusion and C-O isotope characteristics of mineralized and non-mineralized veins from 19 deposits/occurrences as well as from the Martin Group, with an aim to better understand the mineralizing environment and processes.The coexistence of liquid-dominated (L + V), vapour-dominated (V + L) and vapour-only (V) fluid inclusions within individual fluid inclusion assemblages (FIAs) in the veins suggests fluid immiscibility and heterogeneous trapping. The L + V inclusions with the lowest homogenization temperatures (Th) within individual FIAs are interpreted to represent homogeneous trapping of the liquid phase, which yield Th values from 78° to 330 °C (mainly 100° to 250 °C), and salinities from 0.2 to 30.8 wt.% NaCl equivalent. Mass spectrometric analysis of bulk fluid inclusions shows that the volatiles are dominated by H2O (average 97.2 mol%), with minor amounts of CO2, CH4, H2, O2, N2, Ar and He. Fluid pressures were estimated to be < 200 bars based on the inference of fluid immiscibility, fluid temperatures of 100° to 250 °C, and low concentrations of non-aqueous volatiles (< 3 mol%). The δ18OVPDB and δ13CVPDB of carbonate minerals associated with mineralization range from − 20.5 to − 8.9‰ and − 10.1 to − 0.9‰, respectively. The δ18OVSMOW values of the parent fluids calculated using the Th values range from − 9.6 to + 17.0‰, with the majority from 0 to + 5.0‰. O isotopes of paired equilibrium quartz and calcite, analyzed by secondary ion mass spectrometry (SIMS), yield temperatures from 161° to 248 °C, which are consistent with the fluid inclusion data.The new fluid inclusion and stable isotope data are inconsistent with a metamorphic or magmatic-hydrothermal model as proposed in some previous studies (for breccia-style and vein-style mineralization), but rather support a model in which the vein-type uranium mineralization took place at relatively low temperature (100° to 250 °C) and shallow (< 2 km) conditions, with fluid pressure fluctuating between hydrostatic and sub-hydrostatic regimes, possibly related to episodic faulting. The mineralizing fluids were mainly sourced from the Martin Lake Basin, and uraninite was precipitated as a result of mixing between this basin-derived fluid and fluids carrying reducing agents (Fe2 +, CH4) derived from the basement, although fluid-rock reactions and fluid immiscibility may have also played a role.  相似文献   

5.
The Gaoligong belt is located in the southeastern margin of the Tibetan plateau, and is bound by the Tengchong and Baoshan blocks. This paper presents new data from zircon geochronology, geochemistry, and whole-rock Sr–Nd–Pb–Hf isotopes to evaluate the tectonic evolution of the Gaoligong belt. The major rock types analysed in the present study are granitic gneiss, granodiorite, and granite. They are metaluminous to peraluminous and belong to high-K, calc-alkaline series. Laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) analyses of zircons from nine granitic rocks yielded crystallization ages of 495–487 Ma, 121 Ma, 89 Ma, and 70–63 Ma. The granitoids can be subdivided into the following four groups. (1) Early Paleozoic granitic gneisses with high εNd(t) and εHf(t) values of − 1.06 to − 3.45 and − 1.16 to 2.09, and model ages of 1.16 Ga to 1.33 Ga and 1.47 Ga to 1.63 Ga, respectively. Their variable 87Sr/86Sr and Pb values resemble the characteristics of the Early Paleozoic Pinghe granite in the Baoshan block. Our data suggest that the rocks were derived from the break-off of the Proto-Tethyan oceanic slab between the outboard continent and the Baoshan block, which induced the partial melting of Mesoproterozoic pelitic sources mixed with depleted mantle materials. (2) Early Cretaceous granodiorites with low εNd(t) and εHf(t) values of − 8.92 and − 4.91 with Nd and Hf model ages of 1.41 Ga and 1.49 Ga, respectively. These rocks have high initial 87Sr/86Sr (0.711992) and lower crustal Pb values, suggesting that they were derived from Mesoproterozoic amphibolites with tholeiitic signature, leaving behind granulite residue at the lower crust. (3) Early Late Cretaceous granites with low εNd(t) and εHf(t) values of − 9.58 and − 4.61 with Nd and Hf model ages of 1.43 Ga and 1.57 Ga, respectively. These rocks have high initial 87Sr/86Sr (0.713045) and lower crustal Pb isotopic values. These rocks were generated from the partial melting of Mesoproterozoic metapelitic sources resulting from the delamination of thickened lithosphere, following the closure of the Bangong–Nujiang Ocean and collision of the Lhasa–Qiangtang blocks. (4) Late Cretaceous to Paleogene granitic gneisses with low εNd(t) and εHf(t) values of − 4.41 to − 10 and − 5.95 to − 8.71, Nd model ages ranging from 1.08 Ga to 1.43 Ga, and Hf model ages from 1.53 Ga to 1.67 Ga, respectively. These rocks show high initial 87Sr/86Sr (0.713201 and 714662) and lower crustal Pb values. The data suggest that these rocks are likely related to the eastward subduction of the Neo-Tethyan Oceanic slab, which induced partial melting of Mesoproterozoic lower crustal metagreywacke. The results presented in this study from the Gaoligong belt offer important insights on the evolution of the Proto-Tethyan, Bangong–Nujiang, and Neo-Tethyan oceans in the southeastern margin of the Tibetan Plateau.  相似文献   

6.
The giant Jianchaling gold deposit is located in the Shaanxi Province, China. The mineralization is hosted by WNW-trending faults in the Mianxian-Lueyang-Yangpingguan (MLY) area. The mineralization can be divided into three stages based on mineralogical assemblages and crosscutting relationships of mineralized quartz veins. These stages, from early to late, are characterized by the mineral assemblage of: (1) quartz – coarse-grained pyrite – pyrrhotite – pentlandite – dolomite; (2) quartz – pyrite – gold – sphalerite – galena – carbonate – arsenopyrite – fuchsite; and (3) dolomite – calcite – quartz – fine-grained pyrite – realgar – orpiment.Three types of fluid inclusions have been recognized in this study based on petrographic and microthermometric measurements, including pure CO2 and/or CH4 (PC-type), NaCl-H2O (W-type), and NaCl-CO2-H2O (C-type) fluid inclusions. These fluid inclusion types are present in quartz from the Stage 1 and 2 assemblages, whereas the Stage 3 quartz only contains W-type fluid inclusions. The Stage 2 assemblage is associated with the mineralization at the Jianchaling deposit. Fluid inclusions of Stage 1 quartz homogenize mainly between 250° and 360 °C, with salinities up to 15.6 wt.% NaCl equiv., whereas the Stage 3 dolomite with homogenization temperatures of 160° – 220 °C and salinities of 1.1–7.4 wt.% NaCl equiv. This indicates that the ore fluid system evolved from CO2-rich, probably metamorphic hydrothermal to CO2-poor, meteoric fluid. All three types of fluid inclusions can be observed in the Stage 2 quartz, suggesting that this heterogeneous association was trapped from a boiling fluid system. These inclusions homogenized at temperatures of 200°–250 °C and salinities of 1.2–12.4 wt.% NaCl equiv. The estimated trapping pressures of the fluid inclusions are between 117 and 354 MPa in Stage 1, suggesting an alternating lithostatic–hydrostatic fluid system, which was controlled by a fault-valve at the depth of ~ 12 km.Two fuchsite samples collected from the Stage 2 polymetallic-quartz veins yielded well-defined 40Ar/39Ar isotopic plateau ages of 197 ± 2 and 194 ± 2 Ma, and 39Ar/36Ar-40Ar/36Ar normal isochrones of 198 ± 2 and 199 ± 2 Ma. This indicates that the mineralization at Jianchaling is Early Jurassic (ca. 198 Ma) in age. We propose that Jianchaling is an orogenic gold deposit, and formed during continental collision related to the northward subduction of the Mian-Lue oceanic plate during the Early Jurassic. We also conclude that the beginning of the continental collision between the Yangtze and the North China Cratons took place around 200 Ma.  相似文献   

7.
The Jiguanshan porphyry Mo deposit is located in the southern part of Xilamulun metallogenic belt at the northern margin of the North China Craton (NCC). In the Jiguanshan mining district, two stages of granitoids intrusions have been recognized: a pre-ore granite porphyry with stockworks and veins of Mo mineralization, and a granite porphyry with disseminated Mo mineralization. Zircon U–Pb data and Hf isotope analyses show that the dissemination-mineralized granite porphyry yielded a weighted mean 206Pb/238U age of 156.0 ± 1.3 Ma, with a crustal εHf(t) values from − 5.6 to + 0.2, and that the main group of magmatic zircons from the pre-ore granite porphyry have a weighted mean 206Pb/238U age of 167.7 ± 1.7 Ma with εHf(t) values from − 3.2 to + 1.0. Combined with groundmass Ar–Ar age data of the granite porphyry and molybdenite Re–Os age, it is suggested that the Mo mineralization of Jiguanshan deposit was formed in the late Jurassic (153 ~ 155 Ma) during tectonic and magmatic events that affected northeast China. The Mo mineralization was a little bit later than the host granite porphyry. Besides disseminated in the host granite porphyry, Mo mineralization also presents in middle Jurassic pre-ore granite porphyry, Jurassic fine-grained diabase, Triassic quartz porphyry, and in rhyolitic volcanic rocks as well as syenite of Devonian age.The Jiguanshan mining district was affected by the tectonic events associated with the Paleo-Asian Ocean closure, and later by far-field tectonism, related to subduction of the Paleo-Pacific plate (Izanagi) in the Jurassic-Cretaceous. The tectonic and thermal events linked with the latter are commonly referred to as Yanshanian tectono-thermal event, and consists of a series of geodynamic, magmatic and ore-forming processes, which in the mining district area included the intrusion of the pre-ore granite porphyry, the host granite porphyry, Mo mineralization, and fine-grained diabase. Major and trace element analyses show that the host granite porphyry is characterized by high silica abundances (SiO2 = 77.16 to 77.51%), high Rb/Sr ratios (13.57 to 14.83), high oxidation (Fe2O3/FeO = 34.25 to 62.00) and high alkalies (Na2O + K2O = 8.21 to 8.38%). Petrographic and microthermometry studies of the fluid inclusions from Mo mineralized veins, characterized by plenty of daughter mineral-bearing inclusions, showed that the predominant homogenization temperatures range from 250 to 440 °C. Combined with Laser Raman analysis of the fluid inclusions, it is indicated that Mo mineralization is related to a high-temperature, hypersaline and high-oxygen fugacity H2O–NaCl fluid system, with high F contents.Based on geology, geochronology, isotope systematics, geochemistry and fluid inclusion studies as well as regional geology, we propose, for the first time, a genetic model for the Jiguanshan porphyry Mo deposit. During the Jurassic geodynamic evolution of northeast China, high silicic, high oxidized and alkaline-rich granitic magma probably derived from partial melting of the lower crust, episodically intruded along faults into the country rocks. This fluid system, fractionating from the highly differentiated granitic magma and bearing Mo with minor Cu metals, migrated upwards and interacted with the older wall rocks and associated fractures, in which the ore minerals precipitated, resulting in the development of what we refer to as the “Jiguanshan-type” porphyry Mo deposit.  相似文献   

8.
The polymetallic Mykonos vein system in the Cyclades, Greece, consists of 15 tension-gashes filled with barite, quartz, pyrite, sphalerite, chalcopyrite and galena in ca. 13.5 Ma, I-type, Mykonos monzogranite. Zones of silica and chlorite–muscovite alteration are associated with the veins and overprint pervasive silicification, phyllic and argillic alteration that affected large parts of the monzogranite. The mineralization cements breccias and consists of an early barite–silica–pyrite–sphalerite–chalcopyrite assemblage followed by later argentiferous galena. A combination of fluid inclusion and stable isotope data suggests that the barite and associated mineralization were deposited from fluids containing 2 to 17 wt.% NaCl equivalent, at temperatures of ~ 225° to 370 °C, under a hydrostatic pressure of ≤ 100 bars. The mineralizing fluids boiled and were saturated in H2S and SO2.Calculated δ18OH2O and δDH2O, initial 87Sr/86Sr isotope compositions and the trace and REEs elements contents are consistent with a model in which the mineralizing fluids were derived during alteration of the Mykonos intrusion and subsequently mixed with Miocene seawater. Heterogeneities in the calculated δ34SSO4 2 and δ34SH2S compositions of the ore fluids indicate two distinct sources for sulfur, namely of magmatic and seawater origin, and precipitation due to reduction of the SO4 2 during fluid mixing. The physicochemical conditions of the fluids were pH = 5.0 to 6.2, logfS2 =  13.8 to − 12.5, logfO2 =  31.9 to − 30.9, logfH2S(g) =  1.9 to − 1.7, logfTe2 =  7.9 and logα(SO4 2(aq)/H2S(aq)) = + 2.6 to + 5.5. We propose that retrograde mesothermal hydrothermal alteration of the Mykonos monzogranite released barium and silica from the alkali feldspars. Barite was precipitated due to mixing of SO4 2-rich Miocene seawater with the ascending Ba-rich magmatic fluid venting upwards in the pluton.  相似文献   

9.
The Tianqiao Pb–Zn deposit in the western Yangtze Block, southwest China, is part of the Sichuan–Yunnan–Guizhou (SYG) Pb–Zn metallogenic province. Ore bodies are hosted in Devonian and Carboniferous carbonate rocks, structurally controlled by a thrust fault and anticline, and carried about 0.38 million tons Pb and Zn metals grading > 15% Pb + Zn. Both massive and disseminated Pb–Zn ores occur either as veinlets or disseminations in dolomitic rocks. They are composed of ore minerals, pyrite, sphalerite and galena, and gangue minerals, calcite and dolomite. δ34S values of sulfide minerals range from + 8.4 to + 14.4‰ and display a decreasing trend from pyrite, sphalerite to galena (δ34Spyrite > δ34Ssphalerite > δ34Sgalena). We interpret that reduced sulfur derived from sedimentary sulfate (gypsum and barite) of the host Devonian to Carboniferous carbonate rocks by thermal–chemical sulfate reduction (TSR). δ13CPDB and δ18OSMOW values of hydrothermal calcite range from –5.3 to –3.4‰ and + 14.9 to + 19.6‰, respectively, and fall in the field between mantle and marine carbonate rocks. They display a negative correlation, suggesting that CO2 in the hydrothermal fluid was a mixture origin of mantle, marine carbonate rocks and sedimentary organic matter. Sulfide minerals have homogeneous and low radiogenic Pb isotope compositions (206Pb/204Pb = 18.378 to 18.601, 207Pb/204Pb = 15.519 to 15.811 and 208Pb/204Pb = 38.666 to 39.571) that are plotted in the upper crust Pb evolution curve and overlap with that of Devonian to Carboniferous carbonate rocks and Proterozoic basement rocks in the SYG province. Pb isotope compositions suggest derivation of Pb metal from mixed sources. Sulfide minerals have 87Sr/86Sr ratios ranging from 0.7125 to 0.7167, higher than Sinian to Permian sedimentary rocks and Permian Emeishan flood basalts, but lower than basement rocks. Again, Sr isotope compositions are supportive of a mixture origin of Sr. They have an Rb–Sr isotopic age of 191.9 ± 6.9Ma, possibly reflecting the timing of Pb–Zn mineralization. C–O–S–Pb–Sr isotope compositions of the Tianqiao Pb–Zn deposit indicate a mixed origin of ore-forming fluids, which have Pb–Sr isotope homogenized before the mineralization. The Permian flood basalts acted as an impermeable layer for the Pb–Zn mineralization hosted in the Devonian–Carboniferous carbonate rocks.  相似文献   

10.
The Paleoproterozoic McArthur Basin (McArthur Group) of northern Australia hosts world-class sedimentary ‘exhalative’ (SEDEX) McArthur type Zn–Pb deposits, which are largely hosted within a sequence of 1.64 Ga pyritic carbonaceous shales deposited in an extensional rift setting. A well-known example of these is McArthur River (or Here's Your Chance [HYC] Zn–Pb–Ag deposit). The ~ 1.78 Ga McDermott and ~ 1.73 Ga Wollogorang formations (Tawallah Group) both contain carbonaceous shales deposited in similar environments. Our observations suggest the carbonaceous facies of the Wollogorang Formation were deposited under mostly euxinic conditions, with periodically-high concentrations of sedimentary pyrite deposition. The carbonaceous shales in the older McDermott Formation contain considerably less early pyrite, reflecting a mostly sulfide-poor, anoxic depositional environment. Localized fault-bound sub-basins likely facilitated lateral facies variations, which is evident from synsedimentary breccias.The presence of evaporitic oxidized facies within the McDermott and Wollogorang formations, alongside evidence for synsedimentary brecciation in reduced shales are favourable criteria for SEDEX-style base metal deposition. Both formations overlie volcanic units, which could have been sources of base metals. Detailed X-ray petrography, new geochemical data and sulfur isotope data from historical drill cores indicate multiple horizons of stratiform and sediment breccia-hosted base metal sulfide within carbonaceous shale units, with high-grade Zn concentrations. A close association between sphalerite and ferromanganean dolomite alteration draws comparisons with younger SEDEX mineralization at HYC. Additionally, SEDEX alteration indices, used demonstrably as a vector to the younger orebodies, indicate the sedimentary rocks analyzed in this study are marginally below the ore window when compared to the overlying mineralized stratigraphy.Our data imply that localized active circulation of metalliferous brines occurred in the Tawallah Group basin. High-grade sulfide deposition in reduced facies alteration may represent distal expressions of larger SEDEX-style deposits. Furthermore, abundant pyrite and high molybdenum in the Wollogorang Formation suggest the global oceanic sulfate concentration was sufficient by ~ 1.73 Ga to engender intermittent but strong bottom-water euxinia during shale deposition, thus providing a robust chemical trap for base metal sulfide mineralization.  相似文献   

11.
The Cambrian Maotianshan Shale in Yunnan Province, China contains the well-preserved soft-body fossils of the Chengjiang Biota. The high quality preservation of the non-mineralizing biota (soft tissues and whole carcasses) shows regional and temporal differences, suggesting that paleogeography and local environmental conditions might have contributed to the taphonomy of these fossils. In this paper we present new results from petrographic, geochemical and detrital zircon analyses, and provide a new interpretation about the provenance of the Maotianshan Shale, as well as add to the understanding of the paleogeography of the South China Block during the Cambrian Stage 3. Results from petrographic analysis indicate that the provenance of the Maotianshan Shale is a recycled orogen overall, bordering the western and southwestern margin on the Yangtze Block. The most likely source of the terrigenous material is an exhumed area extending from the Kangdian paleoland to the southeast, paralleling the Song Ma fault zone. Minor regional differences in geochemical and petrographic proxies between the northwestern Jianshan/Ercai area and the southeastern Maotianshan/Xiaolantian area suggest influence of local sources. Sediments of the southeastern province are less mature and samples include minor elements commonly associated with mafic sources. Sediments from the northwestern province are more mature, largely lack mafic components and are enriched in Zr and Hf. The major population of the Maotianshan Shale detrital zircons group at ~ 800 Ma. This crystallization age matches well with the age of a widely spread felsic volcanic and intrusive event associated with the Neoproterozoic Kangdian rift, suggesting that these igneous rocks are most likely a major provenance for the Maotianshan sediments. The youngest zircon population yields consistent Concordia ages of ~ 520 Ma, representing a maximum age constraint on the timing of deposition of the Maotianshan Shale. The zircon crystals of the ~ 520 Ma populations are euhedral with magmatic zoning, indicative of short-distance transport. Volcanic activity along the Song Ma suture zone is a potential source for the ~ 520 Ma detrital zircon suite.  相似文献   

12.
Strongly-deformed marbles may be easily confused with linear and elongated carbonatite intrusions. Both rocks may present similar texture and foliation to the host rock, or even cross cutting field relationships, which could be interpreted either as igneous or high-grade metamorphosed marble. Diagnostic criteria are even more complex when there is evidence of melting of the metasedimentary carbonate rock, such as has been described in the Himalayas and in the Eastern Ghats, India.In the Alto Moxotó Terrane, a high-grade gneissic domain of the Borborema Province, Northeastern Brazil, there are metacarbonates associated with banded gneisses and different metaplutonic rocks. Field evidence indicates the absence of other metasedimentary rocks associated with these marbles, thus suggesting that these carbonates were separated from other siliciclastic metasedimentary rocks. The presence of marble also suggests that it may represent the initial stage of a crustal carbon recycling into the mantle. These marbles present many field similarities to carbonatites (e.g., fluid-flow structure) and, together with metagranites and metamafic intrusions, may represent a major collisional tectonic suture.A detailed study of the carbon, oxygen and strontium isotopic composition of these marbles is presented. This study aims to identify the origin of the different isotopic components. It is argued that these rocks were subjected to temperature and pressure conditions that were sufficiently high to have melted them. The isotopic data presented here support this interpretation and indicate the mixing of two components: (i) one characterized by radiogenic Sr isotopes and mantle-like carbon isotopes, which is associated with the gneissic and mafic rocks, and (ii) another characterized by low 87Sr/86Sr ratios and highly positive δ13C values. Available geochemical data for the upper Paleoproterozoic indicate that the 87Sr/86Sr ratio of ocean water, varying between 0.7050 (2.25 ± 0.25 Ga) and 0.7047 (1.91 Ga), falls within the lower range of the samples from Itatuba and thus reinforces the interpretation that these marbles are sedimentary-derived and were partially contaminated by interaction with the host gneissic and mafic rocks.  相似文献   

13.
《Gondwana Research》2013,24(4):1241-1260
An overview is presented for the formation and evolution of Precambrian continental lithosphere in South China. This is primarily based on an integrated study of zircon U–Pb ages and Lu–Hf isotopes in crustal rocks, with additional constraints from Re–Os isotopes in mantle-derived rocks. Available Re–Os isotope data on xenolith peridotites suggest that the oldest subcontinental lithospheric mantle beneath South China is primarily of Paleoproterozoic age. The zircon U–Pb ages and Lu–Hf isotope studies reveal growth and reworking of the juvenile crust at different ages. Both the Yangtze and Cathaysia terranes contain crustal materials of Archean U–Pb ages. Nevertheless, zircon U–Pb ages exhibit two peaks at 2.9–3.0 Ga and ~ 2.5 Ga in Yangtze but only one peak at ~ 2.5 Ga in Cathaysia. Both massive rocks and crustal remnants (i.e., zircon) of Archean U–Pb ages occur in Yangtze, but only crustal remnants of Archean U–Pb ages occur in Cathaysia. Zircon U–Pb and Lu–Hf isotopes in the Kongling complex of Yangtze suggest the earliest episode of crustal growth in the Paleoarchean and two episodes of crustal reworking at 3.1–3.3 Ga and 2.8–3.0 Ga. Both negative and positive εHf(t) values are associated with Archean U–Pb ages of zircon in South China, indicating both the growth of juvenile crust and the reworking of ancient crust in the Archean. Paleoproterozoic rocks in Yangtze exhibit four groups of U–Pb ages at 2.1 Ga, 1.9–2.0 Ga, ~ 1.85 Ga and ~ 1.7 Ga, respectively. They are associated not only with reworking of the ancient Archean crust in the interior of Yangtze, but also with the growth of the contemporaneous juvenile crust in the periphery of Yangtze. In contrast, Paleoproterozoic rocks in Cathaysia were primarily derived from reworking of Archean crust at 1.8–1.9 Ga. The exposure of Mesoproterozoic rocks are very limited in South China, but zircon Hf model ages suggest the growth of juvenile crust in this period due to island arc magmatism of the Grenvillian oceanic subduction. Magmatic rocks of middle Neoproterozoic U–Pb ages are widespread in South China, exhibiting two peaks at about 830–800 Ma and 780–740 Ma, respectively. Both negative and positive εHf(t) values are associated with the middle Neoproterozoic U–Pb ages of zircon, suggesting not only growth and reworking of the juvenile Mesoproterozoic crust but also reworking of the ancient Archean and Paleoproterozoic crust in the middle Neoproterozoic. The tectonic setting for this period of magmatism would be transformed from arc–continent collision to continental rifting with reference to the plate tectonic regime in South China.  相似文献   

14.
Mineralogical studies of the heavy fraction from a Holocene pyrope-rich garnet placer deposit at Vestřev (Krkonoše Piedmont Basin, Bohemian Massif) have identified the presence of very rare grains of platinum group minerals (PGM). Pt–Fe alloy grains are accompanied by Os–Ir–Ru minerals (native osmium, iridium, and ruthenium) with inclusions of Pt–Fe alloy and hongshiite (PtCu). This mineral assemblage is typical for several mantle settings including ophiolites. The chemistry of the Os–Ir–Ru minerals shows an enrichment of the PGM in Ru, which is typical of ophiolites. The grain morphology of PGM and pyrope-rich garnet (mostly rounded with numerous euhedral/subhedral grains) does not exclude a common source. In-situ laser-ablation MC-ICP-MS was used to measure the Re–Os isotopic compositions of single Os-rich grains, which show heterogeneous subchondritic Os isotopic compositions (187Os/188Os = 0.12082–0.12505 ± 0.00003). This precludes their low-temperature origin and indicates derivation of platinum-group elements (PGEs) essentially from mantle-derived rocks without a significant contribution of crustal Os. The mantle model age (TMA) and Re-depletion model age (TRD) model ages range from ~ 0.4 to ~ 1.0 Ga and most likely reflect a long history of melt depletion that affected the mantle sources of PGM.  相似文献   

15.
The Tongjing Cu–Au deposit is a medium-sized deposit within the Ningwu volcanic basin, east China, and is hosted by Cretaceous volcanic rocks of the Dawangshan and Niangniangshan Formations. The veined and lenticular Cu–Au orebodies are spatially and temporally related to the volcanic and subvolcanic rocks of the Niangniangshan Formation in the ore district. The wall-rock alteration is dominated by silicification, siderite alteration, carbonation, sericitization, chloritization, and kaolinization. On the basis of field evidence and petrographic observations, two stages of mineralization are recognized: (1) a siderite–quartz–sulfide stage (Stage 1) associated with the formation of chalcopyrite and pyrite in a quartz and siderite gangue; and (2) a quartz–bornite stage (Stage 2) cutting the Stage 1 phases. Stage 1 is the main mineralization stage. Quartz that formed in Stage 1 has δ18OH2O values of − 4.3‰ to 3.5‰ with δD values of fluid inclusion waters of − 97.1‰ to − 49.9‰, indicating that the ore-forming fluids were derived from early magmatic fluids and may have experienced oxygen isotopic exchange with meteoric water during Stage 1 mineralization.LA–MC–ICP–MS zircon U–Pb dating of the mineralization-related nosean-bearing phonolite and nosean-bearing phonolitic brecciated tuff at Tongjing yields ages of 129.8 ± 0.5 Ma and 128.9 ± 1.1 Ma, respectively. These results are interpreted as the crystallization age of the volcanic rocks of the Niangniangshan Formation. A hydrothermal sericite sample associated with Cu–Au mineralization at Tongjing yields a plateau 40Ar–39Ar age of 131.3 ± 1.3 Ma. These results confirm a genetic link between the volcanism and associated Cu–Au mineralization. The Tongjing Cu–Au deposit in the Ningwu basin is genetically and possibly tectonically similar to alkaline intrusion-related gold deposits elsewhere in the world.  相似文献   

16.
Granulite grade marble layers interlayered with metapelitic granulites from Lützow Holm Bay, East Antarctica, provide insight into fluid–rock interactions during burial to and exhumation from lower crustal levels. Sub-millimeter scale strontium, oxygen and carbon isotope variations along with LA-ICPMS trace element geochemistry and mineral chemistry of texturally characterized carbonates and associated minerals helped to reconstruct the multistage metamorphic fluid history.Fluid–rock interaction dating back to prograde metamorphism are still preserved in consistently low oxygen and high strontium isotope compositions (δ18O = 12‰; 87Sr/86Sr(550Ma) = 0.7248) within a massif dolomitic marble layer that escaped significant later metasomatism. In most marbles, total re-crystallization and isotopic resetting occurred in the presence of “externally derived” hyper-saline fluids that circulated along the carbonate layers during the early stages of prograde metamorphism. This leads to a trend of increased radiogenic Sr in marbles towards the value of associated metapelitic rocks that have 87Sr/86Sr(550Ma) of 0.764.LA-ICPMS studies on trace elements in carbonate and associated silicate minerals at different textural settings, distinguished using cathodoluminescence microscopy, revealed multiple metasomatic events during retrograde metamorphism. Trace element contents of Ba, Sr, Pb and U gave compelling evidence for metasomatic alteration that postdate the exsolution of carbonate at ~ 600 ºC, which can be correlated with the fluids released from the crystallization of anatectic melts and pegmatites. Subsequently, meteoric fluid infiltration occurred at a shallower level of the crust and caused extreme oxygen isotopic heterogeneity (δ18O = 14.7 ~ ? 4.9‰) and imprinted high concentration of fluid mobile elements. Taken together our results emphasize the importance of integrating textural and chemical heterogeneities to reveal the multiple episodes of fluid–rock interaction processes in a dynamic continental crust, which has major implications on migration of fluids and material and help in formulating models on the geodynamic evolution of crust.  相似文献   

17.
The lower Bomi Group of the eastern Himalayan syntaxis comprises a lithological package of sedimentary and igneous rocks that have been metamorphosed to upper amphibolite-facies conditions. The lower Bomi Group is bounded to the south by the Indus–Yarlung Suture and to the north by unmetamorphosed Paleozoic sediments of the Lhasa terrane. We report U–Pb zircon dating, geochemistry and petrography of gneiss, migmatite, mica schist and marble from the lower Bomi Group and explore their geological implications for the tectonic evolution of the eastern Himalaya. Zircons from the lower Bomi Group are composite. The inherited magmatic zircon cores display 206Pb/238U ages from ~ 74 Ma to ~ 41.5 Ma, indicating a probable source from the Gangdese magmatic arc. The metamorphic overgrowth zircons yielded 206Pb/238U ages ranging from ~ 38 Ma to ~ 23 Ma, that overlap the anatexis time (~ 37 Ma) recorded in the leucosome of the migmatites. Our data indicate that the lower Bomi Group do not represent Precambrian basement of the Lhasa terrane. Instead, the lower Bomi Group may represent sedimentary and igneous rocks of the residual forearc basin, similar to the Tsojiangding Group in the Xigaze area, derived from denudation of the hanging wall rocks during the India–Asia continental collision. We propose that following the Indian–Asian collision, the forearc basin was subducted, together with Himalayan lithologies from the Indian continental slab. The minimum age of detrital magmatic zircons from the supracrustal rocks is ~ 41.5 Ma and their metamorphism had happened at ~ 37 Ma. The short time interval (< 5 Ma) suggests that the tectonic processes associated with the eastern Himalayan syntaxis, encompassing uplift and erosion of the Gangdese terrane, followed by deposition, imbrication and subduction of the forearc basin, were extremely rapid during the Late Eocene.  相似文献   

18.
The original ore-fluid of the Huogeqi Cu–Pb–Zn deposit in Inner Mongolia, northern China, was enriched in heavy oxygen isotopes with δ18O values ranging from 9.9 to 11.4 per mil, which is characteristic of the metamorphic devolatilization of pelitic rocks. The δD values determined by direct measurement of syn-ore hydrothermal tremolite range from − 116 to − 82 per mil, lying between the domains of typical metamorphic fluid and meteoric water, which is in equilibrium with organic matter. Oxygen and hydrogen isotope ratios indicate that the ore-fluid was derived from deep-sourced metamorphic fluid and interacted with organic-rich shale during fluid migration, which is consistent with the fluid evolution history revealed by a previous fluid inclusion study. Sulfides in the deposit are characteristically enriched in heavy S isotopes, with an average δ34S value of 13.4 ± 6.2 per mil (1σ, n = 103). The S-isotope ratios are identical to stratabound sulfides generated through the non-bacterial reduction of Neoproterozoic marine sulfate (with δ34S values of ~ 17 per mil). Previous studies on lead isotopes of sulfides revealed that the ore-forming metals (Cu, Pb, and Zn) at the Huogeqi deposit were also remobilized from a stratabound source. This source was syngenetically elevated in its Cu-, Pb-, and Zn-sulfide content as a result of submarine hydrothermal activities forming sulfide-rich layers within a rift tectonic setting. The Fe isotope ratios for sulfides are consistent with those of an intercalated iron-formation within the ore-hosting rocks, suggesting that the Fe in the sulfides was derived from local host rocks during sulfide precipitation and the Fe-rich rocks are favorable lithological units for high-grade mineralization. The heterogeneous sources of ore-fluid, S, ore-forming metals, and Fe are explained by a multistage genetic model, which is supported by the geological characteristic of the deposit. The enriched sulfides were subsequently remobilized and enriched by metamorphic devolatilization during the Permian and Triassic periods. The metamorphic ore-fluid ascended along a shear zone and interacted with organic-rich shale. Sulfides eventually precipitated within the shear zone at a shallower crustal level, especially where the shear zone intersected Fe-rich host rocks. This multistage genetic model has implications for mineral exploration. Greenschist to amphibolite facies terranes containing thick Neoproterozoic rift sequences are ideal regions for potential Cu–Pb–Zn mineralization. In particular, intercalated volcanic rocks within the rift sequences are indicative of high heat-flow and are ideal for the development of submarine hydrothermal systems. The primary structures hosting mineralization and ore shoots in the Huogeqi area are jogs in the shear zones. In addition, Fe-rich lithological units, such as iron-formations, are ideal hosts for high-grade ore.  相似文献   

19.
《Ore Geology Reviews》2011,41(1):27-40
Diyadin mineralization is the first reported gold deposit located in a collisional tectonic environment in Eastern Anatolia. The mineralization is related to N–S and N10–20°W-trending fault systems and hosted within the Paleozoic metamorphic basement rocks of the Anatolide–Toride microcontinent. Calc-schist, dolomitic marble and Miocene and Quaternary volcanic rocks comprise the exposed units in the mineralized area. Geochemical signatures, alteration types and host rock characteristics of the Diyadin gold deposit resemble those of Carlin-type deposits. Mineralization is constrained by alteration of overlying volcanic rocks to younger than ~ 14 Ma (K–Ar).Carbon and oxygen stable isotope measurements of carbonate rocks were made on six drill holes (n = 81) with an additional four samples of fresh carbonate rocks from surface outcrops. Background carbonate rocks have δ13CV-PDB ~ 1.8‰ and δ18OV-SMOW ~ 27‰. Isotopically-altered host rock samples have decreased δ18O (down to ~+11.4‰) and variable δ13C (from − 3.6 to + 4.8‰). Postore carbonate veins and cave-fill material have distinctly different isotopic signatures, particularly carbon (from δ13C = + 8.4 to + 9.8‰). Whether this post-ore carbonate is simply very late in mineralization associated with the gold system, or is a completely different, younger system utilizing the same pathways, is unclear at present. Within the host rock sample set, there is no correlation between gold and δ13C, and a weak correlation between gold and δ18O, indicative of water–rock interaction and isotopic alteration. Both the isotopic data and structural mapping suggest that the main upflow zone for the deposit is near the northern portion of the drill fence. Additional data at multiple scales are required to clarify the relationship(s) between fluid flow and mineralization.  相似文献   

20.
The Northern Norrbotten Ore Province in northernmost Sweden includes the type localities for Kiruna-type apatite iron deposits and has been the focus for intense exploration and research related to Fe oxide-Cu-Au mineralisation during the last decades. Several different types of Fe-oxide and Cu-Au ± Fe oxide mineralisation occur in the region and include: stratiform Cu ± Zn ± Pb ± Fe oxide type, iron formations (including BIF's), Kiruna-type apatite iron ore, and epigenetic Cu ± Au ± Fe oxide type which may be further subdivided into different styles of mineralisation, some of them with typical IOCG (Iron Oxide-Copper-Gold) characteristics. Generally, the formation of Fe oxide ± Cu ± Au mineralisation is directly or indirectly dated between ~ 2.1 and 1.75 Ga, thus spanning about 350 m.y. of geological evolution.The current paper will present in more detail the characteristics of certain key deposits, and aims to put the global concepts of Fe-oxide Cu-Au mineralisations into a regional context. The focus will be on iron deposits and various types of deposits containing Fe-oxides and Cu-sulphides in different proportions which generally have some characteristics in common with the IOCG style. In particular, ore fluid characteristics (magmatic versus non-magmatic) and new geochronological data are used to link the ore-forming processes with the overall crustal evolution to generate a metallogenetic model.Rift bounded shallow marine basins developed at ~ 2.1–2.0 Ga following a long period of extensional tectonics within the Greenstone-dominated, 2.5–2.0 Ga Karelian craton. The ~ 1.9–1.8 Ga Svecofennian Orogen is characterised by subduction and accretion from the southwest. An initial emplacement of calc-alkaline magmas into ~ 1.9 Ga continental arcs led to the formation of the Haparanda Suite and the Porphyrite Group volcanic rocks. Following this early stage of magmatic activity, and separated from it by the earliest deformation and metamorphism, more alkali-rich magmas of the Perthite Monzonite Suite and the Kiirunavaara Group volcanic rocks were formed at ~ 1.88 Ga. Subsequently, partial melting of the middle crust produced large volumes of ~ 1.85 and 1.8 Ga S-type granites in conjunction with subduction related A −/I-type magmatism and associated deformation and metamorphism.In our metallogenetic model the ore formation is considered to relate to the geological evolution as follows. Iron formations and a few stratiform sulphide deposits were deposited in relation to exhalative processes in rift bounded marine basins. The iron formations may be sub-divided into BIF- (banded iron formations) and Mg-rich types, and at several locations these types grade into each other. There is no direct age evidence to constrain the deposition of iron formations, but stable isotope data and stratigraphic correlations suggest a formation within the 2.1–2.0 Ga age range. The major Kiruna-type ores formed from an iron-rich magma (generally with a hydrothermal over-print) and are restricted to areas occupied by volcanic rocks of the Kiirunavaara Group. It is suggested here that 1.89–1.88 Ga tholeiitic magmas underwent magma liquid immiscibility reactions during fractionation and interaction with crustal rocks, including metaevaporites, generating more felsic magmatic rocks and Kiruna-type iron deposits. A second generation of this ore type, with a minor economic importance, appears to have been formed about 100 Ma later. The epigenetic Cu-Au ± Fe oxide mineralisation formed during two stages of the Svecofennian evolution in association with magmatic and metamorphic events and crustal-scale shear zones. During the first stage of mineralisation, from 1.89–1.88 Ga, intrusion-related (porphyry-style) mineralisation and Cu-Au deposits of IOCG affinity formed from magmatic-hydrothermal systems, whereas vein-style and shear zone deposits largely formed at c. 1.78 Ga.The large range of different Fe oxide and Cu-Au ± Fe oxide deposits in Northern Norrbotten is associated with various alteration systems, involving e.g. scapolite, albite, K feldspar, biotite, carbonates, tourmaline and sericite. However, among the apatite iron ores and the epigenetic Cu-Au ± Fe oxide deposits the character of mineralisation, type of ore- and alteration minerals and metal associations are partly controlled by stratigraphic position (i.e. depth of emplacement). Highly saline, NaCl + CaCl2 dominated fluids, commonly also including a CO2-rich population, appear to be a common characteristic feature irrespective of type and age of deposits. Thus, fluids with similar characteristics appear to have been active during quite different stages of the geological evolution. Ore fluids related to epigenetic Cu-Au ± Fe oxides display a trend with decreasing salinity, which probably was caused by mixing with meteoric water. Tentatively, this can be linked to different CuAu ore paragenesis, including an initial (magnetite)-pyrite-chalcopyrite stage, a main chalcopyrite stage, and a late bornite stage.Based on the anion composition and the Br/Cl ratio of ore related fluids bittern brines and metaevaporites (including scapolite) seem to be important sources to the high salinity hydrothermal systems generating most of the deposits in Norrbotten. Depending on local conditions and position in the crust these fluids generated a variety of Cu-Au deposits. These include typical IOCG-deposits (Fe-oxides and Cu-Au are part of the same process), IOCG of iron stone type (pre-existing Fe-oxide deposit with later addition of Cu-Au), IOCG of reduced type (lacking Fe-oxides due to local reducing conditions) and vein-style Cu-Au deposits. From a strict genetic point of view, IOCG deposits that formed from fluids of a mainly magmatic origin should be considered to be a different type than those deposits associated with mainly non-magmatic fluids. The former tend to overlap with porphyry systems, whereas those of a mainly non-magmatic origin overlap with sediment hosted Cu-deposits with respect to their origin and character of the ore fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号