首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Roth  M. Stix 《Solar physics》2008,251(1-2):77-89
We investigate the influence of large-scale meridional circulation on solar p modes by quasi-degenerate perturbation theory, as proposed by Lavely and Ritzwoller (Roy. Soc. Lond. Phil. Trans. Ser. A 339, 431, 1992). As an input flow we use various models of stationary meridional circulation obeying the continuity equation. This flow perturbs the eigenmodes of an equilibrium model of the Sun. We derive the signatures of the meridional circulation in the frequency multiplets of solar p modes. In most cases the meridional circulation leads to negative average frequency shifts of the multiplets. Further possibly observable effects are briefly discussed.  相似文献   

2.
We describe and apply a new helioseismic method for measuring solar subsurface axisymmetric meridional and zonal flow. The method is based on a theoretical model of the response of global-oscillation eigenfunctions to the flow velocity and uses cross spectra of the time-varying coefficients in the spherical-harmonic expansion of the photospheric Doppler-velocity field. Eigenfunction changes modify the leakage matrix, which describes the sensitivity of the spherical-harmonic coefficients to the global-oscillation modes. The form of the leakage matrix in turn affects the theoretically expected spherical-harmonic cross spectra. Estimates of internal meridional and zonal flow were obtained by fitting the theoretical flow-dependent cross spectra to spherical-harmonic cross spectra computed from approximately 500 days of full-disk Dopplergrams from the Helioseismic and Magnetic Imager (HMI) on the SDO spacecraft. The zonal-flow measurements, parameterized in the form of “a” coefficients, substantially agree with measurements obtained from conventional global-mode-frequency analysis. The meridional-flow estimates, in the form of depth-weighted averages of the flow velocity, are similar to estimates obtained from earlier analyses, for oscillation modes that penetrate the outermost one-third of the convection zone. For more deeply penetrating modes, the inferred flow velocity increases significantly with penetration depth, indicating the need for either a modification of the simple conveyor-belt picture of meridional flow or improvement in the cross-spectral model.  相似文献   

3.
We have analysed a large set of sunspot group data (1874 – 2004) and find that the meridional flow strongly varies with the phase of the solar cycle, and the variation is quite different in the northern and the southern hemispheres. We also find the existence of considerable cycle-to-cycle variation in the meridional velocity, and about a 11-year difference between the phases of the corresponding variations in the northern and the southern hemispheres. In addition, our analysis also indicates the following: (i) the existence of a considerable difference (about 180°) between the phases of the solar-cycle variations in the latitude-gradient terms of the northern and the southern hemispheres’ rotations; (ii) the existence of correlation (good in the northern hemisphere and weak in the southern hemisphere) between the mean solar-cycle variations of meridional flow and the latitude-gradient term of solar rotation; (iii) in the northern hemisphere, the cycle-to-cycle variation of the mean meridional velocity leads that of the equatorial rotation rate by about 11 years, and the corresponding variations have approximately the same phase in the southern hemisphere; and (iv) the directions of the mean meridional velocity is largely toward the pole in the longer sunspot cycles and largely toward the equator in the shorter cycles.  相似文献   

4.
Abstract— The western flank of the Haughton impact structure was imaged with a reflection profile generating 9.8 km of subsurface information. Ten reflecting horizons were recognized and have been correlated via a sonic log with the Paleozoic limestone/dolomite rock sequences. The seismic section is dominated by a dense and complex compound fault system with variable attitudes. These steeply dipping faults penetrated the sedimentary rocks but showed no recognizable extension into the crystalline basement. According to the seismically recognized fracture zones of the western margin, the structure is significantly larger than previously estimated. Reconstruction of the crater on the basis of the seismic information and existing scaling relationships reveals a structure with an apparent diameter of 23.9 km, and an excavated cavity of 10.3 km width and 1.97 km depth. The estimated diameters of the transient crater and the central uplift are 12 km and 11 km respectively. The morphologically distinct ring zones do not have seismically recognizable subsurface signatures. The underlying crystalline basement rocks did not exhibit seismically mappable impact-related zones of disturbance. In the central interior region, coherent reflection signals are virtually absent. Valuable information for this area was provided by a 10.26 km long refraction profile that indicated nearly uniform velocities (~5000 m/s) to a considerable depth. Major lateral variations in the velocity field across the structure were not detected.  相似文献   

5.
6.
In this work we use an already-published method to infer a variation profile for the solar meridional circulation over the last 250 years. We feed this variation profile into a numerical dynamo code, and we reconstruct a sunspot time series that acts as a proxy for solar cycle activity. We perform three simulations with slightly different parameters, and the results are compared with the observational data. The medium and large correlation coefficients between reconstructed and observational time series seem to indicate that variations in meridional circulation play an important role in the modulation of solar activity.  相似文献   

7.
We present independent observations of the solar-cycle variation of flows near the solar surface and at a depth of about 60 Mm, in the latitude range ±?45°. We show that the time-varying components of the meridional flow at these two depths have opposite sign, whereas the time-varying components of the zonal flow are in phase. This is in agreement with previous results. We then investigate whether the observations are consistent with a theoretical model of solar-cycle-dependent meridional circulation based on a flux-transport dynamo combined with a geostrophic flow caused by increased radiative loss in the active region belt (the only existing quantitative model). We find that the model and the data are in qualitative agreement, although the amplitude of the solar-cycle variation of the meridional flow at 60 Mm is underestimated by the model.  相似文献   

8.
C. Lindsey  A.-C. Donea 《Solar physics》2008,251(1-2):627-639
Instances of seismic transients emitted into the solar interior in the impulsive phases of some solar flares offer a promising diagnostic tool, both for understanding the physics of solar flares and for the general development of local helioseismology. Among the prospective contributors to flare acoustic emission that have been considered are: i) chromospheric shocks propelled by pressure transients caused by impulsive thick-target heating of the upper and middle chromosphere by high-energy particles, ii) heating of the photosphere by continuum radiation from the chromosphere or possibly by high-energy protons, and iii) magnetic-force transients caused by magnetic reconnection. Hydrodynamic modeling of chromospheric shocks suggests that radiative losses deplete all but a small fraction of the energy initially deposited into them before they penetrate the photosphere. Comparisons between the spatial distribution of acoustic sources, derived from seismic holography of the surface signatures of flare acoustic emission, and the spatial distributions of sudden changes both in visible-light emission and in magnetic signatures offer a possible means of discriminating between contributions to flare acoustic emission from photospheric heating and magnetic-force transients. In this study we develop and test a means for estimating the seismic intensity and spatial distribution of flare acoustic emission from photospheric heating associated with visible-light emission and compare this with the helioseismic signatures of seismic emission. Similar techniques are applicable to transient magnetic signatures.  相似文献   

9.
This article proposes a unified observational model of solar activity based on sunspot number and the solar global activity in the rotation of the structures, both per 11-year cycle. The rotation rates show a variation of a half-century period and the same period is also associated to the sunspot amplitude variation. The global solar rotation interweaves with the observed global organisation of solar activity. An important role for this assembly is played by the Grand Cycle formed by the merging of five sunspot cycles: a forgotten discovery by R. Wolf. On the basis of these elements, the nature of the Dalton Minimum, the Maunder Minimum, the Gleissberg Cycle, and the Grand Minima are presented.  相似文献   

10.
We characterize and analyze rotational torsional oscillations developing in a large-eddy magnetohydrodynamical simulation of solar convection (Ghizaru, Charbonneau, and Smolarkiewicz, Astrophys. J. Lett. 715, L133, 2010; Racine et al., Astrophys. J. 735, 46, 2011) producing an axisymmetric, large-scale, magnetic field undergoing periodic polarity reversals. Motivated by the many solar-like features exhibited by these oscillations, we carry out an analysis of the large-scale zonal dynamics. We demonstrate that simulated torsional oscillations are not driven primarily by the periodically varying large-scale magnetic torque, as one might have expected, but rather via the magnetic modulation of angular-momentum transport by the large-scale meridional flow. This result is confirmed by a straightforward energy analysis. We also detect a fairly sharp transition in rotational dynamics taking place as one moves from the base of the convecting layers to the base of the thin tachocline-like shear layer formed in the stably stratified fluid layers immediately below. We conclude by discussing the implications of our analyses with regard to the mechanism of amplitude saturation in the global dynamo operating in the simulation, and speculate on the possible precursor value of torsional oscillations for the forecast of solar-cycle characteristics.  相似文献   

11.
The solar-cycle oscillations of the toroidal and poloidal components of the solar magnetic field in the northern solar hemisphere have a persistent phase difference of about \(\pi \). We propose a symmetrical Kuramoto model with three coupled oscillators as a simple way to understand this anti-synchronization. We solve an inverse problem and reconstruct natural frequencies of the top and bottom oscillators under the conditions of a constant coupling strength and a non-delayed coupling. These natural frequencies are associated with angular velocities of the meridional flow circulation near the solar surface and in the deep layer of the solar convection zone. A relationship between our reconstructions of the shallow and the deep meridional flow speed during recent Solar Cycles 21?–?23 is in agreement with estimates obtained in helioseismology and flux-transport dynamo modeling. The reconstructed top oscillator speed presents significant solar-cycle like variations that agree with recent helioseismical reconstructions. The evolution of reconstructed natural frequencies strongly depends on the coupling strength. We find two stable regimes in the case of strong coupling with a change of regime during anomalous solar cycles. We see the onset of a new transition in Solar Cycle 24. We estimate the admitted range of coupling values and find evidence of cross-equatorial coupling between solar hemispheres not accounted for by the model.  相似文献   

12.
Y. Taroyan  R. Erdélyi 《Solar physics》2008,251(1-2):523-531
The upward propagation of linear acoustic waves in a gravitationally stratified solar atmosphere is studied. The wave motion is governed by the Klein?–?Gordon equation, which contains a cutoff frequency introduced by stratification. The acoustic cutoff may act as a potential barrier when the temperature decreases with height. It is shown that waves trapped below the barrier could be subject to a resonance that extends into the entire unbounded atmosphere of the Sun. The parameter space characterizing the resonance is explored.  相似文献   

13.
14.
15.
Observed solar, interplanetary and geomagnetic time series contain quasi periodicities on scales of 1–2.5 years. The further discovery of 1.3 year fluctuations in helioseismic observations suggests that a variety of signals may be related to the underlying dynamo in the Sun. We use independent component analysis to study the temporal and spatial variations of a few statistically independent global modes of the axisymmetric solar magnetic field over a period of 25 years. Five modes capture the salient properties of the data. Two modes describe the polar and high latitude fields, and present 1–1.5 year quasi periodicities. The other three modes correspond to low and mid-latitude phenomena and show both 1.3 and 1.7-year variations. By comparing the characteristic time scales, dates of occurrence and heliocentric latitudes of these modes, we connect them to their manifestations in heliospheric time series.  相似文献   

16.
We compute the change in the Lorentz force integrated over the outer solar atmosphere implied by observed changes in vector magnetograms that occur during large, eruptive solar flares. This force perturbation should be balanced by an equal and opposite force perturbation acting on the solar photosphere and solar interior. The resulting expression for the estimated force change in the solar interior generalizes the earlier expression presented by Hudson, Fisher, and Welsch (Astron. Soc. Pac. CS-383, 221, 2008), providing horizontal as well as vertical force components, and provides a more accurate result for the vertical component of the perturbed force. We show that magnetic eruptions should result in the magnetic field at the photosphere becoming more horizontal, and hence should result in a downward (toward the solar interior) force change acting on the photosphere and solar interior, as recently argued from an analysis of magnetogram data by Wang and Liu (Astrophys. J. Lett. 716, L195, 2010). We suggest the existence of an observational relationship between the force change computed from changes in the vector magnetograms, the outward momentum carried by the ejecta from the flare, and the properties of the helioseismic disturbance driven by the downward force change. We use the impulse driven by the Lorentz-force change in the outer solar atmosphere to derive an upper limit to the mass of erupting plasma that can escape from the Sun. Finally, we compare the expected Lorentz-force change at the photosphere with simple estimates from flare-driven gasdynamic disturbances and from an estimate of the perturbed pressure from radiative backwarming of the photosphere in flaring conditions.  相似文献   

17.
The axisymmetric component of the large-scale solar magnetic fields has a pronounced poleward branch at higher latitudes. In order to clarify the origin of this branch we construct an axisymmetric model of the passive transport of the mean poloidal magnetic field in the convective zone, including meridional circulation, anisotropic diffusivity, turbulent pumping and density pumping. For realistic values of the transport coefficients we find that diffusivity is prevalent, and the latitudinal distribution of the field at the surface simply reflects the conditions at the bottom of the convective zone. Pumping effects concentrate the field to the bottom of the convective zone; a significant part of this pumping occurs in a shallow subsurface layer, normally not resolved in dynamo models. The phase delay of the surface poloidal field relative to the bottom poloidal field is found to be small. These results support the double dynamo wave models, may be compatible with some form of a mixed transport scenario, and exclude the passive transport theory for the origin of the polar branch.  相似文献   

18.
19.
The Solar Weather Browser (SWB) is a standalone, open-source software tool designed to display solar images with context overlays. It was originally developed for the space-weather forecast activities of the Solar Influence Data analysis Center (SIDC) but it is more generally well suited to display the output of solar-feature recognition methods. The SWB is also useful in the context of distributed solar-image archives, where it could play the role of a quick-look viewer. The SWB allows the user to visually browse large solar data sets and investigate the solar activity for a given date. It has a client – server design that minimizes the bandwidth from the network to the user’s monitor. The server processes the data using the SolarSoft library and distributes them through a Web server to which the SWB client connects. The client is readily available for Linux, Mac OS X, and Windows at . We discuss the software technology embedded in the SWB as well as its use for solar physics and space weather.  相似文献   

20.
The large-scale stream structure of the solar wind flow is studied in the main acceleration zone from 10 to 40 solar radii from the Sun. Three independent sets of experimental data were used: radio astronomical observations of radio wave scattering using the large radio telescopes of the Lebedev Physical Institute; dual-frequency Doppler solar wind speed measurements from the Ulysses Solar Corona Experiment during the spacecraft's two solar conjunctions in summer 1991 and winter 1995; solar magnetic field strength and configuration computed from Wilcox Solar Observatory data. Both the experimental data on the position of the transonic region of the solar wind flow and the solar wind speed estimates were used as parameters reflecting the intensity of the solar wind acceleration process. Correlation studies of these data with the magnetic field strength in the solar corona revealed several types of solar wind flow differing in their velocities and the location of their primary acceleration region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号