共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
采用计算流体力学—离散元耦合方法(CFD-DEM)模拟海底管道床面的冲刷过程。经过模型验证,该方法的计算结果与前人的研究具有较好的一致性,证明其可以应用于海底管道周围的冲刷模拟计算。冲刷初期的结果增强了目前对启动阶段粒子运动机理的理解,即管前后压力梯度造成的渗流作用导致粒子运动。对完整冲刷过程的模拟中,发现冲刷分为冲刷启动阶段、间隙冲刷阶段和尾迹冲刷阶段。间隙冲刷阶段管道下方粒子具有较大速度,冲刷坑快速向下方发展。进入尾迹冲刷阶段后,管道后方出现周期性脱落的涡旋,沙丘上的粒子速度更大。同时利用DEM更具直观性的独特优势,首次得到了14个典型位置处颗粒的运动轨迹和运动速度,对于理解冲刷过程中粒子的运动情况具有较大帮助。 相似文献
3.
4.
5.
A new study investigates an unburied offshore “snaked” pipeline behavior under various types of seismic faults. The snaking of the pipeline is caused by the thermal/pressure expansion and soil friction. The snaking takes place at a certain distance from the pipeline's unrestrained end and gradually increases towards the restraint. It is shown that longitudinal seismic faults have less effect on a straight pipeline than a snaked pipeline. The new seismic analysis demonstrates that an increase of ground displacement causes a very small change in bending and longitudinal stresses. The new approach results in a safe, subsea pipeline construction and operation with a significant cost reduction. 相似文献
6.
张力腿平台(TLP)水下丛式井口布局设计关系到立管服役期间的安全性,是含有丛式井口平台设计过程中考虑的主要因素。根据TLP立管安装、钻井以及防碰等要求,考虑尾流效应对丛式立管的影响,研究水下丛式井口布局设计准则,对丛式井口—立管系统进行碰撞分析以确定水下井口间距阈值,提出水下丛式井口圆形布局方法和相应的布局设计流程。通过算例对计算方法进行了具体运用。研究表明:与目前采用的"等边三角形网格"方法相比,水下丛式井口圆形布局方法可允许水下整体基盘安装位置误差达到水下井口间距阈值的20%,立管的最大倾角可达到0.5°,安装作业窗口增加1倍以上。本方法对水下整体基盘安装位置误差的容错能力强,能有效扩大丛式立管钻井和安装作业窗口,提高丛式立管作业安全性,研究结果可为TLP丛式井口的设计提供参考。 相似文献
7.
Strength design method for tubing hanger of subsea christmas tree against big temperature difference
The tubing hanger is an important component of the subsea Christmas tree, experiencing big temperature difference which will lead to very high thermal stresses. On the basis of API 17D/ISO 13628-4 and ASME VIII-1, and by comprehensively considering the erosion of oil and the gravity load of the tubing, a calculation model is established by regarding design pressure and thermal stress, and the method for designing the tubing hanger of the horizontal Christmas tree under big temperature difference condition is developed from the fourth strength theory. The proposed theory for strength design of the tubing hanger in big temperature difference is verified by numerical results from ABAQUS. 相似文献
8.
Seismic oceanography is a new cross-discipline of reflection seismology and physical oceanography. The biggest difference between seismic oceanography and traditional reflection seismology is its research object of time-varied seawater. How to estimate the temporal variations of reflectors in water structure and make some corrections in seismic data are basic problems in seismic oceanography research. Here a method of estimation for seawater movement is provided based on the reflectors. The application results of this method to the simulated and field seismic data turn out to be acceptable. As compared with the previous research, this method has the advantages of low-dependence on migration velocity and dip of reflectors, and it is very suitable for correction in a spectral analysis using seismic data, which is very useful in the research of ocean energy budget. 相似文献
9.
密封压力是带压堵漏维修管卡的关键性能。介绍了323.9 mm(API 12英寸)维修管卡样机的总体结构及密封原理,选用接触压力准则作为管卡的密封评价准则,利用ANSYS Workbench软件建立了管卡密封结构的二维轴对称有限元模型,分析了密封结构闭环中薄弱部分在不同密封圈压缩量下的接触压力,然后试验测试了管卡样机密封圈压缩量和密封压力,并与有限元计算接触压力进行了对比。分析结果表明管卡密封结构最薄弱部分的接触压力随着周向密封圈压缩量的增大而增大,且主要是中间接触部分起到密封作用。通过试验验证了理论分析的管卡密封结构最薄弱位置,并发现相同密封圈压缩量下试验测试的密封压力与计算的接触压力近似,两者的变化趋势基本一致。有关分析思路和试验方法可以为管卡密封结构的设计提供重要参考。 相似文献
10.
Abdul-Lateef Balogun Abdul-Nasir Matori Adekunle Isa Hamid-Mosaku Dano Umar Lawal Imtiaz Ahmed Chandio 《Marine Georesources & Geotechnology》2017,35(7):961-969
Proper pipeline route selection is an integral component of a typical oil exploration and transportation project. Improperly selected routes could have severe consequences including pipe failures, oil spillage, and environmental disasters. Consequently, technologies like geographic information systems (GIS) are increasingly being used to facilitate the oil pipeline route selection procedure—especially for onshore routing projects. Surprisingly, not much has been documented on the application of GIS to offshore pipeline routing. With recent discoveries on the merits of offshore oil exploration, it is necessary to extend the analytical capabilities of GIS to the unique offshore domain. However, concerns have been raised regarding the limitations of GIS in accurately prioritizing diverse selection criteria in typical multi-criteria decision-making (MCDM) problems like route selection. Consequently, this paper addresses the offshore/subsea pipeline routing constraint using a hybrid decision support system (DSS), which integrates a GIS and fuzzy logic-based approximate reasoning (AR) models for optimal performance. The resultant spatial decision support system (SDSS) was successfully applied to a case study in Malaysia. The AR algorithm calculated the significance level of the multiple criteria using various fuzzy linguistic variables and membership functions. The aggregated priority ranking from different pipeline routing experts showed that the overall influence of the environmental criteria (61.4%) significantly exceeded that of other equally important criteria in the study area. These rankings were inputted into the SDSS to simulate various probable routes. Final results accurately highlighted an optimal route, which places a premium on the protection of environmental features in the subsea study area—in alignment with the preferences of majority of the experts. 相似文献
11.
The Next Generation Subsea Production System (NextGen SPS) is a new concept for petroleum development in ultra-deep water (UDW) areas. It can improve the structural performance of riser as well as provide several operational benefits to subsurface well completion (SWC) equipment. The design of NextGen SPS’s riser system which includes rigid riser and flexible jumper—like the free standing hybrid riser (FSHR), is a very important issue for the definition of NextGen SPS. This paper details an optimization design on the NextGen SPS’s riser system, with the assistance of the design of experiments (DOE) and surrogate model techniques. The optimization model pertaining to riser system is formulated firstly. The DOE is a statistical technique that guides a sensitive study on the behavior of the riser system before the optimization analysis. Structural responses are obtained by the fully coupled methodology. Through such a preliminary study, the effective contribution of each design variable at the riser performance will be known and some general conclusive remarks will be obtained. Based on the DOE results, design variables are screened to improve the efficiency of optimization process. Particle swarm optimization (PSO) method is employed to conduct the optimization analysis. In this analysis, surrogate models, which are developed by back propagation neural network (BPNN), replace the time consuming dynamic analysis to predict structural responses. Latin hypercube sampling (LHS) method is adopted to generate training sample and testing sample for the BPNN. NextGen SPS that operates at a depth of 3000 m is used as the case for this investigation. The efficiency of optimization design is improved by DOE and surrogate techniques, and a reduction of approximately 46% for the riser system cost is achieved. The obtained conclusions have applicability in reference to the engineering design of FSHR and the study procedure will provide reference for study on other new structure concept. 相似文献
12.
13.
Yiguo Xue Zhiqiang Li Shucai Li Daohong Qiu Maoxin Su Zhenhao Xu 《Marine Georesources & Geotechnology》2013,31(7):816-827
AbstractThe geological conditions of subsea tunnels are extremely complex, and a water inrush disaster is prone to occur when crossing a fault. Based on a geological analysis using cloud theory, analytic hierarchy process (AHP), and entropy weight theory, we aim to establish a normal cloud model with combination weight for water inrush risk evaluation in subsea tunnels. We select seven main factors, namely, the surrounding rock grade, rock integrity, overburden thickness, seawater thickness, tunnel section, permeability coefficient, and construction technology level as risk assessment indicators for the evaluation model. The risk is divided into five levels, and the numerical characters of the cloud model are calculated based on the standard of each risk level. The subjective weight and the objective weight are determined using AHP and the entropy weight method. The combination weight is calculated using the Delphi method. The comprehensive certainty degree is used to determine the risk level of water inrush. The model is applied to the Qingdao subsea tunnel to evaluate the water inrush risk crossing the F4-1 fault, and the results are basically consistent with the actual excavation conditions. This article provides a new idea for the risk assessment of water inrush in the subsea tunnel. 相似文献
14.
15.
The maximum bending moment or curvature in the neighborhood of the touch down point (TDP) and the maximum tension at the top are two key parameters to be controlled during deepwater J-lay installation in order to ensure the safety of the pipe-laying operation and the normal operation of the pipelines. In this paper, the non-linear governing differential equation for getting the two parameters during J-lay installation is proposed and solved by use of singular perturbation technique, from which the asymptotic expression of stiffened catenary is obtained and the theoretical expression of its static geometric configuration as well as axial tension and bending moment is derived. Finite element results are applied to verify this method. Parametric investigation is conducted to analyze the influences of the seabed slope, unit weight, flexural stiffness, water depth, and the pipe-laying tower angle on the maximum tension and moment of pipeline by this method, and the results show how to control the installation process by changing individual parameters. 相似文献
16.
不埋海底管道在高温高压作用下,易发生水平向整体屈曲。实际工程中,常通过在管道路由上设置整体屈曲触发装置,实现对水平向整体屈曲的有效控制,其中以枕木法的成功应用最为多见。本文分析了枕木法的主要影响因素并验证了采用枕木法会出现管道屈曲段应力集中的现象,对比了枕木法、分布浮力法和枕木-浮力耦合法对管道整体屈曲变形规律的影响,采用数值模拟方法系统研究了枕木及浮力参数对管道水平向屈曲和后屈曲的影响规律。研究表明,在枕木两侧设置浮力段的人工触发装置可有效触发管道整体屈曲,同时促使管道虚拟锚固点间轴力的释放,降低了管道中屈曲段的应力,相较枕木法,枕木-浮力耦合法可将管道中的最大应力降低23%。 相似文献
17.
考虑波-管-土耦合作用的海底管道在位稳定性分析方法 总被引:7,自引:1,他引:7
以水动力加载试验得到的描述管道在位稳定性的波浪环境参数、管道参数和海床土性参数之间的无量纲耦合关系为基础,提出了一种考虑波-管-土动力耦合作用的海底管道在位稳定性分析方法,并通过算例与挪威船级社推荐的DnV设计规范进行了比较分析。分析表明,考虑波-管-土耦合作用的管道稳定性分析方法与DnV管道设计规范有很好的可比性.而且物理机理更清晰,可为管道稳定性设计提供有益的参考。 相似文献
18.
As an ideal use of corrosion-resistant alloys and low-alloy steels, Mechanically Lined Pipelines (MLPs) have been employed gradually for offshore exploitation. If the risk of thin-walled liner wrinkling is to be effectively averted, reel-lay is the most economical installation method for this type of pipeline, especially for deepwater oil and gas development. A suite of tools and corresponding techniques is proposed in this paper to realize the spooling-on of an MLP stalk with inner pressure to avoid detachment and wrinkling of the MLP liner. Additionally, The related numerical verification and a prototype test for a 5-in. MLP spooling-on tool are completed to prove the validity of this new technique and further illustrate the application effect of providing internal pressure during the spooling-on of MLP stalk to a reel. 相似文献
19.
射线追踪法是以建立的地下地质模型为基础,研究不同的激发点发出的射线经地下地质界面反射后可以被接收到的信息,从而了解不同的观测系统对于特定地质条件地震资料采集的效果,对于海上地震采集相关参数的确定十分关键.在天然气水合物地震勘探中,丰富的多波勘探信息对于查清水合物内部速度结构、提高地层的分辨率具有重要意义.本文在分析国外天然气水合物海底地震仪(OBS,ocean bottom seismometer)勘探的应用成果基础上,采用射线追踪法理论计算和海上实验,实现了针对天然气水合物的海底地震观测系统设计,试验获得了转换横波记录,取得了良好的应用效果. 相似文献
20.
在复杂断块地区,地震成像受断层的影响,断层下盘同相轴出现“上拉”、“下拉”或者同相轴错断的现象,极大地影响了断层圈闭构造高点的确定以及圈闭幅度的准确判断。开展针对复杂断层的高精度速度建模和高精度成像技术被认为是解决断层阴影区成像的主要处理技术解决方案。立足于地震采集信号自身的属性信息,充分挖掘地震信号的潜力,提出广角反射的折射线性去噪技术、中低频有效信号提取技术和优势信号精细速度建模技术,在西湖TT区目标评价中取得了良好的效果,明显减低了断层阴影对目标构造形态的影响,提高了构造圈闭定位的准确性。应用结果表明:通过准确的PSDM速度模型结合断层阴影区优势信号的提取,获得更聚焦的反射能量,断层阴影区弱振幅区得到消除,有效改善了断裂阴影区的成像效果。 相似文献