首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In gravitational microlensing, distant planetary systems may be discovered by utilizing them as naturally occuring lenses. Efforts to find planets by this technique began in the 1990s. The first definitive detection of an extrasolar planet by microlensing was made in 2003 in the event OGLE 2003-BLG-235/MOA 2003-BLG-53, where the observed light curve was best reproduced using a binary microlensing model with a mass ratio of 0.004. Further observations with the HST revealed that the lens system comprises a 2.6 Jupiter mass planet in a 4.3 A.U. wide orbit around a 0.6 Solar mass K dwarf at a distance of 5.8 Kpc. Subsequently, the number of planets detected by microlensing is increasing.  相似文献   

2.
3.
4.
F. Scaltriti  V. Zappalà 《Icarus》1977,31(4):498-502
Photoelectric observations of the minor planet 63 Ausonia were obtained on 12 nights during the 1976 opposition at the Astronomical Observatory of Torino. A complete lightcurve with two maxima and two minima was observed with a maximum amplitude of 0.47 mag. The synodic period of rotation, never before determined photoelectrically, was found to be 9h17m48s ± 5s. The absolute magnitude of the primary maximum, V0(1, 0) = 7.49 mag, and the phase coefficient, βv = 0.035 mag/deg, were deduced by the magnitude-phase relation. Comparison with other observations is briefly discussed and a mean radius is determined from a previous value of the geometric albedo.  相似文献   

5.
With the high signal-to-noise ratio spectra, we obtained Si abundances of 22 extrasolar planet host stars, and discussed some constraints on the planet formation. Using our silicon abundance results and other authors’ Si abundance studies about planets-harboring stars, we investigated the correlation between the dynamical properties and the silicon abundance. We propose a hypothesis that higher primordial metallicity in the host stars’ birth cloud with higher abundance of Si will make the cloud more sticky to bypass the time scale restriction in planet formation and easier to form the planets.  相似文献   

6.
This paper discusses the concept of extrasolar planet detection using a large-aperture infrared imaging telescope. Coronagraphic stellar apodization techniques are less efficient at infrared wavelengths compared to the visible, as a result of practical limitations on aperture dimensions, thus necessitating additional starlight suppression to make planet detection feasible in this spectral domain. We have been investigating the use of rotational shearing interferometry to provide up to three orders of magnitude of starlight suppression over broad spectral bandwidths. We present a theoretical analysis of the system performance requirements needed to make this a viable instrument for planet detection, including specifications on the interferometer design and telescope aperture characteristics. The concept of using rotational shearing interferometry as a wavefront error detector, thus providing a signal that can be used to adaptively correct the wavefront, will be discussed. We also present the status of laboratory studies of on-axis source suppression using a recently constructed rotational shearing interferometer that currently operates in the visible.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

7.
Exoplanet observations have been performed on the automated Pulkovo Observatory telescopes. We have obtained 33 transit light curves for 16 known exoplanets and six transit observations for three exoplanet candidates discovered by the Kepler telescope. Based on our observations, we have reliably confirmed the existence of an exoplanet with an extremely large radius, R pl = 1.83 ± 0.16R Jup, in the system KOI 256 and detected a strong deviation of its orbital revolution from the theoretically predicted one. During the transit of the exoplanet WASP-12b across the stellar disk, we detected bursts that could be caused by the planet transit across spots on the star or by the presence of a satellite around this exoplanet. We detected possible periodic variations in the duration of the exoplanet transit across the stellar disk with time for HAT-P-12b that could be caused by variations in orbital inclination. The transit duration and depth, the central transit time, and the radius and orbital inclination of the planet have been estimated. The equilibrium temperature and albedo have been estimated for several exoplanets.  相似文献   

8.
9.
10.
11.
12.
Space infrared nulling interferometry has been identified as one of the most promising techniques for direct detection of Earthlike extrasolar planets and spectroscopic analysis of their atmospheres in the near future. After a review of various nulling interferometer schemes, we introduce the concept of internal modulation. As an illustration, we describe a two-dimensional array of telescopes that provides full internal modulation capabilities: the Mariotti space interferometer. It consists of six free-flying telescopes positioned on the sides of an equilateral triangle and grouped into three nulling interferometers. Their nulled outputs are suitably phase-shifted with respect to each other, coherently recombined, and detected. The phase shifts applied between the nullers are periodically changed, providing signal modulation at a frequency that can be selected to minimize instrumental and background noise. The frequency upper limit is set by the read-out noise of the detectors, and turns out to be 10−1-10−2 Hz for currently available Si:As BIB devices. This “fast” signal modulation allows much better monitoring of the background and detector drifts than when one relies solely on the external modulation provided by the slow rotation of the whole interferometer (at typical frequencies of 3×10−4-3×10−5 Hz). Mariotti internal modulation, also known as “phase chopping,” thus appears as a major step toward the feasibility of the Darwin and TPF space missions.  相似文献   

13.
The evolution of the Alfvén turbulence due to three-wave interactions is discussed using kinetic theory for a collisionless, thermal plasma. There are three low-frequency modes, analogous to the three modes of compressible magnetohydrodynamics (MHD). When only Alfvén waves are considered, the known anisotropy of turbulence in incompressible MHD theory is reproduced. Inclusion of a fast mode wave leads to the separation of turbulence into two regimes: small wave numbers where three-wave processes involving a fast mode are dominant, and large wave numbers where the three Alfvén wave process is dominant. Possible application of the anisotropic Alfvén turbulence to the interstellar medium and dissipation of magnetic energy in magnetars are discussed.  相似文献   

14.
The photometric method detects planets orbiting other stars by searching for the reduction in the light flux or the change in the color of the stellar flux that occurs when a planet transits a star. A transit by Jupiter or Saturn would reduce the stellar flux by approximately 1% while a transit by Uranus or Neptune would reduce the stellar flux by 0.1%. A highly characteristic color change with an amplitude approximately 0.1 of that for the flux reduction would also accompany the transit and could be used to verify that the source of the flux reduction was a planetary transit rather than some other phenomenon. Although the precision required to detect major planets is already available with state-of-the-art photometers, the detection of terrestrial-sized planets would require a precision substantially greater than the state-of-the-art and a spaceborne platform to avoid the effects of variations in sky transparency and scintillation. Because the probability is so small of observing a planetary transit during a single observation of a randomly chosen star, the search program must be designed to continuously monitor hundreds or thousands of stars. The most promising approach is to search for large planets with a photometric system that has a single-measurement precision of 0.1%. If it is assumed that large planets will have long-period orbits, and that each star has an average of one large planet, then approximately 104 stars must be monitored continuously. To monitor such a large groups of stars simultaneously while maintaining the required photometric precision, a detector array coupled by a fiber-optic bundle to the focal plane of a moderate aperture (≈ 1 m), wide field of view (≈50°) telescope is required. Based on the stated assumptions, a detection rate of one planet per year of observation appears possible.  相似文献   

15.
A survey of recent popular literature on planet detection was undertaken to develop a broad view of public reactions to a program to search for planets around other stars. In this article, I discuss the interest in extra-solar planet searches, compared to other space ventures in the current political and economic climate. I also describe the role of the press and the need for public support to develop a nationally-funded space science program.  相似文献   

16.
We report infrared photometry of the extrasolar planet HD 209458b during the time of secondary eclipse (planet passing behind the star). Observations were acquired during two secondary eclipses at the NASA Infrared Telescope Facility (IRTF) in 2003 September. We used a circular variable filter (1.5 per cent bandpass) centred at 3.8 μm to isolate the predicted flux peak of the planet at this wavelength. Residual telluric absorption and instrument variations were removed by offsetting the telescope to nearby bright comparison stars at a high temporal cadence. Our results give a secondary eclipse depth of 0.0013 ± 0.0011, not yet sufficient precision to detect the eclipse, whose expected depth is  ∼0.002 –0.003  . We here elucidate the current observational limitations to this technique, and discuss the approach needed to achieve detections of hot Jupiter secondary eclipses at 3.8 μm from the ground.  相似文献   

17.
Narrow-angle astrometry with long-baseline infrared interferometers can provide extremely high accuracies as required for indirect planet detection. Narrow-angle astrometric interferometry exploits the properties of atmospheric turbulence over fields smaller than the interferometer baseline divided by the atmospheric scale height. For such fields, accuracy is linear with star separation, and nearly inversely proportional to baseline length. To exploit these properties, the interferometer observes a relatively bright (< 13 magk) target in the near infrared at 2.2m, and uses phase referencing to find a reference star within the 2.2-m isoplanatic patch. With this technique faint references can be found for most targets. With baselines > 100 m, which also minimize photon-noise errors, and with careful control of systematic errors by using laser metrology, accuracies of tens of microarcseconds/hour should be possible.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

18.
Harold A. McAlister 《Icarus》1977,30(4):789-792
The applicability of the technique of speckle interferometry to the problem of detecting faint planetary and stellar objects around nearby stars is considered. Direct resolution could not be expected to reveal planetary objects, although many faint stellar objects should be detectable with a speckle camera of large dynamic range. The most promising possibilities lie with the approximately 100 nearby visual binaries with separations ?3 arcsec. Continued speckle interferometric observation of these systems could detect perturbations with amplitudes similar to those detectable by an ideal astrometric telescope. A simple scheme for measurement the fringe spacing in the composite spatial frequency power spectrum of the visual binary Eta Orionis indicates that relative separations with accuracies of 0″.002 in each coordinate are attainable. Use as reference stars of faint background stars lying within the isoplanatic patch of a nearby star is also considered.  相似文献   

19.
Summary. The exploration of Jupiter, the closest and biggest giant planet, has provided key information about the origin and evolution of the outer Solar system. Our knowledge has strongly benefited from the Voyager and Galileo space missions. We now have a good understanding of Jupiter's thermal structure, chemical composition and magnetospheric environment. There is still debate about the nature of the heating source responsible for the high thermospheric temperatures (precipitating particles and/or gravity waves). The measurement of elemental abundance ratios (C/H, N/H, S/H) gives strong support to the “nucleation” formation model, according to which giant planets formed from the accretion of an initial core and the collapse of the surrounding gaseous protosolar nebula. The D/H and He/He ratios are found to be representative of their protosolar value. The helium abundance, in contrast, appears to be slightly depleted in the outer envelope with respect to the protosolar value; this departure is interpreted as an evolutionary effect, due to the condensation of helium droplets in the liquid hydrogen ocean inside Jupiter's interior. The cloud structure of Jupiter, characterized by the belt-zone system, is globally understood; also present are specific features like regions of strong infrared radiation (“hot spots”), colder regions (“white ovals”) and the Great Red Spot (GRS). Clouds were surprisingly absent at the hot spot corresponding to the Galileo probe entry site, and the water abundance measured there was strongly depleted with respect to the solar O/H value. This probably implies that hot spots are dry, cloud-free regions of subsidence, while “normal” air, rich in condensibles, is transported upward by convective motions. As a result, the Jovian meteorology, still based on Halley-type cells, seems to be much more complex than a simple zone-belt system. The nature of the GRS, a giant anticyclonic storm, colder and higher than its environment, has been confirmed by the Galileo observations, but its internal structure appears to be very complex. Strong winds, probably driven by the Jovian internal source, were measured at deep tropospheric levels. The troposphere might be statically stable at pressures higher than 18 bars, but the extent of this putative radiative layer is still unknown. Received 23 November 1998  相似文献   

20.
Ovenden's hypothesis suggesting former existence of a planet of 90 Earth masses which supposedly filled the Titius-Bode gap in the asteroid belt and then suddenly disappeared 16 million years ago, is critically examined by the morphological method. It is shown that an explosive removal, however improbable, could have led to the formation of the asteroids from a non-explosive core (the nuclear charge being placed outside of it), but that life on Earth would have been completely destroyed by three successive blasts-one from the direct impact of the ejecta of the planet, another from the increased radiation suddenly emitted by the Sun when hit by the ejecta, and a third one (arriving, however, first) from the radiation emitted by the nuclear explosion. The geological record of the continuity of Life on Earth for the past 109 years definitely excludes the possibility of such an explosion in the late Tertiary.The other mode of removal of the planet-in a gravitational encounter with an intruder either from interstellar space or from the unexplored outskirts of the solar system, under the condition of not having disturbed the existing regularity of planetary orbits-is not only extremely improbable, to be expected once during 100 million times the age of the solar system; but it would leave no asteroids behind, all of the previously existing primaeval asteroids having been rapidly eliminated in encounters with the hypothetical planet.Whatever the merits of Ovenden's long-range calculations of the secular perturbations of coplanar circularized planetary orbits, the hypothesis of a massive planet to have existed in the asteroidal region and then recently to have suddenly disappeared, belongs to the realm of the impossible. After such a hypothetical event, either we would not be here on Earth, or there would be no asteroids in their present place between Jupiter and Mars.Paper dedicated to Professor Hannes Alfvén on the occasion of his 70th birthday, 30 May 1978.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号