共查询到20条相似文献,搜索用时 15 毫秒
1.
The quality of real-time GPS positions based on the method of precise point positioning (PPP) heavily depends on the availability and accuracy of GPS satellite orbits and satellite clock corrections. Satellite-based augmentation systems (SBAS) provide such corrections but they are actually intended to be used for wide area differential GPS with positioning results on the 1-m accuracy level. Nevertheless, carrier phase-based PPP is able to achieve much more accurate results with the same correction values. We applied SBAS corrections for dual-frequency PPP and compared the results with PPP obtained using other real-time correction data streams, for example, the GPS broadcast message and precise corrections from the French Centre National d’Etudes Spatiales and the German Deutsches Zentrum für Luft- und Raumfahrt. Among the three existing SBAS, the best results were achieved for the North American wide area augmentation system (WAAS): horizontal and vertical position accuracies were considerably smaller than 10 cm for static 24-h observation data sets and smaller than 30 cm for epoch-by-epoch solutions with 2 h of continuous observations. The European geostationary navigation overlay service and the Japanese multi-functional satellite augmentation system yield positioning results with biases of several tens of centimeters and variations larger by factors of 2–4 as compared to WAAS. 相似文献
2.
An algorithm for very accurate absolute positioning through Global Positioning System (GPS) satellite clock estimation has
been developed. Using International GPS Service (IGS) precise orbits and measurements, GPS clock errors were estimated at
30-s intervals. Compared to values determined by the Jet Propulsion Laboratory, the agreement was at the level of about 0.1 ns
(3 cm). The clock error estimates were then applied to an absolute positioning algorithm in both static and kinematic modes.
For the static case, an IGS station was selected and the coordinates were estimated every 30 s. The estimated absolute position
coordinates and the known values had a mean difference of up to 18 cm with standard deviation less than 2 cm. For the kinematic
case, data obtained every second from a GPS buoy were tested and the result from the absolute positioning was compared to
a differential GPS (DGPS) solution. The mean differences between the coordinates estimated by the two methods are less than
40 cm and the standard deviations are less than 25 cm. It was verified that this poorer standard deviation on 1-s position
results is due to the clock error interpolation from 30-s estimates with Selective Availability (SA). After SA was turned
off, higher-rate clock error estimates (such as 1 s) could be obtained by a simple interpolation with negligible corruption.
Therefore, the proposed absolute positioning technique can be used to within a few centimeters' precision at any rate by estimating
30-s satellite clock errors and interpolating them.
Received: 16 May 2000 / Accepted: 23 October 2000 相似文献
3.
4.
GPS satellite clock determination in case of inter-frequency clock biases for triple-frequency precise point positioning 总被引:1,自引:0,他引:1
Significant time-varying inter-frequency clock biases (IFCBs) within GPS observations prevent the application of the legacy L1/L2 ionosphere-free clock products on L5 signals. Conventional approaches overcoming this problem are to estimate L1/L5 ionosphere-free clocks in addition to their L1/L2 counterparts or to compute IFCBs between the L1/L2 and L1/L5 clocks which are later modeled through a harmonic analysis. In contrast, we start from the undifferenced uncombined GNSS model and propose an alternative approach where a second satellite clock parameter dedicated to the L5 signals is estimated along with the legacy L1/L2 clock. In this manner, we do not need to rely on the correlated L1/L2 and L1/L5 ionosphere-free observables which complicates triple-frequency GPS stochastic models, or account for the unfavorable time-varying hardware biases in undifferenced GPS functional models since they can be absorbed by the L5 clocks. An extra advantage over the ionosphere-free model is that external ionosphere constraints can potentially be introduced to improve PPP. With 27 days of triple-frequency GPS data from globally distributed stations, we find that the RMS of the positioning differences between our GPS model and all conventional models is below 1 mm for all east, north and up components, demonstrating the effectiveness of our model in addressing triple-frequency observations and time-varying IFCBs. Moreover, we can combine the L1/L2 and L5 clocks derived from our model to calculate precisely the L1/L5 clocks which in practice only depart from their legacy counterparts by less than 0.006 ns in RMS. Our triple-frequency GPS model proves convenient and efficient in combating time-varying IFCBs and can be generalized to more than three frequency signals for satellite clock determination. 相似文献
5.
Quality of reprocessed GPS satellite orbits 总被引:2,自引:2,他引:2
Peter Steigenberger Markus Rothacher Mathias Fritsche Axel Rülke Reinhard Dietrich 《Journal of Geodesy》2009,83(3-4):241-248
High-precision Global Positioning System (GPS) satellite orbits are one of the core products of the International GNSS Service (IGS). Since the establishment of the IGS in 1994, the quality and consistency of the IGS orbits has steadily been improved by advances in the modeling of GPS observations. However, due to these model improvements and reference frame changes, the time series of operational orbits are inhomogeneous and inconsistent. This problem can only be overcome by a complete reprocessing starting with the raw observation data. The quality of reprocessed GPS satellite orbits for the time period 1994–2005 will be assessed in this paper. Orbit fits show that the internal consistency of the orbits could be improved by a factor of about two in the early years. Comparisons with the operational IGS orbits show clear discontinuities whenever the reference frame was changed by the IGS. The independent validation with Satellite Laser Ranging (SLR) residuals shows an improvement of up to 30% whereas a systematic bias of 5 cm still persists. 相似文献
6.
Impact of GPS differential code bias in dual- and triple-frequency positioning and satellite clock estimation 总被引:1,自引:0,他引:1
The features and differences of various GPS differential code bias (DCB)s are discussed. The application of these biases in dual- and triple-frequency satellite clock estimation is introduced based on this discussion. A method for estimating the satellite clock error from triple-frequency uncombined observations is presented to meet the need of the triple-frequency uncombined precise point positioning (PPP). In order to evaluate the estimated satellite clock error, the performance of these biases in dual- and triple-frequency positioning is studied. Analysis of the inter-frequency clock bias (IFCB), which is a result of constant and time-varying frequency-dependent hardware delays, in ionospheric-free code-based (P1/P5) single point positioning indicates that its influence on the up direction is more pronounced than on the north and east directions. When the IFCB is corrected, the mean improvements are about 29, 35 and 52% for north, east and up directions, respectively. Considering the contribution of code observations to PPP convergence time, the performance of DCB(P1–P2), DCB(P1–P5) and IFCB in GPS triple-frequency PPP convergence is investigated. The results indicate that the DCB correction can accelerate PPP convergence by means of improving the accuracy of the code observation. The performance of these biases in positioning further verifies the correctness of the estimated dual- and triple-frequency satellite clock error. 相似文献
7.
8.
9.
10.
Patrick Henkel Dimitrios Psychas Christoph Günther Urs Hugentobler 《Journal of Geodesy》2018,92(10):1199-1217
Precise point positioning with integer ambiguity resolution requires precise knowledge of satellite position, clock and phase bias corrections. In this paper, a method for the estimation of these parameters with a global network of reference stations is presented. The method processes uncombined and undifferenced measurements of an arbitrary number of frequencies such that the obtained satellite position, clock and bias corrections can be used for any type of differenced and/or combined measurements. We perform a clustering of reference stations. The clustering enables a common satellite visibility within each cluster and an efficient fixing of the double difference ambiguities within each cluster. Additionally, the double difference ambiguities between the reference stations of different clusters are fixed. We use an integer decorrelation for ambiguity fixing in dense global networks. The performance of the proposed method is analysed with both simulated Galileo measurements on E1 and E5a and real GPS measurements of the IGS network. We defined 16 clusters and obtained satellite position, clock and phase bias corrections with a precision of better than 2 cm. 相似文献
11.
The positioning service aided by low Earth orbit (LEO) mega-constellations has become a hot topic in recent years. To achieve precise positioning, accuracy of t... 相似文献
12.
In this article, an algorithm for clock offset estimation of the GPS satellites is presented. The algorithm is based on a
Kalman-filter and processes undifferenced code and carrier-phase measurements of a global tracking network. The clock offset
and drift of the satellite clocks are estimated along with tracking station clock offsets, tropospheric zenith path delay
and carrier-phase ambiguities. The article provides a brief overview of already existing near-real-time and real-time clock
products. The filter algorithm and data processing scheme is presented. Finally, the accuracy of the orbit and clock product
is assessed with a precise orbit determination of the MetOp satellite and compared to results gained with other real-time
products.
相似文献
André HauschildEmail: |
13.
Weiwei Song Wenting Yi Yidong Lou Chuang Shi Yibin Yao Yanyan Liu Yong Mao Yu Xiang 《GPS Solutions》2014,18(3):323-333
GLONASS carrier phase and pseudorange observations suffer from inter-channel biases (ICBs) because of frequency division multiple access (FDMA). Therefore, we analyze the effect of GLONASS pseudorange inter-channel biases on the GLONASS clock corrections. Different Analysis Centers (AC) eliminate the impact of GLONASS pseudorange ICBs in different ways. This leads to significant differences in the satellite and AC-specific offsets in the GLONASS clock corrections. Satellite and AC-specific offset differences are strongly correlated with frequency. Furthermore, the GLONASS pseudorange ICBs also leads to day-boundary jumps in the GLONASS clock corrections for the same analysis center between adjacent days. This in turn will influence the accuracy of the combined GPS/GLONASS precise point positioning (PPP) at the day-boundary. To solve these problems, a GNSS clock correction combination method based on the Kalman filter is proposed. During the combination, the AC-specific offsets and the satellite and AC-specific offsets can be estimated. The test results show the feasibility and effectiveness of the proposed clock combination method. The combined clock corrections can effectively weaken the influence of clock day-boundary jumps on combined GPS/GLONASS kinematic PPP. Furthermore, these combined clock corrections can improve the accuracy of the combined GPS/GLONASS static PPP single-day solutions when compared to the accuracy of each analysis center alone. 相似文献
14.
Time-relative positioning makes use of observations taken at two different epochs and stations with a single global positioning
system (GPS) receiver to determine the position of the unknown station with respect to the known station. The limitation of
this method is the degradation over time of the positioning accuracy due to the temporal variation of GPS errors (ionospheric
delay, satellite clock corrections, satellite ephemerides, and tropospheric delay). The impact of these errors is significantly
reduced by adding to the one-way move from the known to the unknown station, a back move to the known station. A loop misclosure
is computed from the coordinates obtained at the known station at the beginning and at the end of the loop, and is used to
correct the coordinates of the unknown station. The field tests, presented in this paper, show that using the loop misclosure
corrections, time-relative positioning accuracy can be improved by about 60% when using single frequency data, and by about
40% with dual frequency data. For a 4-min processing interval (an 8-min loop) and a 95% probability level, errors remain under
20 cm for the horizontal components and 36 cm for the vertical component with single frequency data; and under 11 cm for the
horizontal components and 29 cm for the vertical component with dual frequency data. 相似文献
15.
该文针对传统的精密卫星钟差插值方法没有考虑精密单点定位技术解算数据特点的不足,提出了一种基于载波相位观测值残差的精密卫星钟差插值方法。在精密单点定位中,卫星钟误差将部分体现在载波相位观测值残差中,基于此,考虑将载波相位残差的变化趋势引入到插值的过程中,达到提高插值精度的目的。利用IGS分析中心提供的精密卫星钟差数据进行分析,结果表明:新方法的插值精度为0.2ns~0.7ns;和线性插值、样条插值、Hermite插值、多项式拟合和Lagrange插值等5种传统的插值方法相比,新方法的插值结果在最大误差、平均误差、均方根误差方面均有显著改善,其中均方根误差相比5种传统方法的平均改善率最大达到了37%。 相似文献
16.
The precise point positioning (PPP) is a popular positioning technique that is dependent on the use of precise orbits and clock corrections. One serious problem for real-time PPP applications such as natural hazard early warning systems and hydrographic surveying is when a sudden communication break takes place resulting in a discontinuity in receiving these orbit and clock corrections for a period that may extend from a few minutes to hours. A method is presented to maintain real-time PPP with 3D accuracy less than a decimeter when such a break takes place. We focus on the open-access International GNSS Service (IGS) real-time service (RTS) products and propose predicting the precise orbit and clock corrections as time series. For a short corrections outage of a few minutes, we predict the IGS-RTS orbits using a high-order polynomial, and for longer outages up to 3 h, the most recent IGS ultra-rapid orbits are used. The IGS-RTS clock corrections are predicted using a second-order polynomial and sinusoidal terms. The model parameters are estimated sequentially using a sliding time window such that they are available when needed. The prediction model of the clock correction is built based on the analysis of their properties, including their temporal behavior and stability. Evaluation of the proposed method in static and kinematic testing shows that positioning precision of less than 10 cm can be maintained for up to 2 h after the break. When PPP re-initialization is needed during the break, the solution convergence time increases; however, positioning precision remains less than a decimeter after convergence. 相似文献
17.
Cheinway Hwang Tzu-Pang Tseng Tingjung Lin Dražen Švehla Bill Schreiner 《Journal of Geodesy》2009,83(5):477-489
The joint Taiwan–US mission FORMOSAT-3/ COSMIC (COSMIC) was launched on April 17, 2006. Each of the six satellites is equipped
with two POD antennas. The orbits of the six satellites are determined from GPS data using zero-difference carrier-phase measurements
by the reduced dynamic and kinematic methods. The effects of satellite center of mass (COM) variation, satellite attitude,
GPS antenna phase center variation (PCV), and cable delay difference on the COSMIC orbit determination are studied. Nominal
attitudes estimated from satellite state vectors deliver a better orbit accuracy when compared to observed attitude. Numerical
tests show that the COSMIC COM must be precisely calibrated in order not to corrupt orbit determination. Based on the analyses
of the 5 and 6-h orbit overlaps of two 30-h arcs, orbit accuracies from the reduced dynamic and kinematic solutions are nearly
identical and are at the 2–3 cm level. The mean RMS difference between the orbits from this paper and those from UCAR (near
real-time) and WHU (post-processed) is about 10 cm, which is largely due to different uses of GPS ephemerides, high-rate GPS
clocks and force models. The kinematic orbits of COSMIC are expected to be used for recovery of temporal variations in the
gravity field. 相似文献
18.
19.
20.
Min Li Wenwen Li Chuang Shi Kecai Jiang Xiang Guo Xiaolei Dai Xiangguang Meng Zhongdong Yang Guanglin Yang Mi Liao 《Journal of Geodesy》2017,91(11):1313-1327
The GNSS Occultation Sounder instrument onboard the Chinese meteorological satellite Fengyun-3C (FY-3C) tracks both GPS and BDS signals for orbit determination. One month’s worth of the onboard dual-frequency GPS and BDS data during March 2015 from the FY-3C satellite is analyzed in this study. The onboard BDS and GPS measurement quality is evaluated in terms of data quantity as well as code multipath error. Severe multipath errors for BDS code ranges are observed especially for high elevations for BDS medium earth orbit satellites (MEOs). The code multipath errors are estimated as piecewise linear model in \(2{^{\circ }}\times 2{^{\circ }}\) grid and applied in precise orbit determination (POD) calculations. POD of FY-3C is firstly performed with GPS data, which shows orbit consistency of approximate 2.7 cm in 3D RMS (root mean square) by overlap comparisons; the estimated orbits are then used as reference orbits for evaluating the orbit precision of GPS and BDS combined POD as well as BDS-based POD. It is indicated that inclusion of BDS geosynchronous orbit satellites (GEOs) could degrade POD precision seriously. The precisions of orbit estimates by combined POD and BDS-based POD are 3.4 and 30.1 cm in 3D RMS when GEOs are involved, respectively. However, if BDS GEOs are excluded, the combined POD can reach similar precision with respect to GPS POD, showing orbit differences about 0.8 cm, while the orbit precision of BDS-based POD can be improved to 8.4 cm. These results indicate that the POD performance with onboard BDS data alone can reach precision better than 10 cm with only five BDS inclined geosynchronous satellite orbit satellites and three MEOs. As the GNOS receiver can only track six BDS satellites for orbit positioning at its maximum channel, it can be expected that the performance of POD with onboard BDS data can be further improved if more observations are generated without such restrictions. 相似文献