首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present paper will be to extend the Fourier methods of analysis of the light curves of eclipsing binaries, outlined in our previous communication (Kopal, 1975) in connection with systems whose components would appear as uniformly bright discs, to systems whose components exhibit discs characterized by an arbitrary radially-symmetrical distribution of brightness —i.e., an arbitrary law of darkening towards the limb — be it linear or nonlinear.In Section 2 which follows a few brief introductory remarks, fundamental equations will be set up which govern the light changes arising from the mutual eclipses of limb-darkened stars — be such eclipses total, partial or annular; and Section 3 will contain a closed algebraic solution for the elements of the occulation eclipses terminating in total phase. Such a solution proves to be no more complicated than it turned out to be for uniformly bright discs in our previous paper; and calls for no special functions for the purpose — as will be put in proper perspective in the concluding Section 4.The cases of transit eclipses terminating in an annular phase, of partial eclipses of occulation or transit type, will be similarly dealt with by Fourier methods in the next paper of the present series.  相似文献   

2.
The main aim of this paper will be to develop explicit form of the moments of the light curvesA 2m(r 1,r 2,i) required for the solution for the geometrical elementsr 1,2 andi of eclipsing systems exhibiting annular eclipses (Sections 2 and 3), as well as partial eclipses (Section 4).In the concluding Section 5 we shall demonstrate that — regardless of the type of eclipse and distribution of brightness on the apparent disc of the eclipsed star, or indeed of the shape of the eclipsing as well as eclipsed components — the momentsA 2m satisfy certain simple functional equations — a fact which relates them to other classes of functions previously studied in applied mathematics.  相似文献   

3.
The aim of the present paper will be to translate the essential parts of the theory of Fourier analysis of the light changes of eclipsing variables into more practical terms; and describe procedures (illustrated by numerical examples) which should enable their users to obtain the desired results with maximum accuracy and minimum loss of information by processes which can be fully automated.In order to unfold in steps how this can be done, the scope of the present paper-the first of two-will be restricted to an exposition of the analysis of light changes caused by eclipses of spherical stars; while between minima due to this cause the light of the system should remain sensibly constant. An extension of our analysis to incorporate photometric effects arising from mutual distortion of the components of close eclipsing systems between minima as well as within eclipses is being postponed for the second communication.In developing this subject we shall single out for the user's attention only those parts of the whole theory which are of direct relevance to practical work. Their justification can be largely found in sources already published; and new developments essential for our work, not yet made public, will be relegated to several Appendices at the end of the text, in order not to render its text too discursive and deflect the reader's attention from the main theme of its narrative.After a brief outline of the subject given in Section 1, Section 2 will introduce the reader to practical aspects of the Fourier analysis of the light curves; and Section 3 will be devoted to its use to determine the numerical values of the momentsA 2m of the light curves which constitute the cornerstones for all subsequent work. Section 4 will describe an algebraization of the process of determination of the elements for the case of total (annular) eclipses; while Section 5 will do the same for partial eclipses. The concluding Section 6 will be devoted to an error analysis of our problem, and to an outline of the way by which the errors of the individual observations will compound to the uncertainty of the final results. Lastly, Appendices 1–5 concluding the paper will contain additional details of some aspects of our work, or proofs of new processes made use of to obtain our results, whose earlier inclusion would have made the main text too discursive.  相似文献   

4.
The aim of the present paper will be to extend our new methods of analysis of the light curves, of eclipsing binary systems, consisting of spherical components, by Fourier approach to eclipses oftransit type — which arise when the eclipsing component happens to be smaller of the two. Our present principal concern will be transit eclipses, terminating in annular phase, of stars characterized by arbitrary radially-symmetrical distribution of brightness over their apparent discs — a phenomenon which will cause the light of the system to vary continuously during annular phase. In the first section which follows this abstract, an outline of the problem at issue will be given. Section 2 has been devoted to an analysis of light changes arising in the course of partial phases of transit eclipses; and the concluding Section 3 will contain an analysis of the corresponding light changes, during annular phase. Unlike for occultation eclipses considered in our previous paper (cf. Kopal, 1975b), the momentsA 2m of the light curves due to eclipses of transit type can again be expressed in terms of the geometrical elements of such eclipses in a closed form for limb darkening characterized by any value ofn; but the use of such functions will require auxiliary tables (now in preparation) for applications to practical cases. A parallel treatment of partial eclipses of the occultation or transit type — eclipses which stop short of totality or annular phase — is being postponed for a subsequent communication.  相似文献   

5.
The methods of analysis of the light changes of eclipsing variables in the frequency-domain, developed in our previous papers (Kopal 1975a, b, c, d) for an interpretation of mutual eclipses in systems consisting of spherical stars, have now been extended to analyse the light variations — between minima as well as within eclipses — ofclose binaries whose components are distorted by axial rotation and mutual tidal action. Following a brief introduction (Section 1) in which the need of this new approach will be expounded, in Sections 2 and 3 we shall deduce the theoretical changes of close eclipsing systems between minima (Section 2) as well as within eclipses (Section 3), which in Sections 4 and 5 will be analysed in the frequency-domain; and explicit formulae obtained which should enable us to separate the photometric proximity and eclipse effects directly from the observed data as they stand-without the need of any preliminary ‘rectification’. Section 6 will contain the explicit forms of the expressions for photometric perturbations in the frequency-domain, due to rotational and tidal distortion of both stars; and the concluding Section 7 will then be concerned with practical aspects of the application of these new methods to an analysis of the observed light changes of close eclipsing systems — in which the proximity and eclipse effects cannot be distinguished from each other by mere inspection.  相似文献   

6.
The aim of the present paper will be to pioneer a new approach to the analysis of the light changes of eclipsing binary systems in the frequency domain, and to point out its merits in comparison with a conventional treatment of the same problem in the time-domain which has been developed so far. Following an introductory section in which the broad features of our problem will be set forth, Section 2 will contain an outline, and critique, of the time-domain approach. Section 3 will give an explicit treatment of the light changes arising from total and annular eclipses in the frequency domain — a problem which we succeeded in solving in close algebraic form. Section 4 will extend this treatment to the case of partial eclipses; and in the concluding Section 5 the relative merits of our new results will be discussed in broader perspective. Sections 3 and 4 contain explicit results pertaining to mutual eclipses of spherical stars exhibiting uniformly bright discs. An extension of these results to the case of arbitrary limb-darkening, and taking account of mutual distortion of both components, will be given in subsequent communications.  相似文献   

7.
The aim of the present paper will be to develop methods for computation of the Fourier transforms of the light curves of eclipsing variables — due to any type of eclipses — as a function of a continuous frequency variablev. For light curves which are symmetrical with respect to the conjunctions (but only then) these transforms prove to be real functions ofv, and expressible as rapidly convergent expansions in terms of the momentsA 2m+1 of the light curves of odd orders. The transforms are found to be strongly peaked in the low-frequency domain (attaining a maximum forv=0), and become numerically insignificant forv>3. This is even more true of their power spectra.The odd momentsA 2m+1 — not encountered so far in our previous papers — are shown in Section 3 of the present communication to be expressible as infinite series in terms of the even momentsA 2m well known to us from Papers I–IV; and polynomial expressions are developed for approximating them to any desired degree of accuracy. The numerical efficiency of such expressions will be tested in Section 4, by application to a practical case, with satisfactory results.Lastly, in Section 5, an appeal to the Wiener-Khinchin theorem (relating the power spectra with autocorrelation function of the light curves) and Parseval's theorem on Fourier series will enable us to extend our previous methods for a specification of quadratic moments of the light curves in terms of the linear ones.  相似文献   

8.
The aim of the present paper will be to detail the procedure outlined in our previous investigations (Kopal, 1975; Kopalet al., 1976) for a solution of the elements of distorted eclipsing systems by a Fourier analysis of their light changes. This procedure—which constitutes an equivalent, in the frequency-domain, of rectification hitherto practised in the time-domain — should enable us to free the observed momentsA 2m of the light curves from all photometric effects of distortion (between minima as well as within eclipses) — a feat impossible in the time-domain except under very restricted conditions — and thus to make it possible to obtain the geometrical elements of the eclipses which should be free from any obvious source of systematic errors.  相似文献   

9.
The aim of the present paper will be to investigate the effects, on the observed radial velocities of the components of close binary systems, of atmospheric motions caused by mutual irradiation of the two stars. Such motions can (and, in general, will) produce systematic differences between the observed radial velocity and that of the centre of mass of the respective star — differences varying with with the phase and thus giving rise to spurious deformations of the star's radial-velocity curves due to orbital motion. A failure to separate the two could (and in general, will) vitiate the physical elements deduced from these curves —such as the masses or absolute dimensions of the components and of the shape of their orbit; but in order to do so, an investigation of atmospheric motions invoked by irradiation becomes a necessary prerequisite.In the Introduction following this abstract, the problem at issue will be described in general terms, and phenomena outlined which should arise in this connection (together with the observations indicating their presence). In Section 2, general expressions for the radial velocity at any point of stellar surface arising from atmospheric motions will be formulated while Section 3 will isolate such velocities for components of close binary systems as are produced by mutual irradiation of their mates, in terms of hydrodynamical equations of radiative transfer describing the problem. In Sections 4 and 5, the effects of non-rotational motions on the observed radial velocities will be specified, and hydrodynamical equations formulated which specify atmospheric convection caused by irradiation of each component of a close binary by its mate. Linearized versions of such equations will be constructed in Section 6; while Section 7 contains an evaluation of the effects which such gas streams exert on the observed radial velocity of the stars.In the concluding Section 8 applications to practical cases are carried out. It will be shown that no reliable spectroscopic elements of close binary systems (including the masses and absolute dimensions of their components) can be obtained until the effects of atmospheric convection caused by mutual irradiation have been accounted for to permit us to convert the observed radial velocities (influenced as they are by the motion of as in which they originate) to those of the centre of mass of the respective stars.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

10.
The aim of the present paper will be to give a mathematical outline of the theory of tidal evolution in close binary systems of secularly constant total momentum — an evolution activated by viscous friction of dynamical tides raised by the two components on each other. The first section contains a general outline of the problem; and in Section 2 we shall establish the basic expressions for the energy and momenta of close binaries consisting of components of arbitrary internal structure. In Section 3 we shall investigate the maximum and minimum values of the energy (kinetic and potential) which such systems can attain for given amount of total momentum; while in Section 4 we shall compare these results with the actual facts encountered in binaries with components whose internal structure (and, therefore, rotational momenta) are known to us from evidence furnished by the observed rates of apsidal advance.The results show that all such systems — be these of detached or semi-detached type — disclose that more than 99% of their total momenta are stored in the orbital momentum. The sum of the rotational momenta of the constituent components amounts to less than a percent of the total — a situation characteristic of a state close to the minimum energy for given total momentum. This appears, moreover, to be true not only of the systems with both components on the Main Sequence, but also of those possessing evolved components in contact with their Roche limits.Under such conditions, a synchronism between rotation and revolution (characteristic of both extreme states of maximum and minimum energy) is not only possible, but appears to have been actually approached — if not attained — in the majority of cases. In other words, it would appear that — in at least a large majority of known cases — the existing close binaries have already attained orbits of maximum distension consistent with their momenta; and tidal evolution alone can no longer increase the present separations of the components to any appreciable extent.The virtual absence, in the sky, of binary systems intermediate between the stages of maximum and minimum energy for given momentum leads us to conjecture that the process of dynamical evolution activated by viscous tides may enroll on a time-scale which is relatively short in comparison with their total age — even for systems like Y Cygni or AG Persei, whose total age can scarcely exceed 107 yr. A secular increase of the semi-major axes of relative orbits is dynamically coupled with a corresponding variation in the velocity of axial rotation of both components through the tidal lag arising from the viscosity of stellar material. The differential equations of so coupled a system are given in Section 5; but their solution still constitutes a task for the future.The Lunar Science Institute Contribution No. 90. The Lunar Science Institute is operated by the Universities Space Research Association under Contract No. NSR 09-051-001 with the National Aeronautics and Space Administration.  相似文献   

11.
The aim of the present paper will be to introduce a new definition of the loss of light suffered by mutual eclipses of the components of close binary systems: namely, as across-correlation of two apertures representing the eclipsing and eclipsed discs.The advantages of such a strategy over the more conventional (geometrical) approach are (a) greater symmetry of the respective expressions; (b) greater affinity of expressions arising from distortion with those expressing the light changes due to eclipses of spherical stars; and (c) greater freedom in dealing with the effects of particular distribution of brightness over the disc of the star undergoing eclipse (generalized limb-darkening), as well as of possible semi-transparency of the eclipsing component (Wolf-Rayet stars!). In point of fact, none of these tasks could be handled with equal ease by any other technique; nor could the corresponding loss of light be so automated by any other approach.In Section 2 which follows brief introductory remarks we shall evaluate the loss of light arising from distribution of brightness within the aperture undergoing eclipse, and appropriate opacity of the occulting disc. In Section 3 we shall take advantage of these new forms of our results to deduce a number of new properties of the eclipse functions — both algebraic and differential — which have so far escaped attention and which are of considerable practical interest. Lastly, in Section 4 we shall generalize the same concepts to the modification of the light changes caused by the departures of the respective apertures from circular forms.It will be shown that all these phenomena can be most naturally described in terms of Hankel transforms of the products of two Bessel functions with orders depending on the physical characteristics (distribution of brightness; opacity) of the two components; while the geometry of the system (i.e., the fractional radiir 1,2 of the two stars; or the inclinationi of their orbit) enter only through their arguments. Such formulation of our problem should bring a theory of the light changes of eclipsing variables in much closer contact with the adjacent parts of physical optics.  相似文献   

12.
The aim of the present paper will be to develop a theory of the radial-velocity changes of the components of close binary systems, with special attention to phenomena arising from finite dimensions of such components and their mutual distortion as well as irradiation. It is particularly stressed that the deformability of fluid stars and gas motions in their atmospheres can give rise to systematic differences between the observed radial velocities of such stars and those of their mass centres.In Section 2 (which follows a brief statement of the problem outlined in Section 1) we shall introduce the coordinate systems subsequently employed to treat various aspects of our problem: Section 3 will be concerned with an extraction of information from the radial-velocity component of absolute motions of the mass-centres of such stars; and in Section 4 we shall generalize the classical work by an investigation of radial velocities at any point of the apparent disks of distorted components, and their relation to the motion of their centres of mass. Section 5 will contain an evaluation of the effects of distortion, on radial velocity, averaged over the entire visible disk of the respective star at different phases; and in Section 6 we shall extend the same treatment to stars undergoing eclipses.An investigation of the effects, on the observed radial velocities, of atmospheric streaming caused by mutual irradiation of the two stars is being postponed for a subsequent communication.  相似文献   

13.
The aim of the present paper will be to investigate the circumstances under which an irreversible dissipation of the kinetic energy into heat is generated by the dynamical tides in close binary systems if (a) their orbit is eccentric; (b) the axial rotation of the components is not synchronized with the revolution; or (c) the equatorial planes are inclined to that of the orbit.In Section 2 the explicit form of the viscous dissipation function will be set up in terms of the velocity-components of spheroidal deformation arising from the tides; in Section 3, the principal partial tides contributing to the dissipation will be detailed; Section 4 will be devoted to a determination of the extent of stellar viscosity — both gas and radiative; while in the concluding Section 5 quantitative estimates will be given of the actual rate at which the kinetic energy of dynamical tides gets dissipated into heat by viscous friction in stellar plasma.The results disclose that the amount of heat produced per unit time by tidal interaction between components of actual close binaries equals only about 10–10th part of their nuclear energy production; and cannot, therefore, affect the internal structure of evolution of the constituent stars to any appreciable extent. Moreover, it is shown that the kinetic energy of their axial rotation can be influenced by tidal friction only on a nuclear, rather than gravitational (Kelvin) time-scale — as long as plasma or radiative viscosity constitute the sole sources of dissipation. However, the emergence of turbulent viscosity in secondary components of late spectral types, which have evolved away from the Main Sequence, can accelerate the dissipation 105–106 times, and thus give rise to appreciable changes in the elements of the system (particularly, in the orbital periods) over time intervals of the order of 105–106 years. Lastly, it is pointed out that, in close binary systems consisting of a pair of white dwarfs, a dissipation of the kinetic energy through viscous tides in degenerate fermion-gas could produce enough heat to account, by itself, for the observed luminosity of such objects.  相似文献   

14.
The aim of the present paper will be to develop from the fundamental equations of hydrodynamics a theory of dynamical tides in close binary systems, the components of which are regarded to consist of heterogeneous viscous fluid, and to revolve around their common centre of gravity in eccentric orbits; moreover, the equatorial planes of their axial rotation and the orbital plane need not be co-planar, but all may be inclined to the invariable plane of the system of arbitrary amounts. The changes in the pressure or density invoked by time-dependent deformation will be regarded as adiabatic; but, in the equilibrium state, both the density and viscosity of the material of our components may be arbitrary functions of the radial distance.Following a brief exposition in Section 2 of the fundamental equations linearized to small oscillations — be these free or forced — in Section 3 we shall particularize them to describe spheroidal deformations; with due regard to all terms arising from viscosity. Section 4 will contain a specification of the boundary conditions to be imposed upon such oscillations; and in Section 5 we shall solve the problem of non-radial oscillations of self-gravitating inviscid configurations in terms of hypergeometric series. The remaining Sections 6–8 will be devoted to a discussion of the phenomena arising from viscosity: in particular, we shall solve in a closed form the problem of non-radial oscillations of incompressible viscous globes in the terms of Bessel functions. It will be shown that the effect of viscosity — like those of compressibility — tend to de-stabilize all non-radial oscillations of homogeneous configurations.At the other extreme, a similar treatment of a mass-point model — as well as of one exhibiting high but finite degree of central condensation — is being postponed for a subsequent communication.  相似文献   

15.
The aim of the present paper will be to generalize the methods for computation of the elements of eclipsing binary systems in the frequency-domain, summarized in our recent Paper I (Kopal, 1981), to the case ofclose systems, in which photometric proximity effects become conspicuous and must be taken into account before the methods previously outlined in Paper I become directly applicable.Following a brief introduction to the subject given in Section 1, Section 2 summarizes (and comments upon) the difficulties previously encountered in separation of the photometric proximity and eclipse effects. In Section 3 we develop an alternative new approach to the problem by modulation of the light curves throughout the entire orbital cycle, intended to filter out proximity effects from the observed light changes and isolate those due to eclipses; while in Section 4 we shall present a numerical application of the new method to an analysis of the observed light changes of the eclipsing system W Ursae Maioris.In Section 5 we shall present a quantitative investigation of the photometric effects of distortion on the light changes of close eclipsing systems within eclipses-the most complicated part of the whole problem-with numerical application to the system of U Sagittae carried out in the concluding Section 6.Appendices 1–3 contain numerical data which should facilitate application of the methods developed and illustrated in Sections 3–4; while Appendix 4 will be reserved for a mathematical proof of certain expansions used in Section 5, which would have been too discursive for the main text.  相似文献   

16.
The aim of the present paper is to establish the explicit forms of the photometric perturbations, in the frequency-domain, of close binaries, whose components are distorted by axial rotation and mutual tidal action.Following a brief introduction, Section 2 describes the light changes and the photometric perturbations within eclipses in the frequency-domain. In Section 3 the explicit forms of the perturbations for occultation eclipses terminating in totality are given; while in Section 4 analogous results are established for transit eclipses terminating in annular phases. In this latter case the results can be expressed in terms of the photometric perturbations for total eclipses and in terms of some series. To facilitate applications to actual stars these series have been computed and their results are represented in Table I and by the Graphs. Finally, Section 5 gives a discussion of the results.An extension of the photometric perturbations to the case of partial eclipses will be given in a subsequent communication.  相似文献   

17.
In a previous paper of this series (Kopal, 1968a) the Eulerian equations have been set up which govern the precession and nutation of selfgravitating bodies of viscous fluid in inertial coordinates which are at rest in space. In order to facilitate their solution, in the present investigation we shall transform these equations to the rotating body-axes; and shall explicitly evaluate all their coefficients arising as a result of second-harmonic dynamical tides.Following the introductory Section 1 which contains a mathematical statement of the problem, the requisite transformation of coordinates will be outlined in Section 2, and applied to the equations of motion in Section 5. The corresponding moments and products of inertia appropriate for selfgravitating configurations of arbitrary internal structure will be formulated in Section 4; while the deformation terms arising from second-harmonic dynamical tides raised on centrally-condensed configurations will be evaluated in Sections 3 and 6. The concluding Section 7 will then contain a specification of the components of the disturbing force.The next stage of our investigation — namely, a construction of the actual solutions of the equations governing precession and nutation of fluid bodies in different cases of astrophysical interest — has been postponed for a separate paper.  相似文献   

18.
The methods of analysis of the light changes of eclipsing variables in the frequency domain, developed in our previous papers (Kopal, 1975b, c) for total or annular eclipses of arbitrarily limbdarkened stars, have now been extended to the case of partial eclipses of occultation as well as transit type. In Section 2 which follows brief introductory remarks the even Fourier sine coefficients are formulated — in the guise of the momentsA 2m of the light curve — in terms of the elements of the eclipse; and their use for a solution for the elements is detailed in Section 3. A brief appendix containing certain auxiliary tables to facilitate this task concludes the paper. An extension of the same method to an analysis of the light changes exhibited by close eclipsing systems — in which the photometric proximity effects arising from mutual distortion can no longer be ignored — will be given in the subsequent paper of this series.  相似文献   

19.
In a preceding paper (Kopal, 1969; in what follows referred to as Paper I) we introduced a new system of curvilinear coordinates-hereafter referred to as Roche Coordinates — in which spheres of constant radius in spherical polars have been replaced by surfaces of constant potential of a rotating gravitational dipole; while the angular coordinates are orthogonal to the equipotentials. In Paper I we established an explicit form of such a transformation, and related the Roche coordinates with polar coordinates (with which they coalesce in the immediate neighbourhood of each one of the two finite mass-points) in the plane case. The aim of the present investigation will be to generalize the definition of the Roche coordinates to three dimensions.The opening Section 1 of this paper will contain a general outline of the proposed three-dimensional transformation; and in Section 2 details of this transformation will be explicitly worked out correctly to quantities of first order in superficial distortion — an approximation which should prove adequate in regions surrounding the two finite masses; while in Section 3 we shall evaluate (to this degree of accuracy) the metric coefficients of the respective transformation, and its direction cosines, in both polar and curvilinear coordinates. Section 4 will then contain a formulation of the fundamental equations of hydrodynamics in terms of the three-dimensional Roche coordinates; and their advantages for a treatment of certain classes of dynamical problems encountered in doublestar astronomy will be illustrated in the concluding Section 5 by an investigation of the vibrational stability of the Roche model. We shall show that this model is capable of performing free radial oscillations which remain barotropic only if its equilibrium form is spherical (i.e., in the absence of any external mass in the neighbourhood); but not if it is distorted to any extent by rotation or tides.  相似文献   

20.
The aim of this paper is to extend the Fourier approach to the transit eclipses, terminating in annular phase, with an application to YZ Cassiopeiae. The results turn out to be more complicated than those obtained by Kopal for total eclipses. However, the solution can still be obtained by successive approximations without resorting to any tables of special functions.Section 1 contains an outline of the problem. In Section 2, the evaluation of the theoretical momentsA 2m for transit eclipses is given. An application of the Fourier method to the light curves of YZ Cas is presented in Section 3. Finally, in Section 4, a general discussion of the results is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号