首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study is to explore the contribution of living phytoplankton carbon to vertical fluxes in a coastal upwelling system as a key piece to understand the coupling between primary production in the photic layer and the transfer mechanisms of the organic material from the photic zone. Between April 2004 and January 2005, five campaigns were carried out in the Ría de Vigo (NW Iberian Peninsula) covering the most representative oceanographic conditions for this region. Measurements of particulate organic carbon (POC), chlorophyll-a (chl a), phaeopigments (phaeo), and identification of phytoplankton species were performed on the water column samples and on the organic material collected in sediment traps.The POC fluxes measured by the sediment traps presented no seasonal variation along the studied period ranging around a mean annual value of 1085±365 mg m−2 d−1, in the upper range of the previously reported values for other coastal systems. The fact that higher POC fluxes were registered during autumn and winter, when primary production rates were at their minimum levels points to a dominant contribution of organic carbon from resuspended sediments on the trap collected material. On the contrary, fluxes of living phytoplankton carbon (Cphyto) and chl a clearly presented a seasonal trend with maximum values during summer upwelling (546 mg m−2 d−1 and 22 mg chl m−2 d−1, respectively) and minimum values during winter (22 mg m−2 d−1 and 0.1 mg chl m−2 d−1, respectively). The contribution of Cphyto to the vertical flux of POC ranged between 2% and 49% in response to the pelagic phytoplankton community structure. Higher values of Cphyto fluxes were registered under upwelling conditions which favour the dominance of large chain-forming diatoms (Asterionellopsis glacialis and Detonula pumila) that were rapidly transferred to the sediments. By contrast, Cphyto fluxes decreased during the summer stratification associated with a pelagic phytoplankton community dominated by single-cell diatoms and flagellates. Minimal Cphyto fluxes were observed during the winter mixing conditions, when the presence of the benthic specie Paralia sulcata in the water column also points toward strong sediment resuspension.  相似文献   

2.
Spatial variations in the sinking export of organic material were assessed within the Hudson Bay system (i.e., Hudson Bay, Hudson Strait and Foxe Basin) during the second oceanographic expedition of ArcticNet, on board the CCGS Amundsen in early fall 2005. Sinking fluxes of particulate organic material were measured using short-term free-drifting particle interceptor traps deployed at 50, 100 and 150 m for 8–20 h at eight stations. Measurements of chlorophyll a (chl a), pheopigments (pheo), particulate organic carbon (POC), biogenic silica (BioSi), protists, fecal pellets and bacteria were performed on the collected material. In parallel, sea surface salinity and temperature were determined at 121 stations in the Hudson Bay system. Three hydrographic regions presenting different sedimentation patterns were identified based on average surface salinity and temperature. Hudson Strait was characterized by a marine signature, with high salinity (average=32.3) and low temperature (average=2.1 °C). Eastern Hudson Bay was strongly influenced by river runoff and showed the lowest average salinity (26.6) and highest average temperature (7.6 °C) of the three regions. Western Hudson Bay showed intermediate salinity (average=29.4) and temperature (average=4.4 °C). Sinking fluxes of total pigments (chl a+pheo: 3.37 mg m−2 d−1), diatom-associated carbon (19.8 mg m−2 d−1) and BioSi (50.2 mg m−2 d−1) at 50 m were highest in Hudson Strait. Eastern Hudson Bay showed higher sinking fluxes of total pigments (0.52 mg m−2 d−1), diatom-associated carbon (3.29 mg m−2 d−1) and BioSi (36.6 mg m−2 d−1) compared to western Hudson Bay (0.19, 0.05 and 7.76 mg m−2 d−1, respectively). POC sinking fluxes at 50 m were low and relatively uniform throughout the Hudson Bay system (50.0–76.8 mg C m−2 d−1), but spatial variations in the composition of the sinking organic material were observed. A large part (37–78%) of the total sinking POC was unidentifiable by microscopic observation and was qualified as amorphous detritus. Considering only the identifiable material, the major contributors to the POC sinking flux were intact protist cells in Hudson Strait (28%), fecal pellets in eastern Hudson Bay (52%) and bacteria in western Hudson Bay (17%). A significant depth-related attenuation of the POC sinking fluxes (average loss between 50 and 150 m=32%) and a significant increase in the BioSi:POC ratio (average increase between 50 and 150 m=76%) were observed in Hudson Strait and eastern Hudson Bay. For all other sinking fluxes and composition ratios, we found no statistically significant difference with depth. These results show that during fall, the sinking export of total POC from the euphotic zone remained fairly constant throughout the Hudson Bay system, whereas other components of the organic sinking material (e.g., chl a, BioSi, fecal pellets, protist cells) showed strong spatial variations.  相似文献   

3.
The contents of 31 samples from free-drifting sediment traps deployed in the Gulf of St. Lawrence (GSL) were analyzed for the individual contribution of the different types of particles encountered to the total particulate organic carbon (POC) flux. Two trap models were used in 1993-1994: small traps at 50 m depth and large traps at 50 and 150 m. Total POC fluxes averaged 42 mg C m−2 d−1 for the more reliable large trap and 149 mg C m−2 d−1 for the small trap. The POC fluxes were attributed to different classes of particles based upon microscopically determined particle dimensions and carbon/volume algorithms available in the literature. Fecal pellets, followed by phytoplankton, were the major attributable components, with important contributions by microzooplankton, particularly during the summer of 1994. The mean fluxes for pellets (6 and 60 mg  C m−2 d−1, for the large and small traps, respectively) and phytoplankton (3.2 and 42.9 mg C m−2 d−1) were in the range of those encountered in other areas of moderate primary productivity. Mean zooplankton carbon fluxes (1.8 and 8.5 mg C m−2 d−1, respectively), however, reflect higher than average zooplankton abundances in the GSL. The C fluxes of specific algal groups confirmed the existence of three trophic regimes previously identified from water column studies and numeric cell fluxes: (1) a period when diatoms were dominant during the spring, (2) a longer interval, which was dominated by dinoflagellates at most others times of the year, and (3) a period of transition during summer. Carbon of animal origin dominated the attributable flux, including an important fraction associated with heterotrophic dinoflagellates. The contribution of marine snow to the total flux (estimated as the difference between the total POC flux and the sum of the attributed components) frequently amounted to more than 60%. The true importance of marine snow remains uncertain, however, because the errors associated with each of the measured components accumulate to produce large uncertainties. The methodological problems involved are discussed.  相似文献   

4.
Saronikos Gulf (Greece) practically constitutes the sea border of the metropolitan city of Athens and the alongshore outskirts, and it receives the treated wastes of ∼4 million people from a point source that discharges on the sea bottom at ∼65 m water depth. Total organic carbon (TOC) was measured in 477 seawater samples collected in the Saronikos Gulf, during 10 cruises, from August 2001 to May 2004 and analyzed with the High Temperature Catalytic Oxidation method (HTCO). TOC concentrations ranged from 49 to 198 μmol C L−1 in agreement with other Mediterranean coastal waters. The highest TOC concentrations were found in the upper waters (0–75 m), whereas in the deeper parts of the Gulf (between 100 and 400 m) TOC concentrations were kept constantly low (49–70 μmol C L−1). A general pattern towards higher TOC concentrations during summer was also observed. Calculations of non-refractory (labile+semi-labile) organic material based on a one-dimensional (1D) conceptual model showed that it corresponds to 33% of the bulk TOC during summer and to 27% during winter. Bacterial production (BP) was measured at selected stations of ∼70–80 m depth using the [3H] leucine method. Depth integrated BP values varied from 2.8 to 10.9 mmol m−2 d−1, whereas extraordinary high integrated BP values (126 and 140 mmol m−2 d−1) were observed at the station over the treated sewage outflow. From the turnover time, τ, of the non-refractory TOC by bacteria it was implied that organic matter in the effluents is extremely labile (2–58 days). Moreover, τ values at the other sites showed that during summer non-refractory organic material resisted bacterial degradation (1–8 months), whereas during early spring it was easily degradable (20–50 days). The balance of TOC fluxes for the Inner Gulf for June and September 2003 showed that the Inner Gulf acts as a net producer of TOC during summer. Our results suggest that the presence of the Athens treated sewage outfall does not contribute to the observed summer accumulation of TOC in the Inner Gulf and other causes such as increased bacteria predation and/or nutrient limitation must be responsible.  相似文献   

5.
We investigate sources of both dissolved and particulate organic carbon in the St Lawrence River from its source (the Great Lakes outlet) to its estuary, as well as in two of its tributaries. Special attention is given to seasonal interannual patterns by using data collected on a bi‐monthly basis from mid‐1998 to mid‐2003. δ13C measurements in dissolved inorganic carbon, dissolved organic carbon (DOC) and particulate organic carbon (POC), as well as molar C : N in particulate organic matter (POM), are used to bring insight into the dynamic between aquatic versus terrigenous sources. In addition, 14C activities of DOC were measured at the outlet of the St Lawrence River to its estuary to assess a mean age of the DOC exported to the estuary. In the St Lawrence River itself, aquatically produced POC dominates terrestrially derived POC and is depleted in 13C by approximately 12‰ versus dissolved CO2. In the Ottawa River, the St Lawrence River's most important tributary, the present dataset did not allow for convincing deciphering of POC sources. In a small tributary of the St Lawrence River, aquatically produced POC dominates in summer and terrestrially derived POC dominates in winter. DOC seems to be dominated by terrestrially derived organic matter at all sampling sites, with some influence of DOC derived from aquatically produced POC in summer in the St Lawrence River at the outlet of the Great Lakes and in one of its small tributaries. The overall bulk DOC is relatively recent (14C generally exceeding 100% modern carbon) in the St Lawrence River at its outlet to the estuary, suggesting that it derives mainly from recent organic matter from topsoils in the watershed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
7.
The radionuclides 210Po and 210Pb were examined to trace the cycling of particulate organic carbon (POC) and particulate organic nitrogen (PON) in the Zhubi coral reef lagoon. The net export flux of POC to the open sea is 14 mgC m−2 d−1. However, the net exchange of PON has not yet been observed. On average, the vertical export fluxes in the lagoon of POC and PON, as derived from 210Po/210Pb disequilibria, are 43 mgC m−2 d−1 and 13.8 mgN m−2 d−1, respectively. The deficit of 210Po relative to 210Pb in particulate matter provides evidence for the degradation of particulate organic matter. According to the mass balance budgets, 310 mgC m−2 d−1 and 121 mgN m−2 d−1 were recycled into dissolved fractions. Based on a first-order kinetics model, the degradation rate constants of POC and PON are 0.28 and 0.30 m−1, respectively. Thus, 210Po and 210Pb can quantify the cycling of carbon and nitrogen in this coral lagoon.  相似文献   

8.
The relative abundance of the different picoplankton components (eukaryotic picophytoplankton (Peuk), picocyanobacteria (Pcy) and bacterioplankton), and their relationships with the lake conditions were studied in three types of shallow lakes from the Pampa Plain (Argentina) that differ in their optical properties: clear-vegetated, phytoplankton-turbid and inorganic-turbid. All the selected lakes, but one, are characterized by their different alternative steady state (clear-vegetated and phytoplankton-turbid water phases) following the model proposed by Scheffer et al. (1993).Autotrophic and heterotrophic picoplankton abundances were analyzed seasonally in relation to environmental variables. All the lakes presented high concentrations of total nitrogen (TN) (>229 μg L−1), total phosphorus (TP) (>46 μg L−1) and dissolved organic carbon (DOC) (>13.7 mg L−1). Clear-vegetated lakes were characterized by vertical diffuse PAR (photosynthetic active radiation) attenuation coefficient (kdPAR) lower than 11 m−1, whereas inorganic-turbid lake always showed values higher than 21.1 m−1. The euphotic zone depth (Z1%) was wider in clear-vegetated lakes (40–140 cm) and thinner in the inorganic-turbid (10–20 cm). The phytoplankton-turbid lakes presented a wide range in the values of these variables (kdPAR: 5.2–35.8 m−1; Z1%: 10–90 cm). Phytoplankton chlorophyll-a (Chl-a) strongly differed, ranging from 1.6 to 334.6 μg L−1. Picophytoplankton was mainly represented by phycocianine-rich (PC-rich) Pcy in all cases, dominating over Peuk algae. The total and relative abundances of eukaryotic picophytoplankton, Pcy and bacterioplankton, as well as the size structure of the phytoplankton community differed among the water bodies. In general, clear-vegetated water bodies exhibited similar abiotic characteristics, picophytoplankton/bacterioplankton ratios, and phytoplankton size structure. Contrarily, no clear trend was identified for the group of turbid lakes. The contrasting results obtained for the importance of the picoplankton components in phytoplankton-turbid shallow lakes evidence that the availability of the energetical and nutrient resources cannot be solely considered to predict their relative importance in this type of shallow lake.  相似文献   

9.
Dissolved and particulate organic matter (DOM and POM) have been investigated along a transect between Cherbourg and the Isle of Wight. In addition, the relative contribution of different sources of POM have been assessed by the use of lipid biomarkers (e.g. fatty acids). Seawater samples were collected at two depths (subsurface and above the bottom) at five stations located on the transect during five cruises (from September 1994 to July 1995). Particulate organic carbon (POC) and dissolved organic carbon (DOC) concentrations vary between 30–530 μg l−1 and 0.5–2.7 mg l−1, respectively, for all the cruises. Fluxes of POM and DOM have been estimated at 0.6×1012 g yr−1 and 6.5×1012 g yr−1 of carbon, respectively. General fluxes of water and therefore of DOC and POC are oriented eastward. However, around the Isle of Wight a westward oriented flux exists due to a gyre located in the area. The major DOC and POC fluxes occur in the central part of the Channel where the water column is deepest. Seasonal variations of different sources of POM (algal, bacterial and terrigenous) have been examined for the five cruises. The fresh algal organic fraction is relatively important in September in coastal waters with a predominance of diatom species on the English side, whereas it has a low or undetectable contribution during winter months. The bacterial fraction generally varies in concert with the algal component. It is low during the winter period and more important in bloom or post-bloom conditions, as for example in May. Terrestrial organic matter is restricted to coastal areas in September, and is present at low levels in May and July. Nevertheless, in November and February, terrigenous inputs have been clearly identified for the whole transect even in central waters.  相似文献   

10.
The Sepik River is a major contributor of water, sediment and associated organic loads to the coastal waters of northern New Guinea and the Bismarck Sea. We compare dissolved and particulate organic carbon data from September 1997 during an extremely dry El Nino year with those from 1996, 1999 and 2000 during La Nina wet season discharges. Estimated Sepik River flux of DOC is 3.2×1010 mol yr−1 and POC is 1.1×1011 mol yr−1. The estimates for total river nutrient fluxes to the sea are 1.1×1010 mol yr−1 for nitrogen and 4.6×108 mol yr−1 for phosphorus. The Sepik DOC flux is about equal to that combined from all four major rivers that enter the Gulf of Papua on the south coast of PNG. The Sepik inorganic PIC flux is low (1.4×108 mol yr−1) as the river does not drain carbonate soils. With a narrow continental shelf, and strong coastal currents, much of this exported material is available for long distance transport into the coastal Bismarck Sea and beyond.  相似文献   

11.
The ongoing regression of sea ice cover is expected to significantly affect the fate of organic carbon over the Arctic continental shelves. Long-term moored sediment traps were deployed in 2005–2006 in the Beaufort Sea, Northern Baffin Bay and the Laptev Sea to compare the annual variability of POC fluxes and to evaluate the factors regulating the annual cycle of carbon export over these continental shelves. Annual POC fluxes at 200 m ranged from 1.6 to 5.9 g C m−2 yr−1 with the highest export in Northern Baffin Bay and the lowest export over the Mackenzie Shelf in the Beaufort Sea. Each annual cycle exhibited an increase in POC export a few weeks before, during, or immediately following sea ice melt, but showed different patterns over the remainder of the cycle. Enhanced primary production, discharge of the Lena River, and resuspension events contributed to periods of elevated POC export over the Laptev Sea slope. High POC fluxes in Northern Baffin Bay reflected periods of elevated primary production in the North Water polynya. In the Beaufort Sea sediment resuspension contributed to most of the large export events. Our results suggest that the outer shelf of the Laptev Sea will likely sustain the largest increase in POC export in the next few years due to the large reduction in ice cover and the possible increase in the Lena River discharge. The large differences in forcing among the regions investigated reinforce the importance of monitoring POC fluxes in the different oceanographic regimes that characterize the Arctic shelves to assess the response of the Arctic Ocean carbon cycle to interannual variability and climate change.  相似文献   

12.
As part of the ECOHAB: Florida Program, we studied three large blooms of the harmful bloom forming dinoflagellate Karenia brevis. These blooms formed on the West Florida Shelf during Fall of 2000 off Panama City, and during Fall 2001 and Fall 2002 off the coastline between Tampa Bay and Charlotte Harbor. We suggest that these blooms represent two different stages of development, with the 2000 and 2001 blooms in an active growth or maintenance phase and the 2002 bloom in the early bloom initiation phase. Each bloom was highly productive with vertically integrated primary production values of 0.47–0.61, 0.39–1.33 and 0.65 g C m−2 d−1 for the 2000, 2001 and 2002 K. brevis blooms, respectively. Carbon specific growth rates were low during each of these blooms with values remaining fairly uniform with depth corresponding to generation times of 3–5 days. Nitrogen assimilation by K. brevis was highest during 2001 with values ranging from 0.15 to 2.14 μmol N L−1 d−1 and lower generally for 2000 and 2002 (0.01–0.64 and 0.66–0.76 μmol N L−1 d−1 for 2000 and 2002, respectively). The highest K. brevis cell densities occurred during the 2001 bloom and ranged from 400 to 800 cells mL−1. Cell densities were lower for each of the 2000 and 2002 blooms relative to those for 2001 with densities ranging from 100 to 500 cells mL−1. The 2000 and 2001 blooms were dominated by K. brevis in terms of its contribution to the total chlorophyll a (chl a) pool with K. brevis accounting generally for >70% of the observed chl a. For those populations that were dominated by K. brevis (e.g. 2000 and 2001), phytoplankton C biomass (Cp,0) constituted <30% of the total particulate organic carbon (POC). However, in 2002 when diatoms and K. brevis each contributed about the same to the total chl a, Cp,0 was >72% of the POC. The fraction of the total chl a that could be attributed to K. brevis was most highly correlated with POC, chl a and salinity. Nitrogen assimilation rate and primary production were highly correlated with a greater correlation coefficient than all other comparisons.  相似文献   

13.
在博斯腾湖选取了13个点位,于2012年5、8、10月测定表层和底层水体中的颗粒有机碳、溶解有机碳、颗粒有机氮和叶绿素a含量.结果显示颗粒和溶解有机碳在表层水体中的浓度与底层相近.博斯腾湖水体中颗粒有机碳的季节变化十分明显,其平均浓度从春季(0.64 mg/L)到夏季(0.71 mg/L)变化不大,但在秋季变化十分显著(浓度达1.58 mg/L).其中西北湖区和湖心区颗粒有机碳的季节变化最明显,东部湖区颗粒有机碳的季节变化相对较小.博斯腾湖水体的颗粒有机碳在春、秋两季主要来自外源输入,在夏季受水体中浮游生物的影响较大.博斯腾湖水体中溶解有机碳也具有一定的季节变化,夏季浓度(平均为9.3 mg/L)略低于春、秋两季(平均为10.3 mg/L).溶解有机碳在河口区的季节变化最强,其夏季浓度明显偏低,主要是由于开都河河水的稀释作用.总体上,博斯腾湖水体中溶解有机碳浓度的变化主要受外部因素的影响.  相似文献   

14.
Drifting sediment traps were deployed at 9 stations in May-June (ice-covered conditions) and July-August (ice-free conditions) 2004 in the Chukchi Sea to investigate the variability in export fluxes of biogenic matter in the presence and absence of sea ice cover. Measurements of chlorophyll-a (Chl-a), particulate organic carbon (POC), particulate nitrogen (PN), phytoplankton, zooplankton fecal pellets, and the stable carbon isotope composition (δ13C) of the sinking material were performed along Barrow Canyon (BC) and a parallel shelf-to-basin transect from East Hanna Shoal (EHS) to the Canada Basin. POC export fluxes were similarly high in the presence (378±106 mg C m−2 d−1) and in the absence of ice cover (442±203 mg C m−2 d−1) at the BC stations, while fluxes were significantly higher in the absence (129±98 mg C m−2 d−1) than in the presence of ice cover (44±29 mg C m−2 d−1) at the EHS stations. The C/N ratios and δ13C values of sinking organic particles indicated that POC export fluxes on the Chukchi continental shelf were mostly composed of freshly produced labile material, except at the EHS stations under ice cover where the exported matter was mostly composed of refractory material probably advected into the EHS region. Chl-a fluxes were higher under ice cover than in ice-free water, however, relatively low daily loss rates of Chl-a and similar phytoplankton carbon fluxes in ice-covered and ice-free water suggest the retention of phytoplankton in the upper water column. An increase in fecal pellet carbon fluxes in ice-free water reflected higher grazing pressure in the absence of ice cover. Elevated daily loss rates of POC at the BC stations confirmed other indications that Barrow Canyon is an important area of carbon export to the basin and/or benthos. These results support the conclusion that there are large spatial and temporal variations in export fluxes of biogenic matter on the Chukchi continental shelf, although export fluxes may be similar in the presence and in the absence of ice cover in highly productive regions.  相似文献   

15.
Water draining from a large agricultural catchment of 1 110 km2 in southwest France was sampled over an 18‐month period to determine the temporal variability in suspended sediment (SS) and dissolved (DOC) and particulate organic carbon (POC) transport during flood events, with quantification of fluxes and controlling factors, and to analyze the relationships between discharge and SS, DOC and POC. A total of 15 flood events were analyzed, providing extensive data on SS, POC and DOC during floods. There was high variability in SS, POC and DOC transport during different seasonal floods, with SS varying by event from 513 to 41 750 t; POC from 12 to 748 t and DOC from 9 to 218 t. Overall, 76 and 62% of total fluxes of POC and DOC occurred within 22% of the study period. POC and DOC export from the Save catchment amounted to 3090 t and 1240 t, equivalent to 1·8 t km?2 y?1 and 0·7 t km?2 y?1, respectively. Statistical analyses showed that total precipitation, flood discharge and total water yield were the major factors controlling SS, POC and DOC transport from the catchment. The relationships between SS, POC and DOC and discharge over temporal flood events resulted in different hysteresis patterns, which were used to deduce dissolved and particulate origins. In both clockwise and anticlockwise hysteresis, POC mainly followed the same patterns as discharge and SS. The DOC‐discharge relationship was mainly characterized by alternating clockwise and anticlockwise hysteresis due to dilution effects of water originating from different sources in the whole catchment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Floods have become increasingly important in fluvial export of water, sediment and carbon (C). Using high-frequency sampling, the export of water, sediment and C was examined in the Wuding River catchment on the Chinese Loess Plateau. With groundwater as an important contributor to runoff all year round, floods were relatively less important in the export of water. However, large floods were disproportionately important in exporting sediment and inorganic C (DIC) and organic C (DOC and POC). The three largest floods in each year transported 53.6–97.3 and 41.4–77% of the annual sediment and C fluxes, respectively. An extreme flood in 2017 alone contributed 94.6 and 73.1% of the annual sediment and C fluxes, respectively, in just 7 days, which included 20.3, 92.1 and 35.7% of the annual DOC, POC and DIC fluxes, respectively. A stable carbon isotope (δ13C) analysis of POC indicated that modern soils and C3 plants were its primary source. Furthermore, floods greatly accelerated CO2 degassing due to elevated gas transfer velocity, although stream water CO2 partial pressure (pCO2) exhibited a decreasing trend with flow discharge. Although these results illustrated that increasing runoff diluted pCO2, the timing and magnitude of floods were found to be critical in determining the response of pCO2 to flow dynamics. Low-magnitude floods in the early wet season increased pCO2 because of enhanced organic matter input, while subsequent large floods caused a lower pCO2 due to greatly reduced organic matter supply. Finally, continuous monitoring of a complete flood event showed that the CO2 efflux during the flood (2348 ± 664 mg C m–2 day–1) was three times that under low-flow conditions (808 ± 98 mg C m–2 day–1). Our study suggests that infrequent, heavy storm events, which are predicted to increase under climate change, will greatly alter the transport regimes of sediment and C. © 2020 John Wiley & Sons, Ltd.  相似文献   

18.
Matrix bound phosphine (MBP), a kind of chemically reduced phosphorus, has received limited attention in prevailing modeling of the phosphorus biogeochemical cycle. MBP has been found to occur in marine sediments. MBP in the sediments of the Yellow Sea and its coastal areas was measured by gas chromatography from 2004 to 2007. MBP levels in surface sediments were 0.19–38.24 ng kg−1 in the shelf of the Yellow Sea, 0.34–17.15 ng kg−1 in the Jiaozhou Bay, 2.11–71.79 ng kg−1 in the Sanggou Bay and 0.28–319.32 ng kg−1 in the rivers around the Jiaozhou Bay. High levels of MBP occurred in the northern and middle areas of the Yellow Sea. Obvious seasonal variation of MBP was observed in surface sediments of the Sanggou Bay, with the highest MBP level occurring in summer and the lowest in winter. MBP in surface sediments of the inner Jiaozhou Bay was higher than those in the outer region. MBP levels increased with depth in the top 5–10 cm sediments of the Jiaozhou Bay and on the intertidal flats. Environmental factors such as type of sediments, temperature, organic matter and human activity were found to affect the concentrations and distribution of MBP in marine sediments.  相似文献   

19.
The benthic fluxes (diffusive and with chambers) of dissolved inorganic carbon (DIC), dissolved oxygen (DO) and total alkalinity (TA) have been calculated in summertime in the estuary system formed by the mouths of the Tinto and Odiel rivers (SW of Spain). An increase of DIC in interstitial water with depth was found for all stations showing values of up to 28 mM at a depth of 5 cm. The diffusive fluxes of DIC and TA obtained ranging between 1.8–7.8 and 1.5–7.3 mmol m−2 d−1, respectively. These intervals are in agreement with those found for other coastal systems. Considering the plots of DIC vs. alkalinity (ΔDIC/ΔTA) in the first 30 cm of interstitial water, it was deduced that sulphate reduction and the oxidation of sulphides seem to have special relevance in the sediments of the stations studied. The benthic fluxes of inorganic carbon and DO measured by benthic chambers were variable, presenting elevated values (309–433 mmol DIC m−2 d−1 and 50–120 mmol DO m−2 d−1). The most elevated fluxes of DIC were seen at the stations with high anthropogenic influence (close to populated areas and industrial discharges). A great proportion of these fluxes are due to CaCO3 dissolution processes, which constitute an estimated 49% of total DIC flux. DIC and DO benthic flux quotients were far in excess of unity, indicating the significance processes of anaerobic degradation of organic material at the stations studied.  相似文献   

20.
We have studied bacterial abundance and production in samples from sediment traps deployed for 1 and 100 days in several areas of the shelf and slope regions of the Middle Atlantic Bight, U.S.A. By making a series of assumptions about bacterial growth at the expense of POC in traps, we have estimated that the turnover time of organic particles collected in traps during long deployments is slow (mean 1500 ± 300 days), if only bacterial activity is considered. However the abundance and biomass of bacteria in traps is very high, ranging from 3 to 30 × 1011 cells gC?1, i.e., 0.3 to 3% of the POC is bacterial carbon. Fifteen to 88% of the particles in traps were colonized by bacteria, but usually about half the particles had only 0 to 1 cell attached. Growth of bacteria was observed at all scales relevant to these trap deployments; over periods ranging from hours to weeks, at rates of 0.01 to 0.3 d?1. In spite of slow growth, bacteria appeared to be physiologically active in that [3H]adenine and [3H]thymidine were incorporated more rapidly into RNA and protein than into DNA. Total incorporation rates were high. We conclude that even relatively old (ca. 1 y) POC in sediment traps supports high levels of active bacterial biomass, but that POC decomposition is slow, so that bacteria may not be the principal agents of POC turnover following collection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号