首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 343 毫秒
1.
下边界条件对多年冻土温度场变化数值模拟的影响   总被引:1,自引:1,他引:0  
在气候变暖背景下,北半球多年冻土呈现不同程度的退化趋势,冻土升温、活动层增厚、地下冰消融改变了区域工程地质条件、地形地貌,不仅对寒区环境和工程稳定性造成潜在的威胁,还影响着这些地区的气候、水文和生态过程.因此,准确评估和预估多年冻土热状况的变化具有重要科学和实践意义.现有用于模拟多年冻土热状况的各类模式重点考虑了近地表...  相似文献   

2.
青藏高原多年冻土区是世界上中低纬度多年冻土面积最大的区域,气候变化引起青藏高原多年冻土区年平均地温上升、地下冰融化、多年冻土退化等问题。借助ARCGIS技术手段,通过地下冰计算模型和Stefan公式计算研究区不同气候变化情景模式下的地下冰体积含冰量和活动层厚度变化。结果表明:在未来几十年内多年冻土的分布范围将不会发生显著变化,多年冻土的主要退化形式为地下冰的消融、低温冻土向高温冻土转化;但本世纪末多年冻土将发生大范围的退化。这一过程将引起热融滑塌、热融沉陷等冻土热融灾害。将Nelson热融灾害风险性评价模式进行修正,对研究区灾害风险性进行评估区划。最大的危险区主要分布在西昆仑山南麓、青南山原中部、冈底斯山和念青唐古拉山南麓、喜马拉雅山南麓部分区域,在未来几十年内有加剧的趋势。  相似文献   

3.
王生廷  盛煜  吴吉春  李静  黄龙 《冰川冻土》2020,42(4):1186-1194
多年冻土地下冰作为一种特殊的存在形式, 对高原生态、 冻土环境以及冻土工程建设等都有深刻影响, 但是目前对于青藏高原地下冰储量的研究很少。以祁连山中东部大通河源区为例, 基于源区地貌分类、 冻土分布等研究, 利用源区多年冻土钻孔数据和公路地质勘测资料, 在水平和垂直两个方向上估算了多年冻土层地下冰储量。计算表明: 大通河源区多年冻土层2.5~10.0 m深度范围内地下冰总储量为(11.70±7.24) km3, 单位体积含冰量为(0.396±0.245) m3。其中冰缘作用丘陵和冰缘湖沼平原等地貌区含冰量较高, 而冰缘作用台地、 冲积洪积平原则含冰量较低。在垂向上多年冻土上限附近含冰量最高, 并随深度增大而缓慢减小。随着未来气候变暖、 多年冻土退化以及环境变化, 准确把握多年冻土区地下冰储量和分布特点对生态、 水文地质、 地质灾害预估、 冻土工程建设具有深远意义。  相似文献   

4.
东北北部多年冻土的退化现状及原因分析   总被引:9,自引:4,他引:5  
在全球范围内,我国东北冻土区是受气候变暖和人为活动影响最显著的地区之一.近几十年来,区内冻土退化显著,大兴安岭多年冻土退化主要表现为多年冻土上限下降,温度升高,厚度减薄,融区扩大;多年冻土岛消失及多年冻土南界北移等几个方面.多年冻土退化的主要自然原因归结于气候变暖,特别是冬季变暖,降水和积雪时段和厚度等气候变化因素.以城镇化、重大工程建设为代表的人类活动,已对该区冻土和环境产生深刻影响,导致了多年冻土的快速、显著和大规模退化,但其影响机制的合理解释还需深入研究.  相似文献   

5.
气候变暖对多年冻土区土壤有机碳库的影响   总被引:3,自引:2,他引:1  
马蔷  金会军 《冰川冻土》2020,42(1):91-103
多年冻土区存储了大量土壤有机碳。气候变暖、 多年冻土退化导致其长期封存的有机碳逐渐或快速释放, 进入大气圈或水系统, 改变原有多年冻土区碳循环, 并可能显著加速气候变暖。通过综述气候变暖对多年冻土区碳库的影响研究进展, 主要包括多年冻土碳库储量、 降解机理及变化预测, 研究表明: 北半球多年冻土区的碳储量巨大, 但不确定性很高, 尤其是海底多年冻土和水合物碳库储量的评估; 多年冻土碳库对气候变暖的响应速度受土壤水热特性、 土壤有机质C/N比、 有机碳含量和微生物群落特征等多种环境因素的控制或影响; 目前, 关于北半球多年冻土碳库对气候变暖响应模拟结果说明, 多年冻土退化短期内不会导致经济和生产方面的灾难性后果。但是, 无论是针对多年冻土碳库评估, 还是多年冻土有机碳库对气候变暖的响应模拟研究结果, 都有较大的不确定性。未来多年冻土碳库变化的模拟和预测研究应更多考虑多年冻土快速退化和多年冻土区水合物分解, 如中小尺度热喀斯特的生态环境和碳的源汇效应。准确的多年冻土区有机碳排放模拟可为未来多年冻土碳与气候反馈的预估提供重要支持。  相似文献   

6.
中国东北大兴安岭多年冻土与寒区环境考察和研究进展   总被引:4,自引:1,他引:3  
由于东北地区最近150 a来的显著气候变暖和清朝开禁政策以来强烈的人为活动影响,东北地区冻土和寒区环境已经产生了显著变化.由于社会经济活动日益增多和许多重大工程建设需要,及其寒区水文、生态环境的显著、急速恶化,继20世纪50-60年代大规模经济开发时的冻土研究高潮之后,东北地区冻土和寒区环境问题再次成为国人关注的重要问题.为研究中国-俄罗斯原油管道工程(漠河-大庆段)的气候变化与冻土退化对管道工程地基基础长期稳定性的影响问题,中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室在2007年7-8月组织了"大兴安岭多年冻土与环境"科学考察,考察的主要区域涉及大兴安岭西坡从漠河(不连续多年冻土区)至阿尔山(多年冻土南界和下界附近)以及东坡从漠河、大杨树(零星岛状多年冻土区)至嫩江平原北部大庆附近(季节冻土区).考察中发现多处重要古冻土遗迹和重新研究了乌玛和伊图里河不活动冰楔群,取得了大量第一手资料,以研究第四纪,特别是全新世以来,多年冻土和寒区环境演化和变化.考察过程中,对大兴安岭(漠河-黄岗梁)和长白山的针叶林优势种(兴安松和章子松)树木年轮进行了系统采样,以详细研究小冰期晚期以来的气候和环境变化.考察结果表明: 最近50 a来,受显著气候变暖和强烈人类活动影响,东北多年冻土已经产生显著退化,南界有较大幅度(40~120 km)北移.根据最新预测表明,在未来50~100 a气候变暖情景下,多年冻土将继续退化,但面积上的变化将较慢.这可能归结于东北地区较好的地表覆被条件和丰富的地下冰、雪盖减少,以及可能显著增强的西伯利亚-蒙古冷高压在冬季形成的强大、稳定和广泛的大气逆温层结对兴安-贝加尔型冻土的控制作用.  相似文献   

7.
活动层作为多年冻土区水热物理和力学动态最活跃的近地表层,是供给高寒植物生长所需水分和营养物质的关键区,是多年冻土与大气圈、土壤圈进行能水和物质交换的主要通道,也是微生物活动最频繁和生物地球化学循环最关键的冷生土壤层。近几十年来,在气候变暖和人类活动增强影响下,多年冻土区活动层厚度(ALT)普遍增加,对寒区环境与冻土工程产生了不利影响。本文对影响天然状态下ALT空间分异的宏观地质地理和微观局地因子、ALT的野外测量和模拟计算方法、ALT对气候变化的响应特征进行了回顾,并探讨了ALT变化对高寒生态环境的影响。研究表明:太阳辐射及其重分布和下垫面的复合作用是ALT空间分异的主因,在其他因素和条件一致时,高程多年冻土下界和纬度多年冻土南界附近的ALT较厚;近三十年来ALT积极响应气候变暖,随气温升高而增加,但区域差异明显,中纬高海拔和山地多年冻土区ALT大部分呈显著增加趋势,而高纬富含冰多年冻土区ALT因地下冰融化下沉,一定程度上抵消了因气候变暖而增加的部分。本文还展望了ALT未来研究方向,认为应聚焦ALT精准模拟制图、ALT变化的自适应机制、ALT变化对生物地球化学循环的影响和ALT变化对水...  相似文献   

8.
青藏高原热喀斯特湖分布广泛,近年来在气候变暖背景下快速发展。热喀斯特湖的形成和发展与地下冰含量及气候变化有着密切关系,强烈影响多年冻土的热稳定性。为了更深入理解在气候变暖背景下热喀斯特湖的发展及其对下伏多年冻土的影响,以青藏高原北麓河地区一个典型热喀斯特湖的长期监测数据为资料,发展了耦合大气—湖塘—冻土三个过程要素的一维热传导模型,模拟了四种不同深度热喀斯特湖在气候变暖背景下的发展规律及其对多年冻土的热影响。结果表明:浅湖(<1.0m)在目前稳定气候背景下处于较稳定状态,湖冰能够回冻至湖底,对下伏多年冻土影响较小;较深湖塘(≥1.0m)冬季不能回冻至湖底,湖深不断增加,且底部在50年内将会形成不同深度的融区。随着气候变暖,热喀斯特湖的热效应显著,深度快速增加,较深湖塘的最大湖冰厚度减小,底部多年冻土快速融化形成开放融区。研究将有助于理解气候变化对青藏高原多年冻土区地貌演化及水文过程的影响。  相似文献   

9.
青藏铁路沿线多年冻土分布特征及其对环境变化的响应   总被引:1,自引:0,他引:1  
针对青藏高原特殊的自然气候条件,按照地形、地貌把青藏铁路沿线多年冻土分为15个区段,并分别介绍了各个区段多年冻土特征. 结果表明:在外界环境变化,包括全球气候变暖及工程活动的双重效应下,青藏铁路沿线多年冻土及其存在状态发生了极大变化,这些变化主要包括年平均气温升高、多年冻土退化、热融灾害增加、寒区工程病害不断加剧等. 多年冻土及其存在状态发生变化不但导致生态环境恶化,而且对青藏铁路沿寒区工程的安全运营、维护及发展提出新的挑战.  相似文献   

10.
PROGRESS IN GLOBAL PERMAFROST AND CLIMATE CHANGE STUDIES   总被引:4,自引:0,他引:4  
多年冻土热状态和土壤季节冻融过程的变化对陆地生态系统、地-气间温室气体交换、水文和地貌过程以及工程基础设施的建设和运行都具有很大的影响.活动层和多年冻土及其变化数据信息对于验证在不同尺度的陆面过程、水文、生态和气候模型至关重要.本文就目前全球多年冻土与气候变化研究现状进行概括性总结.在全球变暖的影响下,全球范围内多年冻土发生了不同程度的退化.自20世纪70年代末以来,北极高纬度低温多年冻土温度升高可达3℃.由于受相变潜热的影响,在不连续多年冻土区相对较高温度的多年冻土温度增加幅度较小.受局地条件的影响,个别站点多年冻土温度几乎没有发生变化,甚至有降温的趋势.高纬度多年冻土南界向北移动,而中纬度高山地区多年冻土下界向高海拔移动,导致全球多年冻土面积减少.活动层厚度变化具有较强的区域差异,其深度增加范围从几厘米到1m多不等.新的融区在形成,融区厚度在增加且其范围在扩大.导致全球范围内多年冻土温度升高、活动层厚度增加以及融区的形成主要是受气温升高和积雪条件变化所致.未来多年冻土研究应包括不同时-空尺度上的长期监测和数值模拟、多年冻土变化与大气、水文、生态系统、碳循环以及地貌过程的相互作用等方面.  相似文献   

11.
使用地面观测数据对欧洲空间局(ESA)发布的气候变化倡议(CCI)土壤水分产品进行精度校准,结合青藏高原及其周边降水气象站数据,分析土壤水分动态变化及其与降水的关系.结果表明:(1)校正后的CCI主被动组合产品所反演的青藏高原土壤水分获得了更高的精度,且显示1986~2016年暖季土壤水分在多年冻土区的逐年变化更为稳定...  相似文献   

12.
Climate change has greatly influenced the permafrost regions on the Qinghai–Tibet Plateau (QTP). Most general circulation models (GCMs) project that global warming will continue and the amplitude will amplify during the twenty-first century. Climate change has caused extensive degradation of permafrost, including thickening of the active layer, rising of ground temperature, melting of ground ice, expansion of taliks, and disappearance of sporadic permafrost. The changes in the active layer thickness (ALT) greatly impact the energy balance of the land surface, hydrological cycle, ecosystems and engineering infrastructures in the cold regions. ALT is affected by climatic, geographic and geological factors. A model based on Kudryavtsev’s formulas is used to study the potential changes of ALT in the permafrost regions on the QTP. Maps of ALT for the year 2049 and 2099 on the QTP are projected under GCM scenarios. Results indicate that ALT will increase with the rising air temperature. ALT may increase by 0.1–0.7 m for the year 2049 and 0.3–1.2 m for the year 2099. The average increment of ALT is 0.8 m with the largest increment of 1.2 m under the A1F1 scenario and 0.4 m with the largest increment of 0.6 m under the B1 scenario during the twenty-first century. ALT changes significantly in sporadic permafrost regions, while in the continuous permafrost regions of the inland plateau ALT change is relatively smaller. The largest increment of ALT occurs in the northeastern and southwestern plateaus under both scenarios because of higher ground temperatures and lower soil moisture content in these regions.  相似文献   

13.
冯晓琳  张艳林  常晓丽 《冰川冻土》2021,43(5):1468-1479
大兴安岭北部是我国唯一的中高纬度多年冻土区,其水热特征分析对陆气能量交换、生态系统和气候变化等研究有重要意义。基于2011—2020年期间对大兴安岭森林生态站附近的湿地多年冻土开展的气温和0~2 m地温和土壤含水量数据,对大兴安岭湿地多年冻土活动层的水热特征进行了分析。结果表明:湿地多年冻土活动层内地温的变幅随深度减小,且具有滞后性。融化期地表温度高于深层地温,冻结期相反。2012年、2013年、2019年和2020年的平均融化速率分别为0.49、0.61、0.47和0.56 cm·d-1,向上平均冻结速率分别为1.34、2.12、2.58和1.65 cm·d-1。向下平均冻结速率分别为1.69、1.02、3.32和1.00 cm·d-1,最大融化深度分别为78.73、85.65、66.22和74.94 cm。2012年5月—2013年5月期间,土壤未冻水含量随地温变化的拟合关系较好,相关系数大于0.90,且深层拟合效果优于表层。融化期土壤水分变化幅度大,与地温的相关性差,随深度增加相关性减弱。湿地充足的水分为多年冻土的双向冻结提供了条件。研究成果可为大兴安岭湿地多年冻土区的冻融循环、水热耦合机理和模拟研究提供数据基础和理论依据。  相似文献   

14.
吴吉春  盛煜 《冰川冻土》2021,43(2):453-462
冻胀丘是土层中水分向冻结锋面大量迁移集聚,并且冻结膨胀使地面隆起呈丘状的一类冰缘地貌。冻胀丘的本质特征是存在纯冰核或高含冰地层,冻胀丘地表的隆起高度即代表了地下冰层的累计厚度,在工程建设中一般采用避让措施。在我国冻土区公路建设中,过去尚未遇到道路穿越冻胀丘的先例,正在建设中的青海省共和-玉树高速公路(简称共玉高速)在玛多县多格茸盆地横跨几个冻胀丘,对公路建成以后安全运营造成潜在威胁。以共玉高速建设里程K430+070处道路所跨的冻胀丘为例,基于地温监测数据和冻胀丘钻探资料,探讨公路建设对冻胀丘下覆冰层的影响及由此带来的路基稳定性问题。监测发现目前路基下多年冻土上限已经下降至冻胀丘高含冰地层位置,由于沥青路面的强吸热性,未来冻胀丘路段将发生持续沉降。如果多年冻土完全融化,该段路基有可能发展成热融湖塘。  相似文献   

15.
土楔和冰楔假形及其古气候意义   总被引:1,自引:0,他引:1  
由于土楔及冰楔所处冻土的含冰状况不同,二者对冻土退化的响应不同。土楔的形状及大小乃至其中的充填物可以完整地保存下来,而冰楔在融化过程中经受强烈变形,其原形状很难保存下来,以至无法辨认。已报道的冰楔假形中,有相当部分可能是原生土脉,甚至是活动层土楔。冰楔在多年冻土环境下生长,其假形可以指示古冻土曾存在过。但它与温度之间没有简单的对应关系,因为楔形构造的形成是地-气综合因素相互作用之结果。土楔可以是原生的,也可以是次生的,它与多年冻土环境并无必然联系。  相似文献   

16.
地温年变化深度的准确判断对于多年冻土发育特征评估、寒区冻土模式下边界深度的确定具有重要意义.通过对青藏高原地区典型钻孔地温数据进行分析,初步揭示了多年冻土地温年变化深度的变化规律及其影响因素,并提出一种简化了地表和活动层状态影响的地温年变化深度估算方法.结果表明:研究区低温冻土的地温年变化深度平均值比高温冻土大4.6 m,随着冻土温度升高,地温年变化深度基本上呈减小趋势,部分低温冻土钻孔由于土层含水率过高导致地温年变化深度相对较小;由于活动层水热动态和冻融过程的影响,地温年变化深度与浅层(0.5 m)温度年较差相关性不显著,而与多年冻土上限附近温度年较差的大小呈显著正相关关系;地层介质的热扩散率差异是导致地温年变化深度区域差异和变化的主要原因,土层含水率、温度、质地以及水的相态是影响地层热物理性质重要因素.  相似文献   

17.
深上限-退化型多年冻土路基变形特征分析   总被引:1,自引:0,他引:1  
袁堃  章金钊  朱东鹏 《岩土力学》2013,34(12):3543-3548
为了研究深上限-退化型多年冻土路基变形特点,基于青藏公路多年冻土路基地温和沉降现场监测资料,通过分析西大滩、唐古拉山北坡以及唐古拉山南坡路段的土质、冻土含冰量、冻土地温以及路基沉降变形数据,对冻土上限变化过程与路基沉降特点进行了研究,同时对沱沱河和清水河地区冻土路基分层沉降观测结果进行了分析。结果表明,土质和含冰量对退化型冻土路基的沉降变形影响较大,深冻土层的融化对路基沉降变形影响较小,退化型冻土路基的沉降变形主要发生在退化后的冻土层中,退化冻土层在冻融循环过程中,需要较长时间才能完成固结。对于冻土含冰量为少冰、多冰的稳定路段,退化冻土路基年平均沉降速度约为3.9~5.6 mm/a,路基沉降量极小;对于含冰量较高且土质以粉黏性颗粒为主的不稳定路段,路基沉降速度具有持续性和无减缓性的特点,路基年平均沉降量达到0.03 m/a,路基变形表现为整体均匀沉降,横向差异沉降量较小。  相似文献   

18.
青藏高原坡面冻土土壤水分空间变异特性   总被引:2,自引:0,他引:2       下载免费PDF全文
为深入揭示坡面冻土水分运移规律及其主要影响因子,以青藏高原巴颜喀拉山北坡为例,结合冻融变化过程,研究不同地形条件冻土土壤水分空间变异特征,利用分类回归树模型(CART)和典范对应分析(CCA)识别影响坡面冻土土壤水分空间异质性的主控因子及其相互作用关系。研究结果表明:①受坡面地形与冻融过程影响,冻结期坡面冻土土壤水分侧向流动减弱,以垂直迁移为主,上坡位含量高于下坡位,反之,融化期上坡位含量则低于下坡位。②影响坡面冻土土壤水分的主要环境因子为高程、土壤质地、土壤温度和植被覆盖度,但在不同冻融阶段下其影响因子存在差异,在冻结状态下主要因子为高程、土壤质地和土壤温度,其相对贡献率分别达到19.97%、19.45%和9.56%;在融化阶段下主要因子为高程、植被覆盖度和土壤质地,其相对贡献率分别为37.4%、14.9%和10.7%。③ 0~20 cm浅层深度上影响坡面冻土土壤水分的主要因素为坡度、高程和植被覆盖度,其相关系数分别高达0.941 2、0.903 9和0.563 1;中下层深度上其主要影响因素较为复杂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号