首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Although airborne gravimetry is now considered a fully operational technique, errors due to motion compensation using differential GPS (DGPS) continue to influence both its accuracy and the range of applications in which it can be used. In typical medium-resolution applications such as airborne geoid mapping, errors due to DGPS contribute considerably to the error budget of an airborne gravity system. At the same time, efforts to increase the resolution of such systems for demanding applications such as resource exploration remain impedded by errors in DGPS. This article has three objectives. The first one is to compare eight industrially relevant DGPS software packages for the determination of aircraft acceleration. The second objective is to analyze and quantify the effect that each relevant portion of the DGPS error budget has on the determination of acceleration. Using data sets that represent a wide range of operational conditions, this is done in the frequency domain over a range of frequencies corresponding to spatial resolution as high as 450 m. The third objective is to use that information to recommend and demonstrate approaches that optimize the estimation of aircraft acceleration for determining the geoid and for resource exploration. It is shown, for example, that the time of day in which the survey is carried out and the dynamic characteristics of the aircraft being used are two of the most crucial parameters for very high-resolution gravity field estimation. It is demonstrated that when following the above-mentioned recommendations, agreements with ground daa of better than 1.5 and 2.5 mGal can be achieved for spatial resolutions (half-wavelengths) of 2.0 and 1.4 km, respectively. ? 2002 Wiley Periodicals, Inc.  相似文献   

2.
从回波探测的原理和激光测高的计算模型出发,分析了激光测高的误差来源,认为主要影响因子是GPS差分精度、IMU精度和激光测距精度。通过对航高在1000m以下的实际检测数据进行统计分析,得出如下结论:1)单个激光点的精度可以达到15cm,通过地面改正,最优精度可以达到5cm;2)在植被比较密集区域,根据激光点的扫面密度不同,其生成的DEM精度可以达到0.20m~1m。  相似文献   

3.
Use of high-resolution and historic CORONA satellite photographs for mapping and other purposes requires Ground Control Points (GCPs), as ephemeris data and image parameters are not available. However, the alterations in landscape in last 34 years (i.e., since the acquisition of these photographs) prevent identification and collection of large number of GCPs in the field. This paper presents a methodology for collection of GCPs for CORONA photographs. The advantages and limitations of the methodology are discussed. For a study site, situated in Siwaliks and Lower Himalayas, the GCPs were identified in CORONA photographs and their WGS84 coordinates were estimated through a process of datum transformation and georeferencing. Estimated GCP coordinates from the topo sheets and 2D and 3D views of photographs, helped in identifying the GCP locations in field, which were observed using DGPS. Investigations were carried out to relate Differential Global Positioning System (DGPS) accuracy with base line length and time of observation. Abase line of 350 km and half an hour observation were found appropriate to yield accuracy in GCP collection by DGPS method, which conforms to CORONA resolution of 3 m.  相似文献   

4.
In traditional GPS-supported aerotriangulation, differential GPS (DGPS) positioning technology is used to determine the 3-dimensional coordinates of the perspective centers at exposure time with an accuracy of centimeter to decimeter level. This method can significantly reduce the number of ground control points (GCPs). However, the establishment of GPS reference stations for DGPS positioning is not only labor-intensive and costly, but also increases the implementation difficulty of aerial photography. This paper proposes aerial triangulation supported with GPS precise point positioning (PPP) as a way to avoid the use of the GPS reference stations and simplify the work of aerial photography.Firstly, we present the algorithm for GPS PPP in aerial triangulation applications. Secondly, the error law of the coordinate of perspective centers determined using GPS PPP is analyzed. Thirdly, based on GPS PPP and aerial triangulation software self-developed by the authors, four sets of actual aerial images taken from surveying and mapping projects, different in both terrain and photographic scale, are given as experimental models. The four sets of actual data were taken over a flat region at a scale of 1:2500, a mountainous region at a scale of 1:3000, a high mountainous region at a scale of 1:32000 and an upland region at a scale of 1:60000 respectively. In these experiments, the GPS PPP results were compared with results obtained through DGPS positioning and traditional bundle block adjustment. In this way, the empirical positioning accuracy of GPS PPP in aerial triangulation can be estimated. Finally, the results of bundle block adjustment with airborne GPS controls from GPS PPP are analyzed in detail.The empirical results show that GPS PPP applied in aerial triangulation has a systematic error of half-meter level and a stochastic error within a few decimeters. However, if a suitable adjustment solution is adopted, the systematic error can be eliminated in GPS-supported bundle block adjustment. When four full GCPs are emplaced in the corners of the adjustment block, then the systematic error is compensated using a set of independent unknown parameters for each strip, the final result of the bundle block adjustment with airborne GPS controls from PPP is the same as that of bundle block adjustment with airborne GPS controls from DGPS. Although the accuracy of the former is a little lower than that of traditional bundle block adjustment with dense GCPs, it can still satisfy the accuracy requirement of photogrammetric point determination for topographic mapping at many scales.  相似文献   

5.
在常规的GPS辅助空中三角测量中,摄站点坐标的获取主要通过差分定位的方法,这种定位方法增加了航空摄影测量的外业作业过程和经费投入。本文主要研究了将精密单点定位技术应用于GPS辅助空中三角测量的原理和方法,并且通过大量的试验和分析发现,基于精密单点定位技术的GPS辅助空中三角测量可以大大简化航测外业作业过程,并且其定位精度能够满足大比例尺成图的精度要求。  相似文献   

6.
分析了基准站站址偏差对差分GPS数据精度的影响,并通过对静态测试数据和机载GPS数据的差分处理,得出了基准站站址偏差对差分GPS数据精度的影响程度及规律,最后给出了该坐标修正方法的具体应用。  相似文献   

7.
介绍了GPS单点定位技术的发展及其定位原理;描述了ADS40数码航空摄影试验情况;比较了差分GPS定位与精密单点定位所获取摄站坐标的差值,分析了差值产生的原因;并比较分析了利用两种摄站坐标进行光束法区域网平差的精度。试验结果表明,在有5点控制的情况下,两者加密精度基本一致,无控的情况下,两者的加密精度相差较大,但均能满足1:10000以下中小比例尺航测成图要求。  相似文献   

8.
DGPS在资源环境遥感中的应用方法研究   总被引:1,自引:0,他引:1  
为了能够利用较低配置的GPS设备,方便有效地完成与资源环境遥感有关的地物定位测量任务,利用伪距DGPS设备进行了如下试验研究:基站参考坐标对定位精度的影响,基于大地测量三角控制点和WGS84到北京54坐标系转换模型进行基站参考坐标差分测量导算的方法和精度,在导算出的控制点处建立基站进行试验区样地定位测量的方法及所能达到的精度,试验结果表明,在具备测区至少一个三角控制点和坐标转换参数条件下,可以采用首先从已恬三角点导算出一个位于方便位置处的点的大地坐标,然后在该点所能达到的在当地坐标系中的相对定位精度远远小于一个像元大小,可以推广应用到资源环境遥感的各个应用领域,在不具备基站参考坐标和坐标系转换参数的条件下,可以基于差分测量结果之图形要素绝对位置图形转换到已经和当地坐标系配准的遥感影上去,采用这种办法,在差分处理时不用考虑基站的精确WGS84地心参考坐标,也不用考虑坐标系的转换参数,利用其站单点绝对定位结果作为参考坐标进行差分就可,可以节省不少人力和物力,试验研究及结论为如何利用较低配置的伪距DGPS设备,简捷,快速,精确地完成资源环境遥感领域地物定位测量任务提供了有益参考。  相似文献   

9.
Virtual differential GPS based on SBAS signal   总被引:2,自引:0,他引:2  
In order to access the satellite-based augmentation system (SBAS) service, the end user needs access to the corresponding geostationary earth orbit (GEO) satellites that broadcast the augmentation information for the region. This is normally not a problem for aviation and maritime applications, because an open sky is typically available for such applications. However, it is difficult to access the GEO satellites directly at high latitudes for land applications because of the low elevation angles to the GEO satellites (e.g., 4–22° in Finland to the European geostationary navigation overlay services [EGNOS] GEO satellites). Results from a driving test of 6,100 km in Finland show that the EGNOS GEO satellites can be accessed in only 51.8% of the driving routes. Furthermore, it is also difficult to access the GEO satellites from city canyons, because the high buildings block the GEO signals. This article presents a solution to solve this problem by creating virtual differential GPS (DGPS) reference stations using the SBAS signal in space (SIS). The basic concept is to convert the SBAS signal to Radio Technical Commission for Maritime Services (RTCM) signals, and broadcast the converted RTCM signals over the wireless Internet using the Internet radio technology. Therefore, access to the SBAS service will not be limited by low elevation angles to the GEO satellites because the converted RTCM data streams are disseminated over the wireless Internet. Furthermore, the SBAS service can then be accessed via a legacy DGPS receiver. Two test cases have been carried out with the prototype system developed by the Finnish Geodetic Institute. The test results showed that the positioning accuracy of the virtual DGPS solution was about 1–2 m at 95%, which was similar to that of the standard WAAS/EGNOS solution. The positioning accuracy was not degraded, compared to that of the standard wide area augmentation system–European geostationary navigation overlay services (WAAS/EGNOS) solution, as long as the distance between the rover receiver and the virtual DGPS reference station was less than 150 km. A preliminary driving test of 400 km carried out in southern Finland showed that the availability of the virtual DGPS solutions was 98.6% along the driving route.  相似文献   

10.
A current pursuit of the geodetic community is the optimal integration of differential GPS (DGPS) and inertial navigation system (INS) data streams for precise and efficient position and gravity vector surveying. Therein a complete INS and multiple-antenna GPS receiver payload, mounted on a moving platform, is used in conjunction with a network of ground-fixed single antenna GPS receivers. This paper presents a complete, GPS-based, external updating measurement model for the applicable Kalman filter. The model utilizes four external observation types for every GPS satellite in-view: DGPS range differences, single phase differences, and single phase-rate differences; as well as the mobile, multipleantenna GPS receiver's measurement of theerrors in the INS's estimate of the phase difference between any two vehicle-borne GPS antennae. Although not widely conveyed in the geodetic world, the inertial navigation community has long known that traditional Kalman filter covariance propagation recurrences are inherently unstable when such highly accurate external updates are repeatedly applied (every 1 second) over long time durations. A hybrid square root covariance/U — D covariance factorization approach is a numerically stable alternative and is reviewed herein. The hybrid makeup of the algorithm is necessitated by the correlated nature of the fourth type of GPS external measurement listed above (each vehicle-borne GPS antenna formstwo baselines). Such measurement correlations require a functional transformation of the overall external updating model to permit the multiple updates (simultaneously available at each updating epoch) to be sequentially (and efficiently) processed. An appropriate transformation is given. Stable covariance propagation relationships are presented and the transformed Kalman gain is also furnished and its use in the determination of the externally updated error states is discussed. Specific DGPS/INS instabilities produced by the traditional recurrences are displayed. The stable alternative method requires about 25% more CPU time than the traditional Kalman recurrences. With the ever-increasing computational speeds of microprocessors, this added CPU time is of no real concern.  相似文献   

11.
In September 1996 the University of Calgary tested a combination of strapdown inertial navigation systems and differential global positioning system (DGPS) receivers for their suitability to determine gravity at aircraft flying altitudes. The purpose of this test was to investigate the long-term accuracy and repeatability of the system, as well as its potential for geoid and vertical gradient of gravity determination. The test took place during a 3-day period in the Canadian Rocky Mountains over a single 100 × 100 km area which was flown with 10-km line spacing. Two flights were done at 4350 m in E–W and N–S profile directions, respectively, and one at 7300 m with E–W profiles. Two strapdown inertial systems, the Honeywell LASEREF III and the Litton-101 Flagship, were flown side by side. Comparison of the system estimates with an upward-continued reference showed root-mean-square (RMS) agreement at the level of 3.5 mGal for 90- and 120-s filter lengths. The LASEREF III, however, performed significantly better than the Litton 101 for shorter filtering periods of 30 and 60 s. A comparison between the two systems results in an RMS agreement of 2.8 and 2.3 mGal for the 90- and 120-s filters. The better agreement between the two systems is mainly due to the fact that the upward-continued reference has not been filtered identically to the system gravity disturbance estimates. Additional low-frequency differences seem to point to an error in the upward-continued reference. Finally, an analysis of crossover points between flight days for the LASEREF III shows a standard deviation of 1.6 mGal, which is near the noise level of the INS and GPS data. Further improvements to the system are possible, and some ideas for future work are briefly presented. Received: 17 March 1998 / Accepted: 1 February 1999  相似文献   

12.
通过分析2004年8~10月西太平洋“北斗双星”有源定位及DGPS动态定位试验数据,讨论了“北斗双星”有源定位系统相对于DGPS的定位误差,构建了“北斗双星”有源定位系统在西太平洋试验海域的WGS-84与1954年北京坐标系统间的坐标转换模型。研究表明,“北斗双星”有源定位系统在试验海区的定位精度约为±37.54 m。  相似文献   

13.
针对海洋某些测区无法布设基准站,无法使用差分定位方式进行定位的问题,将精密单点定位技术应用于船载重力测量,通过比对基于精密单点定位测量模式和传统单点定位测量模式解算的交叉点不符值结果,验证了精密单点定位技术在船载重力测量中应用的可行性,解决了远海船载重力测量采用传统单点定位精度较低的问题。   相似文献   

14.
Based on an analysis of polar motion behavior, we found the possibility of predicting polar motion up to one year in advance. Comparing these predicted polar coordinates with the observed ones (smoothed), the rms of the differences is about 0".02. The differences of the relative polar motion are much smaller. For any time interval of 20–30 days throughout the whole year, the rms of the relative polar motion differences is about 0".01. It appears that 80–90% of the polar motion is composed of the stable, predictable Chandler and annual terms.  相似文献   

15.
彭冬菊  胡小工  吴斌 《遥感学报》2010,14(6):1164-1175
讨论了如何从星上下传的卫星位置数据中重建星载GPS 伪距观测量, 分析了重建伪距数据事后动力学 定轨精度及该方法对提高LEO 卫星位置精度的贡献。GRACE-A 卫星2008 年3 月1 日—14 日实测数据计算结果表明: 重建数据事后动力学定轨能显著提高地面主控站接收到的LEO 卫星实时位置精度; 其中由C/A 码伪距和广播星历 实时单点定位得到的卫星位置精度约为15m, 重建伪距事后动力学定轨得到的卫星位置精度约为2m。  相似文献   

16.
Single-epoch point positioning with the global positioning system (GPS) is as accurate in low orbit as it is on the ground: typically a three-dimensional rms accuracy of 20 to 30 m as the selective availability turns to zero. This is achieved at any observation epoch without orbit dynamic information. With sophisticated models and filtering techniques onboard the spacecraft, the orbit accuracy of a Low Earth Orbiter (LEO) can be improved to a few meters using the civilian broadcast GPS signals. To achieve this accuracy autonomously in real time, an efficient onboard computing processor is required to carry out the sophisticated orbit integration and filtering process. In this paper, a new orbit integrator is presented that computes the nominal orbit states (the position and velocity) and the state transition equations with numerical methods of integral equation, instead of differential equation usually used for orbit computation. The algorithm is simple, and can be easily embedded in an onboard processor. The numerical results demonstrate that the proposed method of the integral equation provides precise orbit predictions over several orbits. The sequential filter based on the above integrator allows the use of simple orbit state equations to efficiently correct dynamical model errors with precise GPS measurements or improve the orbits using GPS navigaion solutions from the 3D rms accuracy of 26 m to 3.7 m within a few hours of tracking. ? 2001 John Wiley & Sons, Inc.  相似文献   

17.
Space born systems like Geoscience Laser Altimeter System (GLAS) onboard collect data for ice, cloud and Land. Elevation satellite (ICESat) collects an unparalleled data set as waveform over terrestrial targets, helps in evaluating the global elevation data. In this study we compared the Digital Elevation Surface (DES) generated by Cartosat-1 point data and DES generated by merging the Cartosat-1 data with ICESat data. Outputs in the form of interpolated surfaces were evaluated with the help of differential global positioning system (DGPS) points collected from study area. The study showed the results that the DES generated from Cartosat — 1 data had less elevation accuracy when compared with the DGPS data. While merging Cartosat-1 point height data with ICESat/GLAS data resulted in better accuracy. On the practical side for processing the interpolation, based on the research the ICESat /GLAS with Cartosat-1 height data can produce better DES compared to the Cartosat-1 stereo data. The DES was generated using geostatistical interpolation methods in which the global polynomial method proved to be the better for generating the surface compare to other interpolation techniques studied in this work. For co-kriging method, the accuracy decreases compare to the kriging interpolation, due to the complexity of parameters that were used for interpolation. On the theory side, based on this research the statement of which interpolation technique is better than the other cannot be mentioned easily, because these are based on the data type, parameters and also on method of interpolation. So research experiment should be more intensely and with more focused.  相似文献   

18.
根据差分GPS技术的优点和铁路航测成图的特点,分析差分GPS技术在铁路航测成图中应用的可能性。在实际铁路测量项目中,使用POS技术,对架设基准站的个数、位置、分布状况以及使用精密单点定位技术等不同情况进行了辅助航测成图作业,对结果的精度进行分析,得出在铁路航测中使用差分GPS技术的可行方案。  相似文献   

19.
单基站差分GPS定位精度的分析与检验   总被引:4,自引:0,他引:4  
分析了影响单基站差分GPS测量的主要误差因素,研究了不同基线长情况下广播星历、电离层和对流层延迟等误差对单基站差分GPS数据精度的影响程度及规律,通过设立双基站测量、与精密单点定位软件处理比较等方法检验了单基站差分GPS数据精度,得出了在用单基站差分GPS测量系统满足一定精度要求的结论。  相似文献   

20.
Accurate absolute GPS positioning through satellite clock error estimation   总被引:11,自引:0,他引:11  
 An algorithm for very accurate absolute positioning through Global Positioning System (GPS) satellite clock estimation has been developed. Using International GPS Service (IGS) precise orbits and measurements, GPS clock errors were estimated at 30-s intervals. Compared to values determined by the Jet Propulsion Laboratory, the agreement was at the level of about 0.1 ns (3 cm). The clock error estimates were then applied to an absolute positioning algorithm in both static and kinematic modes. For the static case, an IGS station was selected and the coordinates were estimated every 30 s. The estimated absolute position coordinates and the known values had a mean difference of up to 18 cm with standard deviation less than 2 cm. For the kinematic case, data obtained every second from a GPS buoy were tested and the result from the absolute positioning was compared to a differential GPS (DGPS) solution. The mean differences between the coordinates estimated by the two methods are less than 40 cm and the standard deviations are less than 25 cm. It was verified that this poorer standard deviation on 1-s position results is due to the clock error interpolation from 30-s estimates with Selective Availability (SA). After SA was turned off, higher-rate clock error estimates (such as 1 s) could be obtained by a simple interpolation with negligible corruption. Therefore, the proposed absolute positioning technique can be used to within a few centimeters' precision at any rate by estimating 30-s satellite clock errors and interpolating them. Received: 16 May 2000 / Accepted: 23 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号