首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Beiya deposit, located in the Sanjiang Tethyan tectonic domain (SW China), is the third largest Au deposit in China (323 t Au @ 2.47 g/t). As a porphyry-skarn deposit, Beiya is related to Cenozoic (Himalayan) alkaline porphyries. Abundant Bi-minerals have been recognized from both the porphyry- and skarn- ores, comprising bismuthinite, Bi–Cu sulfosalts (emplectite, wittichenite), Bi–Pb sulfosalts (galenobismutite, cosalite), Bi–Ag sulfosalt (matildite), Bi–Cu–Pb sulfosalts (bismuthinite derivatives), Bi–Pb–Ag sulfosalts (lillianite homologs, galena-matildite series), and Bi chalcogenides (tsumoite, the unnamed Bi2Te, the unnamed Ag4Bi3Te3, tetradymite, and the unnamed (Bi, Pb)3(Te, S)4). Native bismuth and maldonite are also found in the skarn ores. The arsenopyrite geothermometer reveals that the porphyry Au mineralization took place at temperatures in the range of 350–450 °C and at log fS2 in the range of − 8.0 to − 5.5, respectively. In contrast, the Beiya Bi-mineral assemblages indicate that the skarn ore-forming fluids had minimum temperatures of 230–175 °C (prevailing temperatures exceeding 271 °C) and fluctuating fS2fTe2 conditions. We also model a prolonged skarn Au mineralization history at Beiya, including at least two episodes of Bi melts scavenging Au. We thus suggest that this process was among the most effective Au-enrichment mechanisms at Beiya.  相似文献   

2.
The Dongping gold deposit is a mesothermal lode gold deposit hosted in syenite. The ore petrography and chemistry of the tellurides from the alteration zone of the deposit have been studied in detail using optical microscopy, scanning electron microscopy, electron probe micro-beam and X-ray diffraction facilities. The tellurides, consisting mostly of calaverite, altaite, petzite tellurobismuthite and tetradymite, are hosted irregularly in pyrite fractures and voids. In the ore bodies, the species and quantity of tellurides decrease from the top downwards, accompanied with lowering of gold fineness, and the existence of tellurides exhibits a positive correlation with gold enrichment. Mineral paragenesis and chemical variations suggest that during evolution of the ore-forming fluids Te preferably incorporated with Pb to form altaite, followed in sequence by precipitation of petzite, and calaverite when Ag has been exhausted, and the residue fluids were enriched in Au, giving rise to formation of native gold. Calculation with reference of the fineness of native gold coexisting with the tellurides indicates that at 300 °C, log f (Te2) varied between − 8.650 and − 7.625. Taking account of the Au–Ag–Te mineral paragenesis, it is inferred that log ƒ (Te2) varies from − 9.12 to − 6.43, log ƒ (S2) − 11.47 to − 8.86. In consideration of the physicochemical conditions for formation of tellurides, with comparison to some known telluride deposits, it is suggested that high log ƒ (Te2) is a key factor for high fineness of native gold as well as precipitation of abundant tellurides.  相似文献   

3.
The Zhengguang gold deposit in the Duobaoshan ore field, hosted in volcanic rocks of the Middle Ordovician Duobaoshan Formation, is one of the largest gold deposits in the Northeastern Great Xing’an Range of the Central Asian Orogenic Belt (CAOB). The deposit comprises the No. I, II and III ore zones with a total resource exceeding 35 tonnes of Au, 100,000 tonnes of Zn and 100 tonnes of Ag. A genetic relationship between gold mineralization and concealed tonalite porphyry is inferred based on the characteristics of cryptoexplosive breccia and hydrothermal alteration indicative of porphyry-type and epithermal mineralization. Zircon LA-ICPMS U-Pb dating reveals that the tonalite porphyry was emplaced at 462.1 ± 1.8 Ma (Middle Ordovician). The δ34SV-CDT values of sulfide minerals range from −3.0‰ to −1.7‰ with an average of −2.33‰, indicating that sulfur was mainly derived from a magmatic source. The Pb isotopic compositions (206Pb/204Pb ranging from 17.572 to 17.629, 207Pb/204Pb from 15.424 to 15.486, and 208Pb/204Pb from 37.206 to 37.418) suggest a major mantle component for Pb and, by inference, for other ore metals. Therefore, we suggest that the ore-forming elements in the Zhengguang gold deposit may be related to the mantle-sourced tonalite porphyry. On the basis of the geological characteristics and geochemical signatures documented in this study, we conclude that the Zhengguang gold deposit was formed in a porphyry to epithermal transitional environment associated with the concealed tonalite porphyry, as part of the Duobaoshan porphyry-epithermal ore system that is related to the subduction of the Paleo-Asian Ocean during the Ordovician.  相似文献   

4.
Quartz vein-type gold mineralization in the Linglong deposit constitutes one of the important sources of gold in China. Here we report the first finding of anomalous enrichment of boron (B), oxygen (O), chromium (Cr) and niobium (Nb) in native gold and Ag–Te grains from the Linglong deposit. The oxygen content of gold and silver grains ranges up to 75.83 at.%, boron up to 97.85 at.%, chromium up to 26.23 at.%, and tellurium up to 33.4 at.%. The Au precipitation is mainly linked to pyrite precipitation under reducing conditions. The HFSE enrichment including chromium (Cr) and niobium (Nb) in the gold and silver grains indicate that the ore-forming fluids were derived from high temperature magmas sourced from depth. The enrichment of low temperature Te in the native gold and silver grains, combined with the typical features of fluid ‘boiling’ as inferred from fluid inclusion studies indicate that the ore-fluids derived from depth upwelled rapidly, and metal precipitation occurred through decompression at shallower levels. Our results suggest good prospect for gold and silver at depth in Linglong.  相似文献   

5.
The Dongping gold deposit hosted in syenites is one of the largest hydrothermal gold deposits in China and composed of ore veins in the upper parts and altered zones in the lower parts of the ore bodies. Pervasive potassic alteration and silicification overprint the wall rocks of the ore deposit. The alteration minerals include orthoclase, microcline, perthite, quartz, sericite, epidote, calcite, hematite and pyrite, with the quartz, pyrite and hematite assemblages closely associated with gold mineralization. The phases of hydrothermal alteration include: (i) potassic alteration, (ii) potassic alteration - silicification, (iii) silicification - epidotization - hematitization, (iv) silicification - sericitization - pyritization and (v) carbonation. Mass-balance calculations in potassic altered and silicified rocks reveal the gain of K2O, Na2O, SiO2, HFSEs and transition elements (TEs) and the loss of REEs. Most major elements were affected by intense mineral reactions, and the REE patterns of the ore are consistent with those of the syenites. Gold, silver and tellurium show positive correlation and close association with silicification. Fluid inclusion homogenization temperatures in quartz veins range from 154 °C to 382 °C (peak at 275 °C–325 °C), with salinities of 4–9 wt.% NaCl equiv. At temperatures of 325 °C the fluid is estimated to have pH = 3.70–5.86, log fO2 =  32.4 to − 28.1, with Au and Te transported as Au (HS)2 and Te22  complexes. The ore forming fluids evolved from high pH and fO2 at moderate temperatures into moderate-low pH, low fO2 and low temperature conditions. The fineness of the precipitated native gold and the contents of the oxide minerals (e.g., magnetite and hematite) decreased, followed by precipitation of Au- and Ag-bearing tellurides. The hydrothermal system was derived from an alkaline magma and the deposit is defined as an alkaline rock-hosted hydrothermal gold deposit.  相似文献   

6.
The Wangfeng gold deposit is located in Western Tian Shan and the central section of the Central Asian Orogenic Belt (CAOB). The deposit is mainly hosted in Precambrian metamorphic rocks and Caledonian granites and is structurally controlled by the Shenglidaban ductile shear zone. The gold orebodies consist of gold-bearing quartz veins and altered mylonite. The mineralization can be divided into three stages: quartz–pyrite veins in the early stage, sulfide–quartz veins in the middle stage, and quartz–carbonate veins or veinlets in the late stage. Ore minerals and native gold mainly formed in the middle stage. Four types of fluid inclusions were identified based on petrography and laser Raman spectroscopy: CO2–H2O inclusions (C-type), pure CO2 inclusions (PC-type), NaCl–H2O inclusions (W-type), and daughter mineral-bearing inclusions (S-type). The early-stage quartz contains only primary CO2–H2O fluid inclusions with salinities of 1.62 to 8.03 wt.% NaCl equivalent, bulk densities of 0.73 to 0.89 g/cm3, and homogenization temperatures of 256 °C–390 °C. Vapor bubbles are composed of CO2. The middle-stage quartz contains all four types of fluid inclusions, of which the CO2–H2O and NaCl–H2O types yield homogenization temperatures of 210 °C–340 °C and 230 °C–300 °C, respectively. The CO2–H2O fluid inclusions have salinities of 0.83 to 9.59 wt.% NaCl equivalent and bulk densities of 0.77 to 0.95 g/cm3, with vapor bubbles composed of CO2, CH4, and N2. Fluid inclusions in the late-stage quartz are NaCl–H2O solution with low salinities (0.35–3.87 wt.% NaCl equivalent) and low homogenization temperatures (122 °C–214 °C). The coexistence of inclusions of these four types in middle-stage quartz suggests that fluid boiling occurred in the middle-stage mineralization. Trapping pressures estimated from CO2–H2O inclusions are 110–300 MPa and 90–250 MPa for the early and middle stages, respectively, suggesting that gold mineralization mainly occurred at depths of about 10 km. In general, the Wangfeng gold deposit originated from a metamorphic fluid system characterized by low salinity, low density, and enrichment of CO2. Depressurized fluid boiling caused gold precipitation. Given the regional geology, ore geology, fluid-inclusion features, and ore-forming age, the Wangfeng gold deposit can be classified as a hypozonal orogenic gold deposit.  相似文献   

7.
Including past production, current indicated and inferred resources, Wassa is a 5 Moz poly-deformed early-orogenic gold deposit located on the eastern flank of the Ashanti Belt, in southwest Ghana. It is hosted by metamorphosed volcanic, intrusive and sedimentary rocks of the Sefwi Group (ca. 2260–2160 Ma). Early mineralization has an Eoeburnean age (2164 ± 22 Ma, Re–Os on pyrite) and is characterized by quartz veins, by a carbonate alteration of the host rocks, and by deformed gold-bearing pyrite. Remobilization of this gold occurred during the late stages of the Eburnean Orogeny (~ 2.1 Ga) and is associated with quartz-carbonate veins with visible gold and euhedral pyrites.  相似文献   

8.
The studied Mokrsko-West (90–100 t Au), Mokrsko-East (30 t Au) and Čelina (11 t Au) deposits represent three spatially and genetically interrelated deposits of supposed affiliation to the intrusion-related gold deposit type. The deposits differ in their dominant host rocks, which are represented by ca 354 Ma old biotite tonalite (Mokrsko-West) and Neoproterozoic volcanic and volcanosedimentary rocks (Mokrsko-East, Čelina). Another difference lies in the style of veining — densely spaced networks of 0.1–5 mm thin veins (Q2) within the tonalite, compared to thick (usually 5–20 cm; Q1–2) and widely spaced veins within the Neoproterozoic rocks.Five generations of quartz veins, referred to as Q0 through Q4 were distinguished: Q0 veins are the oldest and ore-barren, Q1 veins mark the onset of the Au-ore formation, Q2 veins its culmination and Q3 veins its fading. Late quartz gangue (Q4) is associated with uneconomic Ag–Pb–Zn vein-type ores hosted by calcite–barite–(quartz) veins.Quartz vein thickness (~ 0.3 to ~ 300 mm), spacing (~ 3 mm to ~ 500 mm), distribution, and related extensional strain (ca. 3–25%) evolve systematically across the studied ore district, reflecting both the major host rock and other tectonic factors. Detailed study of vein dimension parameters (thickness, length, width, aspect ratios) allowed estimation of the probable depth of the fluid source reservoir (~ 2 km or ~ 4 km) below the present surface. The depth to the fluid source seems to increase through time, being the shallowest for the Q0 veins and the deepest for the Q2 veins. Two independent methods of estimating fluid overpressure are discussed in the paper. Fluid overpressure during vein formation decreases from the Q0 through the Q2 veins, from 10 to 4 MPa or from 26 to 10 MPa, depending on the assumed tensile strength of the tonalite (5.5 and 15 MPa, respectively).The origin of joints and veins is discussed in terms of the stress orientation and crack-seal and crack-jump mechanisms. Field relationships unambiguously indicate that the veins hosted by Neoproterozoic rocks originated by reopening of the pre-existing extension joints (J1) due to fluid overpressure. The origin of the densely-spaced thin veins (Q2) hosted by the tonalite at the Mokrsko-West deposit is, however, less certain. It is probable that the tonalite was already affected by microfracturing analogous to the J1 joints prior to the formation of quartz veins.The formation of the Q1–2 veins at the Mokrsko-East deposit was constrained by the Re–Os dating of molybdenite to 342.9 ± 1.4 Ma. The ore-bearing hydrothermal system is thus ca 12 Ma younger than the tonalite that hosts the Mokrsko-West deposit. A similar ca 15–2 Ma difference between the age of the host-intrusion and the age of the hydrothermal event was encountered in several other gold deposits in the vicinity of the Central Bohemian Plutonic Complex. Two hypotheses to explain this are discussed in the paper.  相似文献   

9.
The junction of the southeastern Guizhou, the southwestern Hunan, and the northern Guangxi regions is located within the southwestern Jiangnan orogen and forms a NE-trending ∼250 km gold belt containing more than 100 gold deposits and occurrences. The Pingqiu gold deposit is one of the numerous lode gold deposits in the southeastern Guizhou district. Gold mineralization is hosted in Neoproterozoic lower greenschist facies metamorphic rocks and controlled by fold-related structures. Vein types present at Pingqiu include bedding-parallel and discordant types, with saddle-reefs and their down limb extensions dominating but with lesser discordant types. The major sulfide minerals are arsenopyrite and pyrite, with minor sphalerite, galena, chalcopyrite, and rare pyrrhotite, marcasite, and tetrahedrite. Much of the gold is μm- to mm-sized grains, and occurs as fracture-controlled isolated grains or filaments in quartz, galena, sphalerite, pyrite, and wallrock.Three types of fluid inclusions are distinguished in hydrothermal minerals. Type 1 aqueous inclusions have homogenization temperatures of 171–396 °C and salinities of 1.4–9.8 wt% NaCl equiv. Type 2 aqueous-carbonic inclusions yield final homogenization temperatures of 187–350 °C, with salinities of 0.2–7.7 wt% NaCl equiv. Type 3 inclusions are carbonic inclusions with variable relative content of CO2 and CH4, and minor amounts of N2 and H2O. The close association of CO2-rich inclusions and H2O-rich inclusions in groups and along the same trail suggests the presence of fluid immiscibility. The calculated δ18OH2O values range from 4.3‰ to 8.3‰ and δDH2O values of fluid inclusions vary from −55.8‰ to −46.9‰. A metamorphic origin is preferred on the basis of geological background and analogies with other similar deposit types.Two ore-related sericite samples yield well-defined 40Ar/39Ar plateau ages of 425.7 ± 1.7 Ma and 425.2 ± 1.3 Ma, respectively. These data overlap the duration of the Caledonian gold mineralization along the Jiangnan orogen, and suggest that gold mineralization was post-peak regional metamorphism and occurred during the later stages of the Caledonian orogeny.Overall, the Pingqiu gold deposit displays many of the principal characteristics of the Bendigo gold mines in the western Lachlan Orogen (SE Australia) and the Dufferin gold deposit in the Meguma Terrane (Nova Scotia, Canada) but also some important differences, which may lead to the disparity in gold endowment. However, the structural make-up at deposit scale, and the shallow mining depth at present indicate that the Pingqiu gold deposit may have considerable gold potential at depth.  相似文献   

10.
The world-class > 4 Moz Wona-Kona gold deposit is hosted within the Paleoproterozoic Birimian Houndé greenstone belt which is the most important gold mineralized belt in the western part of Burkina Faso, with a cumulative reserve of ~ 11 Moz. The mineralization consists of a pervasive silicification with disseminated pyrite–arsenopyrite crosscut by quartz–carbonate veinlets (1 to 10 cm wide) forming a vertical, thick (up to 40 m) and laterally extensive (5 km) northeast trending orebody hosted within a large (200 m wide) shear zone of regional extent. Gold occurs in association with 3 generations of pyrite and 2 generations of arsenopyrite. Free gold, interpreted as the last mineralizing event, occurs as late fracture filling in the pervasive silicification zone.  相似文献   

11.
The Maevatanana gold deposit in Madagascar is hosted by Archean metamorphic rocks in quartz–sulfide veins that are structurally controlled by NNW–SSE trending shear zones. Fluid inclusion data show that the trapping conditions in quartz range from 0.87 to 2.58 kbar at temperatures of 269–362 °C. Laser Raman spectroscopy confirms that these inclusions consist of CO2, SO2, and H2O. The δ34S values of the pyrites range from 1.7‰ to 3.6‰, with an average of 2.25‰, supporting a magmatic origin. Noble gases (He, Ne, Ar, Ke, Xe) are chemically inert, thus will not be involved in chemical reactions during geological processes. Also due to the low concentration of He in the atmosphere and the low solubility of He in aqueous fluids, the atmosphere-derived He is unlikely to significantly affect He abundances and isotopic ratios of crustal fluids, ensures that He production should have the typical crust 3He/4He ratios. The 3He/4He ratios of fluid inclusions in pyrite from the deposit range from 0.06 to 0.12 Ra, while the 40Ar/36Ar ratios range from 6631 to 11441. We infer that the ore-forming fluids could have been exsolved from a granitic magma. The oxygen and hydrogen isotope compositions of the ore-forming fluids (1.5‰  δ18OH2O  7.8‰; –72‰  δD  –117‰) indicate they were derived from a granitic magma. Four pyrite samples from the gold deposit yield a precise Re–Os isochron age of 534 ± 13 Ma. Given that the post-collisional granites in northern and central Madagascar were derived by melting of sub-continental lithospheric mantle and formed between 537 and 522 Ma, we can state that the gold metallogenesis was coeval with the crystallization age of these parental magmas. These data could be accounted for the formation of the Maevatanana gold deposit. First, the shear zones hosting the deposit formed around 2.5 Ga, when the Madagascan micro-continental blocks collided with other continental blocks, triggering large-scale tectono-magmatic activity and forming NNW–SSE trending shear zones. The gold mineralization at Maevatanana is coeval with the crystallization age of the Cambrian post-collisional A-type granitoid plutons in northern and central Madagascar, implying that this deposit is associated with extensional collapse of the East African Orogen. This extension in turn induced asthenospheric upwelling, melting of sub-continental lithospheric mantle. These magmas underplated the lower crust, generating voluminous granitic magmas by partial melting of the lower crust. The mixing magma during tectono-thermal reactivation of the East African Orogen produced large volumes of volatiles that extracted gold from the granitic magma and produced Au–S complexes (e.g., Au(HSO3)2−). The shear zones, which were then placed under extensional collapse of the East African Orogen in the Cambrian, formed favorable pathways for the magmatic ore-forming fluids. These fluids then precipitated gold-sulfides that form the Maevatanana gold deposit.  相似文献   

12.
The Wangu gold deposit in northeastern Hunan, South China, is one of many structurally controlled gold deposits in the Jiangnan Orogen. The host rocks (slates of the Lengjiaxi Group) are of Neoproterozoic age, but the area is characterized by a number of Late Jurassic–Cretaceous granites and NE-trending faults. The timing of mineralization, tectonic setting and ore genesis of this deposit and many similar deposits in the Jiangnan Orogen are not well understood. The orebodies in the Wangu deposit include quartz veins and altered slates and breccias, and are controlled by WNW-trending faults. The principal ore minerals are arsenopyrite and pyrite, and the major gangue minerals are quartz and calcite. Alteration is developed around the auriferous veins, including silicification, pyritic, arsenopyritic and carbonate alterations. Field work and thin section observations indicate that the hydrothermal processes related to the Wangu gold mineralization can be divided into five stages: 1) quartz, 2) scheelite–quartz, 3) arsenopyrite–pyrite–quartz, 4) poly-sulfides–quartz, and, 5) quartz–calcite. The Lianyunshan S-type granite, which is in an emplacement contact with the NE-trending Changsha-Pingjiang fracture zone, has a zircon LA-ICPMS U–Pb age of 142 ± 2 Ma. The Dayan gold occurrence in the Changsha-Pingjiang fracture zone, which shares similar mineral assemblages with the Wangu deposit, is crosscut by a silicified rock that contains muscovite with a ca. 130 Ma 40Ar–39Ar age. The gold mineralization age of the Wangu deposit is thus confined between 142 Ma and 130 Ma. This age of mineralization suggests that the deposit was formed simultaneously with or subsequently to the development of NE-trending extensional faults, the emplacement of Late Jurassic–Cretaceous granites and the formation of Cretaceous basins filled with red-bed clastic rocks in northeastern Hunan, which forms part of the Basin and Range-like province in South China. EMPA analysis shows that the average As content in arsenopyrite is 28.7 atom %, and the mineralization temperature of the arsenopyrite–pyrite–quartz stage is estimated to be 245 ± 20 °C from arsenopyrite thermometry. The high but variable Au/As molar ratios (>0.02) of pyrite suggest that there are nanoparticles of native Au in the sulfides. An integration of S–Pb–H–O–He–Ar isotope systematics suggests that the ore fluids are mainly metamorphic fluids originated from host rocks, possibly driven by hydraulic potential gradient created by reactivation of the WNW-trending faults initially formed in Paleozoic, with possible involvement of magmatic and mantle components channeled through regional fault networks. The Wangu gold deposit shares many geological and geochemical similarities as well as differences with typical orogenic, epithermal and Carlin-type gold deposits, and may be better classified as an “intracontinental reactivation” type as proposed for many other gold deposits in the Jiangnan Orogen.  相似文献   

13.
The Loulo–Gounkoto complex in the Kédougou–Kéniéba Inlier hosts three multi-million ounce orogenic gold deposits, situated along the Senegal–Mali Shear Zone. This west Malian gold belt represents the largest West African orogenic gold district outside Ghana. The Gounkoto deposit is hosted to the south of the Gara and Yalea gold mines in the Kofi Series metasedimentary rocks. The ore body is structurally controlled and is characterised by sodic and phyllic alteration, As- and Fe-rich ore assemblages, with abundant magnetite, and overall enrichment in Fe–As–Cu–Au–Ag–W–Ni–Co–REE + minor Te–Pb–Se–Cd. Fluid inclusion analysis indicates that the deposit formed at P–T conditions of approximately 1.4 kbar and 340 °C and that two end member fluids were involved in mineralisation: (1) a moderate temperature (315–340 °C), low salinity (< 10 wt.% NaCl equiv.), low density (≤ 1 g·cm 3), H2O–CO2–NaCl–H2S ± N2–CH4 fluid; (2) a high temperature (up to 445 °C), hypersaline (~ 40 wt.% NaCl equiv.), high density (~ 1.3 g·cm 3), H2O–CO2–NaCl ± FeCl2 fluid. Partial mixing of these fluids within the Jog Zone at Gounkoto enhanced phase separation in the aqueo-carbonic fluid and acted as a precipitation mechanism for Au. These findings demonstrate the widespread, if heterogeneously distributed, nature of fluid mixing as an ore forming process in the Loulo–Gounkoto complex, operating over at least a 30 km strike length of the shear zone. Stable isotope analyses of ore components at Gounkoto indicate a dominant metamorphic source for H2O, H2S and CO2, and by extension Au. It thus can be reasoned that both the aqueo-carbonic and the hypersaline fluid at Gounkoto are of metamorphic origin and that the high levels of salinity in the brine are likely derived from evaporite dissolution.  相似文献   

14.
The Ulu Sokor gold deposit is one of the most famous and largest gold deposits in Malaysia and is located in the Central Gold Belt. This deposit consists of three major orebodies that are related to NS- and NE-striking fractures within fault zones in Permian-Triassic meta-sedimentary and volcanic rocks of the East Malaya Block. The faulting events represent different episodes that are related to each orebody and are correlated well with the mineralogy and paragenesis. The gold mineralization consists of quartz-dominant vein systems with sulfides and carbonates. The hydrothermal alteration and mineralization occurred during three stages that were characterized by (I) silicification and brecciation; (II) carbonatization, sericitization, and chloritization; and (III) quartz–carbonate veins.Fluid inclusions in the hydrothermal quartz and calcite of the three stages were studied. The primary CO2–CH4–H2O–NaCl fluid inclusions in stage I are mostly related to gold mineralization and display homogenization temperatures of 269–389 °C, salinities of 2.77–11.89 wt.% NaCl equivalent, variable CO2 contents (typically 5–29 mol%), and up to 15 mol% CH4. In stage II, gold was deposited at 235–398 °C from a CO2 ± CH4–H2O–NaCl fluid with a salinity of 0.83–9.28 wt.% NaCl equivalent, variable CO2 contents (typically 5–63 mol%), and up to 4 mol% CH4. The δ18OH2O and δD values of the ore-forming fluids from the stage II quartz veins are 4.5 to 4.8‰ and − 44 to − 42‰, respectively, and indicate a metamorphic–hydrothermal origin. Oxygen fugacities calculated for the entire range of T-P-XCO2 conditions yielded log fO2 values between − 28.95 and − 36.73 for stage I and between − 28.32 and − 39.18 for stage II. These values indicate reduced conditions for these fluids, which are consistent with the mineral paragenesis, fluid inclusion compositions, and isotope values.The presence of daughter mineral-bearing aqueous inclusions is interpreted to be a magmatic signature of stage IIIa. Combined with the oxygen and hydrogen isotopic compositions (δ18OH2O = 6.8 to 11.9‰, δD =  77 to − 62‰), these inclusions indicate that the initial fluid was likely derived from a magmatic source. In stage IIIb, the gold was deposited at 263° to 347 °C from a CO2–CH4–H2O–NaCl fluid with a salinity of 5.33 to 11.05 wt.% NaCl equivalent, variable CO2 contents (typically 9–15 mol%), and little CH4. The oxygen and hydrogen isotopic compositions of this fluid (δ18OH2O = 8.1 to 8.8‰, δD =  44 to − 32‰) indicate that it was mainly derived from a metamorphic–hydrothermal source. The CO2–H2O ± CH4–NaCl fluids that were responsible for gold deposition in the stage IIIc veins had a wide range of temperatures (214–483 °C), salinities of 1.02 to 21.34 wt.% NaCl equivalent, variable CO2 contents (typically 4–53 mol%), and up to 7 mol% CH4. The oxygen and hydrogen isotopic compositions (δ18OH2O = 8.5 to 9.8‰, δD =  70 to − 58‰) were probably acquired at the site of deposition by mixing of the metamorphic–hydrothermal fluid with deep-seated magmatic water and then evolved by degassing at the site of deposition during mineralization. The log fO2 values from − 28.26 to − 35.51 also indicate reduced conditions for this fluid in stage IIIc. Moreover, this fluid had a near-neutral pH and δ34S values of H2S of − 2.32 to 0.83‰, which may reflect the derivation of sulfur from the subducted oceanic lithospheric materials.The three orebodies represent different gold transportation and precipitation models, and the conditions of ore formation are related to distinct events of hydrothermal alteration and gold mineralization. The gold mineralization of the Ulu Sokor deposit occurred in response to complex and concurrent processes involving fluid immiscibility, fluid–rock reactions, and fluid mixing. However, fluid immiscibility was the most important mechanism for gold deposition and occurred in these orebodies, which have corresponding fluid properties, structural controls, geologic characteristics, tectonic settings, and origins of the ore-forming matter. These characteristics of the Ulu Sokor deposit are consistent with its classification as an orogenic gold deposit, while some of the veins are genetically related to intrusions.  相似文献   

15.
The Wulaga gold deposit, located in Heilongjiang province, NE China, is a subvolcanic rock-hosted, low-sulfidation epithermal gold deposit, and has an Au reserve of about 84 tons. The gold mineralization occurs in a crypto-explosive breccia, and is spatially and temporally associated with an Early Cretaceous granodioritic porphyry. Three individual stages of mineralization have been identified in the Wulaga gold deposit: an early white quartz-euhedral vein stage, a fine-grained pyrite–marcasite–stibnite–chalcedony stage, and a late calcite–pyrite stage. The sulfur isotopic values of sulfide minerals vary in a wide range from − 4 to 4.9‰, but are concentrated in the range of − 3 to 0‰, implying that sulfur in the hydrothermal fluids was derived from magmatic volatiles. Lead isotopic results of the granodioritic porphyry (206Pb/204Pb = 18.341–18.395, 207Pb/204Pb = 15.507–15.523, 208Pb/204Pb = 38.174–38.251) and sulfide minerals (206Pb/204Pb = 18.172–18.378, 207Pb/204Pb = 15.536–15.600, 208Pb/204Pb = 38.172–38.339) are comparatively consistent and clustered together between the orogenic and upper mantle lines, indicating the lead in the ores is closely related to the parent magma of the granodioritic porphyry. The REE patterns of fluid inclusions trapped in sulfides are similar to those of the granodioritic porphyry, which confirms the magmatic origin of the REE in the hydrothermal fluids. The characteristics of S and Pb isotopes and REE suggest that the ore-forming materials of the Wulaga gold deposit are partly magmatic in origin, and related to a high-level hydrous granodioritic magma.  相似文献   

16.
Copper–gold–bismuth–tellurium mineralization in the Stanos area, Chalkidiki Peninsula, Greece, occurs in the Proterozoic- to Silurian-aged Serbomacedonian Massif, which tectonically borders the Mesozoic Circum-Rhodope metamorphic belt to the west and crystalline rocks of the Rhodope Massif to the east. This area contains the Paliomylos, Chalkoma, and Karambogia prospects, which are spatially related to regional NW–SE trending shear zones and hosted by marble, amphibolite gneiss, metagabbro, and various muscovite–biotite–chlorite–actinolite–feldspar–quartz schists of the Silurian Vertiskos Unit. Metallic minerals occur as disseminated to massive aggregates along foliation planes and in boudinaged quartz veins. Iron-bearing sulfides (pyrite, arsenopyrite, and pyrrhotite) formed prior to a copper-bearing stage that contains chalcopyrite along with galena, sphalerite, molybdenite, and various minerals in the system Bi–Cu–Pb–Au–Ag–Te. Fluid inclusion homogenization temperatures of primary aqueous liquid–vapor inclusions in stage I quartz veins range from 170.1 °C to 349.6 °C (peak at ~ 230 °C), with salinities of 4.5 to 13.1 wt.% NaCl equiv. Calculated isochores intersect P–T conditions associated with the upper greenschist facies caused by local overpressures during late-stage tectonic movement along the shear zone in the Eocene, which produced stretching and unroofing of rocks in the region. Values of δ34S for sulfides in the Stanos shear zone range from 2.42 to 10.19‰ and suggest a magmatic sulfur source with a partially reduced seawater contribution. For fluids in equilibrium with quartz, δ18O at 480 °C varies from 5.76 to 9.21‰ but does not allow for a distinction between a metamorphic and a magmatic fluid.A 187Re–187Os isochron of 19.2 ± 2.1 Ma for pyrite in the Paliomylos prospect overlaps ages obtained previously from intrusive rocks spatially-related to the Skouries porphyry Cu–Au, the Asimotrypes Au, and the intrusion-related Palea Kavala Bi–Te–Pb–Sb ± Au deposits in northern Greece, as well as alteration minerals in the carbonate-replacement Madem Lakkos Pb–Zn deposit. Ore-forming components of deposits in the Stanos area were likely derived from magmatic rocks at shallow depth that intruded an extensional shear environment at ~ 19 Ma.  相似文献   

17.
The Jiehe gold deposit, containing a confirmed gold reserve of 34 tonnes (t), is a Jiaojia-type (disseminated/stockwork-style) gold deposit in Jiaodong Peninsula. Orebodies are hosted in the contact zone between the Jurassic Moshan biotite granite and the Cretaceous Shangzhuang porphyritic granodiorite, and are structurally controlled by the NNE- to NE-striking Wangershan-Hedong Fault. Sulphide minerals are composed predominantly of pyrite with lesser amounts of chalcopyrite, galena, and sphalerite. Hydrothermal alteration is strictly controlled by fracture zones, in which disseminated sulfides and native gold are spatially associated with pervasive sericitic alteration. Mineralogical, textural, and field relationships indicate four stages of alteration and mineralization, including pyrite-bearing milky and massive quartz (stage 1), light-gray granular quartz–pyrite (stage 2), quartz–polysulfide (stage 3) and quartz–carbonate (stage 4) stages. Economic gold is precipitated in stages 2 and 3.The Jiehe deposit was previously considered to form during the Eocene (46.5 ± 2.3 Ma), based on Rb-Sr dating of sericite. However, 40Ar/39Ar dating of sericite in this study yields well-defined, reproducible plateau ages between 118.8 ± 0.7 Ma and 120.7 ± 0.8 Ma. These 40Ar/39Ar ages are consistent with geochronological data from other gold deposits in the region, indicating that all gold deposits in Jiaodong formed in a short-term period around 120 Ma. The giant gold mineralization event has a tight relationship with the extensional tectonic regime, and is a shallow crustal metallogenic response of paleo-Pacific slab subduction and lithospheric destruction in the eastern NCC.  相似文献   

18.
The Tasiast gold deposits are hosted within Mesoarchean rocks of the Aouéouat greenstone belt, Mauritania. The Tasiast Mine consists of two deposits hosted within distinctly different rock types, both situated within the hanging wall of the west-vergent Tasiast thrust. The Piment deposits are hosted within metasedimentary rocks including metaturbidites and banded iron formation where the main mineral association consists of magnetite-quartz-pyrrhotite ± actinolite ± garnet ± biotite. Gold is associated with silica flooding and sulphide replacement of magnetite in the turbidites and in the banded iron formation units. The West Branch deposit is hosted within meta-igneous rocks, mainly diorites and quartz diorites that lie stratigraphically below host rocks of the Piment deposits. Most of the gold mineralisation at West Branch is hosted by quartz–carbonate veins within the sheared and hydrothermally altered meta-diorites that constitute the Greenschist Zone. At Tasiast, gold mineralisation has been defined over a strike length > 10 km and to vertical depths of 740 m. All of the significant mineralised bodies defined to date dip moderately to steeply (45° to 70°) to the east and have a south–southeasterly plunge. Gold deposits on the Tasiast trend are associated with second order shear zones that are splays cutting the hanging wall block of the Tasiast thrust. An age of 2839 ± 36 Ma obtained from the hydrothermal overgrowth on zircons from a quartz vein is interpreted to represent the age of mineralisation.  相似文献   

19.
The Wang'ershan gold deposit, located in the southern Jiaojia goldfield, is currently the largest gold deposit hosted within the subsidiary faults in Jiaodong Peninsula, with a gold reserve of > 60 t gold at a grade of 4.07 g/t Au. It is hosted in the Late Jurassic Linglong biotite granites and controlled by the second-order, N- to NNE-trending Wang'ershan Fault (and its subsidiary faults) which is broadly parallel to the first-order Jiaojia Fault in the goldfield. Gold mineralization occurs as both disseminated- and stockwork-style and quartz–sulfide vein-style ores, mainly within altered cataclasites and breccias, and sericite–quartz and potassic alteration zones, respectively. Mineralization stages can be divided into (1) the pyrite–quartz–sericite stage, (2) the quartz–pyrite stage, (3) the quartz–sulfide stage, and (4) the quartz–carbonate stage.Two sericite samples associated with the main ore-stage pyrites from pyritic phyllic ores of the deposit with weighted mean plateau 40Ar/39Ar age of 120.7 ± 0.6 Ma and 119.2 ± 0.5 Ma, respectively, were selected for 40Ar/39Ar geochronology. On the basis of petrography and microthermometry, three types of primary fluid inclusions related to the ore forming event were identified: type 1 H2O–CO2–NaCl, type 2 aqueous, and type 3 CO2 fluid inclusions (in decreasing abundance). Stage 1 quartz contains all three primary fluid inclusions, while stages 2 and 3 quartz contain both type 1 and 2 inclusions, and stage 4 quartz contains only type 2 inclusions. The contemporaneous trapping, similar salinities and total homogenization temperature ranges, and different homogenization phases of type 1 and type 2 inclusions indicate that fluid immiscibility did take place in stages 1, 2 and 3 ores, with P–T conditions of 190 to 85 MPa and 334 to 300 °C for stage 1 and 200 to 40 MPa and 288 to 230 °C for stages 2 and 3. Combined with the H–O–C–S–Pb isotopic compositions, ore-forming fluids may have a metamorphic-dominant mixed source, which could be associated with the dehydration and decarbonisation of a subducting paleo-Pacific plate and characterized by medium–high temperature (285–350 °C), CO2-bearing (~ 8 mol%) with minor CH4 (1–4% in carbonic phase), and low salinity (3.38–8.45 eq. wt.% NaCl). During mineralization, the fluid finally evolved into a medium–low temperature NaCl–H2O system. Au(HS)2 was the most probable gold-transporting complex at Wang'ershan, due to the low temperature (157–350 °C) and near-neutral to weakly acidic ore fluids. The reaction between gold-bearing fluids and iron-bearing wall-rocks, and fluid-immiscibility processes caused via fluid–pressure cycling during seismic movement along fault zones that host lode-gold orebodies, which led to breakdown of Au(HS)2, are interpreted as the two main precipitation mechanisms of gold deposition.In general, the Wang'ershan deposit and other deposits in the Jiaojia camp have concordant structural system and wall-rock alteration assemblages, nature of orebodies and gold occurrence conditions, as well as the similar geochronology, ore-forming fluids system and stable isotope compositions. Thus gold mineralization in the Jiaojia goldfield was a large-scale unified event, with consistent timing, origin, process and mechanism.  相似文献   

20.
The Archaean Yilgarn Craton (Western Australia) is a world-class metallogenic province, hosting considerable resources of Au, Ag, Ni, Cu, Zn and Fe. Here we present trace element compositions of pyrite from > 30 orogenic Au and 5 volcanic hosted massive sulphide (VHMS) deposits across the Yilgarn. Pyrites from VHMS deposits tend to have higher Sn, Se, Cu, Pb, Bi and lower Ni relative to orogenic deposits. VHMS deposit pyrites commonly have Co > Ni, As > 100Au, Te > Au, Se > Te. Orogenic gold deposits could be subdivided based on association of Au with As or Te. Pyrites from AuAs ores generally have Pb/Bi > 5, Se/Te > 5, Pb/Sb < 5 and Tl/Te > 100 and the majority of Au is refractory (in pyrite structure). At the same time AuTe association pyrites are characterised by lower values of Pb/Bi, Se/Te and Tl/Te, higher values of Ag/Au, Pb/Sb and Au generally resides in inclusions of different compositions. Our data can be used at the exploration stage to distinguish between VHMS vs Orogenic Au signatures. For all studied deposits inclusion populations are summarised with implications for Au and Ag deportment. Orogenic Au deposits from the Yilgarn mostly have multistage formation histories reflected in the presence of multiple generations of pyrites. However, only some deposits record multiple high Au mineralisation events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号