首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
不同溶解氧水平下湖泊底泥-水界面磷交换影响因素分析   总被引:15,自引:2,他引:13  
龚春生  范成新 《湖泊科学》2010,22(3):430-436
在实验室控制条件下,研究了玄武湖底泥在饱和溶解氧、75%、50%、25%、0%溶解氧水平下底泥-水界面磷交换,探讨了溶解氧对底泥-水界面磷交换的影响途径.结果表明:(1)上覆水溶解氧与玄武湖底泥溶解性磷酸盐、溶解性总磷释放速率呈开口向上的抛物线关系;(2)上覆水溶解氧水平可以决定磷在底泥-水界面交换中的转换方向,而且还影响间隙水中溶解氧扩散深度,25%、50%、75%和饱和溶解氧水平下溶解氧最大扩散深度分别为0.974cm、1.377cm、1.687cm和1.948cm,溶解氧在间隙水中最大扩散深度影响底泥-水界面的磷交换;(3)溶解氧可通过影响底泥-水界面处电位、藻类聚磷作用以及pH来影响底泥-水界面的磷交换.  相似文献   

2.
太湖底泥水华蓝藻复苏的模拟   总被引:13,自引:5,他引:8  
本实验采集太湖梅梁湾底泥及上覆水,在保持底泥表面完整的前提下在实验室中建立湖泊生态系统模拟装置,探索太湖底泥中蓝藻种群的复苏规律经60d光照升温培养,显微观察蓝藻复苏细胞,测定底泥和上覆水中的色素含量.结果表明,在室内模拟条件下,太湖底泥蓝藻复苏初始时主要以2-8个细胞的小群体存在,其细胞直径为7.2-7.8μm,大于夏季的藻群体中的细胞直径(4.8-6μm).底泥蓝藻的复苏过程与环境温度变化密切相关.蓝藻在水体温度达到14℃时开始少量进入水柱中,在环境温度升至18-20℃之间时大量进入水中,为水华形成提供了种源.底泥蓝藻的最佳复苏温度(18-20℃)高于非蓝藻的复苏温度(14-18℃),高温对蓝藻复苏更为有利  相似文献   

3.
太湖不同湖区底泥悬浮沉降规律研究及内源释放量估算   总被引:5,自引:1,他引:4  
胡开明  王水  逄勇 《湖泊科学》2014,26(2):191-199
太湖是一个大型浅水湖泊,湖湾、沿岸及湖心等区域受地形影响,湖流结构及水土界面水力要素均有显著差异.针对目前对不同湖区底泥再悬浮规律差异性研究的缺失,本研究选取了3个具有代表性的点采集太湖底泥,采用矩形水槽开展底泥再悬浮模拟实验,并结合太湖二维水量水质模型及太湖全年实测数据,建立了不同湖区底泥再悬浮通量与风速之间的定量关系;通过室内静沉降实验,得到了静沉降通量与风速的相关关系;最后将底泥再悬浮实验结果参数化应用于太湖二维水量水质模型中,并对底泥悬浮沉降过程进行分解和概化,估算太湖全年内源释放量.结果表明:太湖每日的内源释放量受风速影响显著,和风速变化趋势较为接近,太湖全年进入水体的净底泥量有47.81×104t,夏季最大,冬季次之;就营养物质释放量而言,COD约为2.06×104t、总氮约为1149.05 t、总磷约为564.35 t,其中秋季营养物质释放量最小,夏季最大.  相似文献   

4.
浅水湖泊动力作用下水-土界面底泥起悬驱动力野外观测   总被引:1,自引:1,他引:0  
动力扰动引起的水-土界面沉积物悬浮是浅水湖泊蓝藻水华控制的难点,本文基于声学高频流速仪、浊度仪、气象、波浪等观测仪器获取的高时空分辨时间序列参量,以太湖为例对动力扰动下的底泥起悬驱动力进行研究.结果表明风速小于3 m/s时,水-土界面处平均悬浮物浓度为59 mg/L,波流综合切应力小于0.015 N/m~2,底泥未起悬或在底床附近极小范围内发生起悬;风速在3~6 m/s时,水-土界面处平均悬浮物浓度为103 mg/L,波浪产生的底切应力大部分情况远大于湖流产生的切应力,波流综合切应力处于0.015~0.25 N/m~2范围内,底泥中等规模起悬;风速大于6 m/s时,水-土界面处平均悬浮物浓度为174 mg/L,波浪产生的底切应力占据绝对的主导地位,波流综合切应力大于0.25 N/m~2,底泥大规模起悬.梅梁湾底泥起悬的临界切应力在0.015 N/m~2左右,临界风速大约为3 m/s.  相似文献   

5.
底泥覆盖对浅水湖泊藻源性湖泛的控制模拟   总被引:1,自引:1,他引:0  
湖泛的发生与湖泊底部氧化还原条件和致黑致臭物充足供给直接相关.利用黄土和细沙对太湖湖泛易发区(月亮湾)底泥进行覆盖,模拟在湖泛可形成条件下,底泥-水体系及其界面主要物化性质与感官变化过程.结果表明:0.5 cm黄土和1.0 cm细沙的覆盖,从水色和嗅味半定量角度达到了对湖泛黑臭的控制,与对照组相比,覆盖组底泥间隙水中主要致黑物Fe2+浓度仅为对照组的1/3,主要致臭物甲硫醇和二甲基三硫醚等浓度则不到50%.进一步分析底部水体和底泥性质发现:经覆盖处理底部水体的溶解氧浓度提高近1倍,氧化还原电位基本处于250 m V以上水平,覆盖层1 cm左右表层氧化还原电位和p H均远高于对照底泥.以黄土为主的底泥覆盖,主要因阻隔了下层底泥中物质迁移供给和对厌氧微生物参与的控制,以及黄土本身性质对湖底物化环境的影响等,在藻体大量聚集和死亡的水柱环境中,较好地阻止了致黑致臭物的形成,从而较有效控制湖泛的发生.  相似文献   

6.
太湖冬季底泥中活体藻类的检测   总被引:13,自引:2,他引:11  
吴生才  陈伟民  高光 《湖泊科学》2003,15(4):339-344
2002年冬从太湖梅梁湾采集柱状底泥,取三段进行直接镜检和用MA培养基进行光照培养.镜检发现表层(0-3cm)底泥中有多种藻类细胞,中层(10-13cm)底泥的藻类细胞种类明显减少,下层(20-23cm)底泥中没有发现藻类细胞.底泥培养的结果与之有相似的趋势,但得到的活体藻类细胞的种类相应减少.培养3个月后得到在外观和群落结构上与夏季水华相似的群落.结果表明底泥中的微囊藻和小环藻在太湖底泥中具有良好的适应性,占有明显的优势地位,底泥可以作为水华蓝藻的越冬场所和来年水华的种源.  相似文献   

7.
太湖底泥及其间隙水中氮磷垂直分布及相互关系分析   总被引:97,自引:16,他引:81  
范成新  杨龙元  张路 《湖泊科学》2000,12(4):359-366
对太湖主要湖区柱状样底泥的总氮、总磷含量及其间隙水铵态氮(NH^+4-N)、磷酸根磷(PO^3-4-P)和二价铁Fe(II)含量进行了分析,并对底泥和间隙水中相应物质含量进行了比较,结果表明:太湖近表层10cm内底泥TN、TP赋存含量较之下层高12%-20%左右,间隙水中PO^3+4-P和NH^+4-N含量随浓度增加而大致呈上升趋势,表层未见高浓度层存在,各湖区底泥间隙水中PO^3+4-P和NH^  相似文献   

8.
谢瑞  姬昌辉  王永平  葛慧 《湖泊科学》2016,28(3):669-675
湖泊底泥的运动过程产生内源污染,加剧湖泊生态环境的恶化.研究湖泊底泥在波浪作用下的输沙规律,可为研究湖泊的水质变化成因及生态环境治理提供参考依据.利用大型波浪水槽,在波浪作用条件下对太湖、龙感湖、巢湖的底泥进行了起动和输沙试验,对多组波浪水文条件下湖泊底泥的输沙试验结果进行分析,详细地阐述了太湖、龙感湖、巢湖底泥在波浪作用下的输沙变化规律.分析整理试验数据,得出输沙率变化公式,为3个湖泊的水质变化成因分析及生态环境治理提供参考依据.  相似文献   

9.
底泥和藻体对太湖湖泛的诱发及水体致黑物的供应潜力   总被引:8,自引:6,他引:2  
蔡萍  吴雨琛  刘新  尹洪斌 《湖泊科学》2015,27(4):575-582
为确定底泥和藻体在太湖湖泛形成过程中对致黑物形成的贡献,采用室内模拟系统,研究底泥、蓝藻以及底泥+蓝藻3种处理,模拟湖水在不同厌氧程度下湖泛特征参数(黑度、铁及硫形态)的变化,分析不同处理以及受不同聚藻程度影响区(八房港、焦山)底泥对湖泛的诱发作用及致黑物供给潜力.结果表明,各处理组诱发太湖湖泛发生的难易顺序为:底泥+蓝藻处理组底泥处理组蓝藻处理组.底泥+蓝藻处理组中Fe2+浓度为蓝藻处理组的11~94倍,其平均浓度为后者的33倍,而底泥+蓝藻处理组中还原性硫浓度为其他处理组的2~56倍.研究还发现,聚藻区底泥较非聚藻区更易发生湖泛,这是由于聚藻区底泥富集了更高浓度的铁、硫等还原性物质,但厌氧处理与非厌氧处理在诱发湖泛发生的风险差异不明显.以上结果证实,厌氧环境下低价铁硫供应潜力的差异是决定湖泛发生的主要物质来源,加强对聚藻区底泥及蓝藻的控制是有效防控太湖湖泛发生的主要措施之一.  相似文献   

10.
水动力条件下底泥中氮磷释放通量   总被引:28,自引:4,他引:24  
在环形水槽内模拟了水动力条件下底泥的起动规律,分析了底泥运动的不同状态。该环形水槽内水体流速基本均匀,水槽转速与槽内水体流速能够精确的相互转换,实验中通过改变水槽转速模拟了不同扰动强度下底泥悬浮和释放的规律.以太湖底泥为例,通过上覆水中TN、TP浓度的变化,建立了底泥中TN、TP的释放通量(y)与水流(x)的关系,其表达式为TN:y=137.88e^0.06x(R^2=0.94);TP:y=36.78e^0.56x(R^2=0.97);并将该实验结果应用在太湖的水量水质模型中,取得了比较满意的效果.  相似文献   

11.
通过模拟沙湖沉积物-水系统,以沙湖原水氟离子(F-)浓度为1倍浓度(0.69 mg/L),设置0.5倍浓度、1倍浓度、1倍浓度灭菌、2倍浓度和4倍浓度共5个实验组,探究不同上覆水F-浓度背景下沙湖沉积物中F-的迁移.结果表明,沉积物F-的释放量随上覆水F-浓度的增加而呈下降的趋势,其中2倍和4倍浓度组的沉积物由释放F-转变为吸附F-.碱性水体有利于沉积物F-的释放,即随着pH增大,F-释放量也会增加.微生物的Beta多样性层次聚类分析表明,F-会抑制PaenisporosarcinaThiobacillus的相对丰度,但对Fusibacter的生命活动具有促进作用.根据各浓度组间优势菌属相对丰度与环境因子的冗余分析可得,AcinetobacterThiobacillus相对丰度与pH呈负相关;Fusibacter相对丰度与F-浓度呈显著正相关,而Thiobacillus的相对丰度则与F-表现出弱负相关.通过对各浓度组中重要离子的分析发现,0.5倍组和4倍组中F-的迁移受Ca2+、HCO3-和SO42-浓度影响较大;相关性分析表明0.5倍浓度组的Ca2+、HCO3-浓度与F-浓度呈极显著正相关,而4倍组中F-浓度和Ca2+、HCO3-浓度呈负相关,SO42-浓度和F-浓度的相关性则是0.5倍组呈负相关,4倍组呈极显著正相关.本文在不同上覆水F-浓度背景下全面探究了沙湖沉积物中F-释放和迁移机理,为沙湖及其他含氟地表水的氟污染防治提供理论支持.  相似文献   

12.
统计分析了青藏高原不同区域水体环境表层沉积物陆相介形类的属种分布特征,探讨了介形类在不同水环境下(盐度、pH值及水深)对生态环境的响应.结果显示,青藏高原现生介形类共计21属67种,其中Candona candidaIlyocypris bradyiEucypris inflataLimnocythere dubiosaLimnocythere inopinataParacypricerus angulataLeucocytherella sinensisLeucocythere mirabilis为青藏高原地区的常见种.湖泊、河流、洼地和湿地4类水体环境中,湖泊中介形类最为丰富,达19属62种;青藏高原东北部(祁连山和柴达木盆地)、北部(昆仑山)、西部和南部不同区域的介形类常见种存在较大差异,可能是区域海拔、pH值和盐度综合作用的结果.淡水和微咸水环境介形类属种数量较咸水及盐湖中丰富,分别有17属41种和13属42种,Limnocythere dubiosa (0.52~90.6 g/L)和Leucocythere mirabilis(0.51~174.63 g/L)在淡水、咸水及盐湖中均有出现,适应盐度范围较广;pH值在8.0~10.0范围内介形类属种多样性最丰富,表明大部分介形类具有嗜碱性的特征;青藏高原陆相介形类属种多样性随水深的增加而降低,浅湖(0~15 m)中介形类属种最为丰富,达到17属52种,其中Candona candida(0.2~80 m)和Leucocythere dorsotuberosa(0.3~110 m)从滨湖至深湖区均有分布,二者均具有较大的水深适应范围.  相似文献   

13.
长江中游网湖百年花粉序列及其沉积动力和环境特征   总被引:2,自引:0,他引:2  
于革  沈华东 《湖泊科学》2010,22(4):598-606
本文研究长江中游网湖钻孔百年来的花粉沉积序列,分析花粉沉积近、现代过程以及其与沉积粒度、过去百年湖泊由开放水系到封闭湖泊的气候、水文动力变化的关系.研究表明,花粉浓度、类型与沉积粒度的变化特征以及聚类分析反映出网湖经历了湖泊水系通江与封闭两个重大阶段变化,其花粉序列变化与沉积粒度、区域降水以及长江流量在时间序列上也具有显著的相关性.主要孢粉类型,包括陆生松属、常绿栎/落叶栎、乔灌木花粉、湿生莎草科、水生和陆生草本花粉、以及蕨类孢子,与沉积物粒度和降水具有同步相关的年份占过去130年的27%-40%,与1960年湖泊封闭以前长江流量的同步相关达到47%-57%,反映出花粉沉积量的变化受到了沉积粒径和流域降水量的影响.花粉类型对沉积和气候具有不同的响应关系,表现出具有大于降水70百分点年份以粘土沉积为主、乔灌木花粉占优的多水年模式,和小于降水30百分点的年份以粉砂沉积为主、水生、湿生、陆生草类花粉增加的少水年模式.花粉沉积与水动力这个关系为认识湖泊碎屑和利用花粉沉积记录反演过去环境变迁、生物湖泊沉积机制提供科学依据.  相似文献   

14.
黄蔚  陈开宁 《湖泊科学》2010,22(4):545-551
在沉水植物的生活史中,沉积物提供植物固着基质和所需的大量营养元素,对沉水植物的兴衰有长期且深远的影响.对太湖沉积物理化性质与沉水植物生物量、种的饱和度和物种多样性之间的相关关系进行研究.数据的典型相关分析表明,两组数据的第一典型相关系数为0.795,达到显著水平.最后的典型变量冗余分析显示,沉水植物指标形成的第一典型分量能解释沉积物指标变化的26.75%.但是,沉水植物指标的变化中的56.52%不能被沉积物的第一典型分量解释.沉水植物的第一典型变量对沉积物氮磷比有一定预测能力(多重相关的平方0.5258),而对含水率几乎没有预测能力(0.0280).来自沉积物的第一典型变量对沉水植物的鲜重(0.7503)、香农-威纳指数(0.4841)和种的饱和度(0.4613)都有一定预测能力.中层沉积物(5-10cm)和底层沉积物(10-15cm)理化性质与沉水植物的相关指标分析结果显示,数据之间相关性不显著.表明中下层沉积物对沉水植物影响不明显.  相似文献   

15.
2006年4月在武汉月湖采集了8个样点的水样和表层沉积物样品,采用气-质联用技术分析了样品中25种半挥发性有机污染物(SVOCs)的含量,探讨月湖受有机物污染的程度.水样中25种半挥发性有机污染物总浓度为564.04-1209.41ng/L,平均值为965.64ng/L.沉积物中总浓度为8500.26-23347.20ng/g(DW),平均值为14832.04ng/g(DW).邻苯二甲酸酯类物质是月湖的主要污染物,其中,邻苯二甲酸乙基己基酯和邻苯二甲酸二丁酯含量最高.多环芳烃、硝基甲苯、异佛尔酮等均有不同程度检出,靠近以前的排污口的样点浓度最高.沉积物中25种半挥发性有机污染物的含量大约是水体中含量的15倍,具有潜在生态风险.  相似文献   

16.
张琛  孙顺才 《湖泊科学》1991,3(1):16-24
通过地质调查, 钻孔样品分析及历史资料对比, 得出:1.巢湖位于在中新生代形成的巢湖断陷盆地南部, 形成于更新世发育的河谷平原上, 由于全新世受气候及相应海平面变化和长江河道演变等三者共同影响而积水成湖。成湖历史大约2000年左右, 属河成型浅水湖。2.湖底沉积物平均中值粒径5-6ф, 并形成有三角洲沉积, 开阔湖沉积等五种沉积类型, 东、西、中三湖区的沉积物中分別为0.21, 0.37, 0.14cm/a, 全湖年淤积总量为93×l04t/a。3.湖泊污染加重起始于70年代, 磷除来自外源外, 内负荷引起的释放量达220.56t/a, 这对巢湖富营养化亦有着重要的影响。  相似文献   

17.
土壤胞外酶参与土壤的生物化学过程,其活性和化学计量比能够反映土壤微生物的功能动态.然而,目前湿地生态系统中催化不同生物地球化学关键过程的土壤胞外酶的活性和化学计量比随高程的变化特征还不清楚.以鄱阳湖苔草洲滩湿地6个不同高程样带的表层土壤(0~10 cm)为研究对象,通过测定与土壤碳、氮、磷循环相关的7种水解酶的活性,分...  相似文献   

18.
倪晓寅  陈莹  杨锦玲 《中国地震》2022,38(2):239-247
基于地磁逐日比异常期间地磁垂直分量日变化幅度变大或变小的统计结果,发现地磁逐日比高值异常是由异常日的地磁垂直分量日变化幅度变小和异常前一天的日变化幅度变大所致。其中,异常日的日变化幅度变小可能是地磁逐日比异常的主要因素,但异常前一天的日变化幅度变大也是异常成立的重要因素。此外,引用前人感应电流假说,结合统计结果进行了机理解释,研究结论进一步证实了前人对该方法的机理推测。  相似文献   

19.
神农架大九湖泥炭地是华中地区少有的亚高山泥炭藓湿地,是研究长江中游气候变化及其生态效应的理想区域.本文通过大九湖一根泥炭岩芯的年代学、元素及摇蚊亚化石记录,结合区域古气候资料,探讨大九湖泥炭地地表干湿变化历史及生物响应过程.结果表明,近400年来大九湖泥炭地古水文和摇蚊种群变化经历了3个主要阶段:1820s之前研究区内气候偏冷湿,尤其是1720s-1820s年间,冷湿的环境有利于泥炭中碳的大量积累,较高的地表有效湿度使得摇蚊大量生长,同时湖泊相摇蚊属种丰富度及含量均较高;1820s-1940s年间,区域内夏季降水量显著降低,同时伴随明显的区域增温过程,泥炭地地表有效湿度过低不利于水生生物生长,摇蚊种群生物量极低;1940s (尤其1970s)后,摇蚊种群丰度逐渐回升,但湖泊相摇蚊丰度较1820s以前明显降低,半陆生摇蚊属种丰度有所增加,说明尽管该时期泥炭地表湿度有所增加,但较1820s前仍较低,暖湿气候下泥炭分解也较为明显.本研究探索性地分析了气候变化背景下泥炭地摇蚊种群对泥炭地湿度变化的响应过程,这不仅为摇蚊亚化石在气候变化研究中的应用开拓了新的领域,同时也为全面、精准地理解泥炭地演化及区域环境变化过程提供了新线索.  相似文献   

20.
李建  尹炜  贾海燕  辛小康  王超 《湖泊科学》2022,34(3):740-751
汉江中下游1992-2021年冬春季节共计暴发了十余次大规模水华事件,水生态安全和饮用水安全频繁受到威胁.基于历次水华发生情况,分析总结了汉江中下游水华特征和暴发成因,根据水华与水文过程响应关系研究提出了抑制水华的关键指标及其调控阈值,构建了汉江中下游水利工程联合生态调度方案,明确了抑制水华的生态调度方式和调度持续时间...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号