共查询到20条相似文献,搜索用时 14 毫秒
1.
综述了近年来人们对磁浮现与耀斑,暗条,CME等太阳表面磁活动的相关关系的研究进展。概述了磁浮现的一些观测特性和理论研究现状。最后提出了今后对磁浮现做进一步研究工作的一些设想。 相似文献
2.
We analyse data from Hinode spacecraft taken over two 54-minute periods during the emergence of AR 11024. We focus on small-scale portions within the
observed solar active region and discover the appearance of very distinctive small-scale and short-lived dark features in
Ca ii H chromospheric filtergrams and Stokes I images. The features appear in regions with close-to-zero longitudinal magnetic field, and are observed to increase in length
before they eventually disappear. Energy release in the low chromospheric line is detected while the dark features are fading.
Three complete series of these events are detected with remarkably similar properties, i.e. lifetime of ≈ 12 min, maximum length and area of 2 – 4 Mm and 1.6 – 4 Mm2, respectively, and all with associated brightenings. In time series of magnetograms a diverging bipolar configuration is
observed accompanying the appearance of the dark features and the brightenings. The observed phenomena are explained as evidencing
elementary flux emergence in the solar atmosphere, i.e. small-scale arch filament systems rising up from the photosphere to the lower chromosphere with a length scale of a few solar
granules. Brightenings are explained as being the signatures of chromospheric heating triggered by reconnection of the rising
loops (once they have reached chromospheric heights) with pre-existing magnetic fields, as well as being due to reconnection/cancellation
events in U-loop segments of emerging serpentine fields. The characteristic length scale, area and lifetime of these elementary
flux emergence events agree well with those of the serpentine field observed in emerging active regions. We study the temporal
evolution and dynamics of the events and compare them with the emergence of magnetic loops detected in quiet Sun regions and
serpentine flux emergence signatures in active regions. The physical processes of the emergence of granular-scale magnetic
loops seem to be the same in the quiet Sun and active regions. The difference is the reduced chromospheric emission in the
quiet Sun attributed to the fact that loops are emerging in a region of lower ambient magnetic field density, making interactions
and reconnection less likely to occur. Incorporating the novel features of granular-scale flux emergence presented in this
study, we advance the scenario for serpentine flux emergence. 相似文献
3.
It is well known that magnetic activity on the Sun modulates from one cycle to the next. The most striking occurrence of this is called a grand minimum where magnetic activity all but disappears. The latest grand minimum occurred between the years 1645 and 1715 and is called the Maunder minimum. In this paper magnetic flux transport simulations are used to consider what type of surface magnetic field configurations may be produced both during and after a grand minimum depending on how the grand minimum occurs. It is shown that the surface configurations during and after a grand minimum strongly depend on the phase of the cycle in which the grand minimum starts and whether it lasts for an odd or even number of cycles. If the grand minimum starts around cycle minimum then a significant amount of large-scale magnetic flux may persist on the Sun at high latitudes during the grand minimum. In contrast, if it starts at cycle maximum during the grand minimum it is possible for there to be essentially zero large-scale magnetic flux over the entire surface of the Sun. It is shown that for a single grand minimum event the reversal of the polar fields at the presently observed time in the solar cycle is only reproduced if the event starts at cycle minimum and extends over an even number of cycles. In contrast, if the grand minimum runs for an odd number of cycles it is possible for there to be no reversal of the polar fields or for the reversals to occur at times inconsistent with our present understanding of the solar cycle. Consequences of the assumptions made in the modelling are discussed and the significance of the simulations for direct modelling of events such as the Maunder minimum are considered. 相似文献
4.
In this paper the origin and evolution of the Sun's open magnetic flux is considered by conducting magnetic flux transport simulations over many solar cycles. The simulations include the effects of differential rotation, meridional flow and supergranular diffusion on the radial magnetic field at the surface of the Sun as new magnetic bipoles emerge and are transported poleward. In each cycle the emergence of roughly 2100 bipoles is considered. The net open flux produced by the surface distribution is calculated by constructing potential coronal fields with a source surface from the surface distribution at regular intervals. In the simulations the net open magnetic flux closely follows the total dipole component at the source surface and evolves independently from the surface flux. The behaviour of the open flux is highly dependent on meridional flow and many observed features are reproduced by the model. However, when meridional flow is present at observed values the maximum value of the open flux occurs at cycle minimum when the polar caps it helps produce are the strongest. This is inconsistent with observations by Lockwood, Stamper and Wild (1999) and Wang, Sheeley, and Lean (2000) who find the open flux peaking 1–2 years after cycle maximum. Only in unrealistic simulations where meridional flow is much smaller than diffusion does a maximum in open flux consistent with observations occur. It is therefore deduced that there is no realistic parameter range of the flux transport variables that can produce the correct magnitude variation in open flux under the present approximations. As a result the present standard model does not contain the correct physics to describe the evolution of the Sun's open magnetic flux over an entire solar cycle. Future possible improvements in modeling are suggested. 相似文献
5.
Using the data on magnetic field maps and continuum intensity for Solar Cycles 23 and 24,we explored 100 active regions (ARs) that produced M5.0 or stronger flares.We focus on the presence/absence of the emergence of magnetic flux in these ARs 2–3 days before the strong flare onset.We found that 29 ARs in the sample emerged monotonically amidst quiet-Sun.A major emergence of a new magnetic flux within a pre-existing AR yielding the formation of a complex flare-productive configuration was observ... 相似文献
6.
We report on realistic simulations of solar surface convection that are essentially parameter-free, but include detailed physics in the equation of state and radiative energy exchange. The simulation results are compared quantitatively with observations. Excellent agreement is obtained for the distribution of the emergent continuum intensity, the profiles of weak photospheric lines, the p-mode frequencies, the asymmetrical shape of the mode velocity and intensity spectra, the p-mode excitation rate, and the depth of the convection zone. We describe how solar convection is non-local. It is driven from a thin surface thermal boundary layer where radiative cooling produces low entropy gas which forms the cores of the downdrafts in which most of the buoyancy work occurs. Turbulence and vorticity are mostly confined to the intergranular lanes and underlying downdrafts. Finally, we present some preliminary results on magneto-convection. 相似文献
7.
The Solar Wind Energy Flux 总被引:1,自引:0,他引:1
The solar-wind energy flux measured near the Ecliptic is known to be independent of the solar-wind speed. Using plasma data from Helios, Ulysses, and Wind covering a large range of latitudes and time, we show that the solar-wind energy flux is independent of the solar-wind speed and latitude within 10?%, and that this quantity varies weakly over the solar cycle. In other words the energy flux appears as a global solar constant. We also show that the very high-speed solar wind (V SW>700?km?s?1) has the same mean energy flux as the slower wind (V SW<700?km?s?1), but with a different histogram. We use this result to deduce a relation between the solar-wind speed and density, which formalizes the anti-correlation between these quantities. 相似文献
8.
We analyze the multiwavelength observations of an M2.9/1N flare that occurred in the active region (AR) NOAA 11112 in the vicinity of a huge filament system on 16 October 2010. SDO/HMI magnetograms reveal the emergence of a bipole (within the existing AR) 50 hours prior to the flare event. During the emergence, both the positive and negative sunspots in the bipole show translational as well as rotational motion. The positive-polarity sunspot shows significant motion/rotation in the south-westward/clockwise direction, and we see continuously pushing/sliding of the surrounding opposite-polarity field region. On the other hand, the negative-polarity sunspot moves/rotates in the westward/anticlockwise direction. The positive-polarity sunspot rotates ≈?70° within 30 hours, whereas the one with negative polarity rotates ≈?20° within 10 hours. SDO/AIA 94 Å EUV images show the emergence of a flux tube in the corona, consistent with the emergence of the bipole in HMI. The footpoints of the flux tube were anchored in the emerging bipole. The initial brightening starts at one of the footpoints (western) of the emerging loop system, where the positive-polarity sunspot pushes/slides towards a nearby negative-polarity field region. A high speed plasmoid ejection (speed ≈?1197 km?s?1) was observed during the impulsive phase of the flare, which suggests magnetic reconnection of the emerging positive-polarity sunspot with the surrounding opposite-polarity field region. The entire AR shows positive-helicity injection before the flare event. Moreover, the newly emerging bipole reveals the signature of a negative (left-handed) helicity. These observations provide unique evidence of the emergence of twisted flux tubes from below the photosphere to coronal heights, triggering a flare mainly due to the interaction between the emerging positive-polarity sunspot and a nearby negative-polarity sunspot by the shearing motion of the emerging positive sunspot towards the negative one. Our observations also strongly support the idea that the rotation can most likely be attributed to the emergence of twisted magnetic fields, as proposed by recent models. 相似文献
9.
We study how active-region-scale flux tubes rise buoyantly from the base of the convection zone to near the solar surface by embedding a thin flux tube model in a rotating spherical shell of solar-like turbulent convection. These toroidal flux tubes that we simulate range in magnetic field strength from 15 kG to 100 kG at initial latitudes of 1° to 40° in both hemispheres. This article expands upon Weber, Fan, and Miesch (Astrophys. J. 741, 11, 2011) (Article 1) with the inclusion of tubes with magnetic flux of 1020 Mx and 1021 Mx, and more simulations of the previously investigated case of 1022 Mx, sampling more convective flows than the previous article, greatly improving statistics. Observed properties of active regions are compared to properties of the simulated emerging flux tubes, including: the tilt of active regions in accordance with Joy’s Law as in Article 1, and in addition the scatter of tilt angles about the Joy’s Law trend, the most commonly occurring tilt angle, the rotation rate of the emerging loops with respect to the surrounding plasma, and the nature of the magnetic field at the flux tube apex. We discuss how these diagnostic properties constrain the initial field strength of the active-region flux tubes at the bottom of the solar convection zone, and suggest that flux tubes of initial magnetic field strengths of ≥?40 kG are good candidates for the progenitors of large (1021 Mx to 1022 Mx) solar active regions, which agrees with the results from Article 1 for flux tubes of 1022 Mx. With the addition of more magnetic flux values and more simulations, we find that for all magnetic field strengths, the emerging tubes show a positive Joy’s Law trend, and that this trend does not show a statistically significant dependence on the magnetic flux. 相似文献
10.
S. Vargas Domínguez D. MacTaggart L. Green L. van Driel-Gesztelyi A. W. Hood 《Solar physics》2012,278(1):33-45
Recent studies of NOAA active region 10953, by Okamoto et al. (Astrophys. J. Lett.
673, 215, 2008; Astrophys. J.
697, 913, 2009), have interpreted photospheric observations of changing widths of the polarities and reversal of the horizontal magnetic
field component as signatures of the emergence of a twisted flux tube within the active region and along its internal polarity
inversion line (PIL). A filament is observed along the PIL and the active region is assumed to have an arcade structure. To
investigate this scenario, MacTaggart and Hood (Astrophys. J. Lett.
716, 219, 2010) constructed a dynamic flux emergence model of a twisted cylinder emerging into an overlying arcade. The photospheric signatures
observed by Okamoto et al. (2008, 2009) are present in the model although their underlying physical mechanisms differ. The model also produces two additional signatures
that can be verified by the observations. The first is an increase in the unsigned magnetic flux in the photosphere at either
side of the PIL. The second is the behaviour of characteristic photospheric flow profiles associated with twisted flux tube
emergence. We look for these two signatures in AR 10953 and find negative results for the emergence of a twisted flux tube
along the PIL. Instead, we interpret the photospheric behaviour along the PIL to be indicative of photospheric magnetic cancellation
driven by flows from the dominant sunspot. Although we argue against flux emergence within this particular region, the work
demonstrates the important relationship between theory and observations for the successful discovery and interpretation of
signatures of flux emergence. 相似文献
11.
Rotational Modulation of Microwave Solar Flux 总被引:1,自引:0,他引:1
Time series data of 10.7 cm solar flux for one solar cycle (1985–1995 years) was processed through autocorrelation. Rotation modulation with varying persistence and period was quite evident. The persistence of modulation seems to have no relation with sunspot numbers. The persistence of modulation is more noticeable during 1985–1986, 1989–1990, and 1990–1991. In other years the modulation is seen, but its persistence is less. The sidereal rotation period varies from 24.07 days to 26.44 days with no systematic relation with sunspot numbers. The results indicate that the solar corona rotates slightly faster than photospheric features. The solar flux was split into two parts, i.e., background emission which remains unaffected by solar rotation and the localized emission which produces the observed rotational modulation. Both these parts show a direct relation with the sunspot numbers. The magnitude of localized emission almost diminishes during the period of low sunspot number, whereas background emission remains at a 33% level even when almost no sunspots may be present. The localized regions appear to shift on the solar surface in heliolongitudes. 相似文献
12.
To model irregularities in the magnetic structure of solar flux ropes or in interplanetary magnetic clouds, we propose the following approach. A local irregularity in the form of a compact toroid is added into a cylindrical linear force-free magnetic structure. The radius of the cylinder and the small radius of the toroid are the same, since the force-free parameter α is constant, that is, we have in total a linear force-free configuration, too. Meanwhile, the large radius of the toroid can be smaller. The effect of such modeling depends on the aspect ratio of the compact toroid, its location and orientation, and on its magnetic field magnitude in comparison with that of the cylinder. 相似文献
13.
We present in this paper a statistical study aimed at understanding the possible relationship between surface magnetic field
variation and CME initiation. The three samples studied comprise 189 CME-source regions, 46 active regions, and 15 newly emerging
active regions. Both large-scale and small-scale variations of longitudinal magnetic fields of these regions are studied.
To quantitatively study these variations, three physical quantities are calculated: the average total magnetic flux (ATF),
the flux variation rate (FVR), and the normalized flux variation rate (NFVR). Our results show that 60% of the CME-source
regions are found to have magnetic flux increases during 12 hours before CME eruptions and 40% are found to have magnetic
flux decreases. The NFVR of CME-source regions are found to be statistically identical to those of active regions, averaged
over 111 hours, and significantly smaller than those of newly emerging active regions. In addition 91% of the CME-source regions
are found to have small-scale flux emergence, whereas small-scale flux emergences are also easily identified in active regions
during periods with no solar surface activity. Our study suggests that the relationship between flux emergence and CME eruption
is complex and the appearance of flux emergence alone is not unique for the initiation of CME eruption. 相似文献
14.
In this paper we report an analysis of the solar magnetic fluxes estimated in the period 1971–1998. We applied the wavelet
technique to find the significant periodicities of these series. We concentrate particularly in the mid-term quasi-periodicities
(1–2 years). The mid-term periodicity of 1.7 year is the dominant fluctuation for all the types of fluxes analyzed (total,
closed, open, low and high latitude open fluxes) and has a strong tendency to appear during the descending phase of solar
activity. The mid-term fluctuation of 1 year is significantly present in total and closed fluxes, but it is less important
in open fluxes. It is recognizable in the high latitude open flux, but it is absent in the low latitude open flux. Due to
the uncertainties involved in estimating the exact period of the quasi-annual peak, this component may not be different from
the previously-reported 1.3 year periodicity. The high frequency fluctuations of all the fluxes but the high latitude open
flux are in phase with the 11 years solar cycle. The high latitude flux tends to be present all the time, showing that along
the cycle both the low latitude bipolar active regions and the polar coronal holes regulate this flux. These findings rule
out the possibility of a more basic periodicity different from the 11 years cycle. 相似文献
15.
Magnetic flux synoptic charts are critical for a reliable modeling of the corona and heliosphere. Until now, however, these charts were provided without uncertainty estimates. The uncertainties are due to instrumental noise in the measurements and to the spatial variance of the magnetic flux distribution that contributes to each bin in the synoptic chart. We describe here a simple method to compute synoptic magnetic flux maps and their corresponding magnetic flux spatial variance charts that can be used to estimate the uncertainty in the results of coronal models. We have tested this approach by computing a potential-field source-surface model of the coronal field for a Monte Carlo simulation of Carrington synoptic magnetic flux maps generated from the variance map. We show that these uncertainties affect both the locations of source-surface neutral lines and the distributions of coronal holes in the models. 相似文献
16.
The current study aims at quantifying the flux distributions of solar intranetwork (IN) magnetic field based on the data taken in four quiet and two enhanced network areas with the Narrow-band Filter Imager of the Solar Optical Telescope on board the Hinode satellite. More than 14000 IN elements and 3000 NT elements were visually identified. They exhibit a flux distribution function with a peak at 1?–?3×1016 Mx (maxwell) and 2?–?3×1017 Mx, respectively. We found that the IN elements contribute approximately to 52 % of the total flux and an average flux density of 12.4 gauss of the quiet region at any given time. By taking the lifetime of IN elements of about 3 min (Zhou et al., Solar Phys. 267, 63, 2010) into account, the IN fields are estimated to have total contributions to the solar magnetic flux up to 3.8×1026 Mx per day. No fundamental distinction can be identified in IN fields between the quiet and enhanced network areas. 相似文献
17.
介绍了低频射电干涉阵的发展情况、研究领域,讨论了国际上的LOFAR、LWA和MWA等低频射电项目.借鉴当今的低频射电项目,结合云南的地理和太阳射电优势,设想在云南省内构建一个太阳低频射电干涉阵,观测频率在30 MHz~250 MHz范围内,文中仿真了太阳低频射电干涉阵(4台站),比较和分析了通过优化算法得到的阵列的UV覆盖、脏束(Dirty beam);讨论了低频射电干涉阵的观测模式、射电干扰、低频射电成像等问题;分析低频射电阵在观测太阳爆发性活动产生的日冕物质抛射(Coronal Mass Ejections,CME)、耀斑、射电爆发的可能性;通过上述的仿真和分析构建太阳低频射电干涉阵面临的问题,可以为今后建立阵列提供依据. 相似文献
18.
Numerical MHD simulations of 3D reconnection events in the solar corona have improved enormously over the last few years, not only in resolution, but also in their complexity, enabling more and more realistic modeling. Various ways to obtain the initial magnetic field, different forms of solar atmospheric models as well as diverse driving speeds and patterns have been employed. This study considers differences between simulations with stratified and non-stratified solar atmospheres, addresses the influence of the driving speed on the plasma flow and energetics, and provides quantitative formulas for mapping electric fields and dissipation levels obtained in numerical simulations to the corresponding solar quantities. The simulations start out from a potential magnetic field containing a null-point, obtained from a Solar and Heliospheric Observatory (SOHO) Michelson Doppler Imager (MDI) magnetogram magnetogram extrapolation approximately 8?hours before a C-class flare was observed. The magnetic field is stressed with a boundary motion pattern similar to?–?although simpler than?–?horizontal motions observed by SOHO during the period preceding the flare. The general behavior is nearly independent of the driving speed, and is also very similar in stratified and non-stratified models, provided only that the boundary motions are slow enough. The boundary motions cause a build-up of current sheets, mainly in the fan-plane of the magnetic null-point, but do not result in a flare-like energy release. The additional free energy required for the flare could have been partly present in non-potential form at the initial state, with subsequent additions from magnetic flux emergence or from components of the boundary motion that were not represented by the idealized driving pattern. 相似文献
19.
The solar proton event (SPE) may become a serious threat to the cosmonautical activities of human beings, so the prediction of the flux of solar protons within a certain period has important guiding significance for the projection of the anti-radiation solidification of space vehicles. On the basis of a statistical analysis of the data of SPEs in the 20th to 23rd cycles of solar activity, a new model of solar proton fluxes with E > 10 MeV and E > 30 MeV is established. In comparison with the JPL model, which is frequently adopted in the present aerospace engineering, the influence factor of solar activity on the occurrence of proton events is introduced, and it can be used to estimate the proton fluxes under various levels of solar activity. The results can better match the characteristics of the distribution of proton events. 相似文献