首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Late Quaternary humidity changes resulted in substantial modifications of the land surface characteristics in the Altiplano of the Atacama Desert, central Andes. Reconstructions of surface albedo, top-of-atmosphere (TOA) albedo, and short-wave net radiation in the Andes of northern Chile for 20, 14, 10, 7 and 0 ka suggest that surface and TOA albedo increased substantially during periods of relatively humid environmental conditions (i.e., with large palaeolakes, glaciers and dense vegetation). The decrease of summer shortwave net radiation and seasonality during the late-glacial/early Holocene humid phase (14 to 10 ka) due to Earth’s surface and atmospheric characteristics added to the effect of orbitally driven negative deviations of Southern Hemisphere austral summer insolation and minimum seasonality at 20 °S. Therefore, in situ radiative forcing is, in contrast to the Northern Hemisphere tropics, not a suitable explanation for enhanced convective precipitation and, ultimately, humid climatic conditions. Our results suggest that late Quaternary humidity changes on the Altiplano reflect a collective response to (1) environmental changes in the source area of the moisture (e.g., re-expansion of the rain forest and increased release of latent heat over Amazonia and the Chaco, warm sea surface temperatures in the E Pacific) and, (2) large-scale circulation patterns and wave structures in the upper troposphere (strength and position of the Bolivian High, divergent flow stimulating convection over the Altiplano), or that they even reflect a response to (3) interhemispherical teleconnections. Received: 6 October 1997 / Accepted: 20 May 1998  相似文献   

2.
Gao2008、Crowley2013和Sigl2015火山强迫资料,均基于极地冰芯重建.由于每组重建使用的冰芯数据和分析方法等不同,因此结果存在差异,从而影响气候模式应用.文中详细梳理三组火山强迫资料在原始冰芯数据、信号识别提取和沉积通量计算等方面的差异;介绍重建中涉及的对未知火山事件发生季节、纬度及从极地硫酸盐沉积...  相似文献   

3.
4.
5.
6.
The possibility of estimating the equilibrium climate sensitivity of the earth-system from observations following explosive volcanic eruptions is assessed in the context of a perfect model study. Two modern climate models (the CCCma CGCM3 and the NCAR CCSM2) with different equilibrium climate sensitivities are employed in the investigation. The models are perturbed with the same transient volcano-like forcing and the responses analysed to infer climate sensitivities. For volcano-like forcing the global mean surface temperature responses of the two models are very similar, despite their differing equilibrium climate sensitivities, indicating that climate sensitivity cannot be inferred from the temperature record alone even if the forcing is known. Equilibrium climate sensitivities can be reasonably determined only if both the forcing and the change in heat storage in the system are known very accurately. The geographic patterns of clear-sky atmosphere/surface and cloud feedbacks are similar for both the transient volcano-like and near-equilibrium constant forcing simulations showing that, to a considerable extent, the same feedback processes are invoked, and determine the climate sensitivity, in both cases.  相似文献   

7.
Motivated by findings that major components of so-called cloud ??feedbacks?? are best understood as rapid responses to CO2 forcing (Gregory and Webb in J Clim 21:58?C71, 2008), the top of atmosphere (TOA) radiative effects from forcing, and the subsequent responses to global surface temperature changes from all ??atmospheric feedbacks?? (water vapour, lapse rate, surface albedo, ??surface temperature?? and cloud) are examined in detail in a General Circulation Model. Two approaches are used: applying regressions to experiments as they approach equilibrium, and equilibrium experiments forced separately by CO2 and patterned sea surface temperature perturbations alone. Results are analysed using the partial radiative perturbation (??PRP??) technique. In common with Gregory and Webb (J Clim 21:58?C71, 2008) a strong positive addition to ??forcing?? is found in the short wave (SW) from clouds. There is little evidence, however, of significant global scale rapid responses from long wave (LW) cloud, nor from surface albedo, SW water vapour or ??surface temperature??. These responses may be well understood to first order as classical ??feedbacks????i.e. as a function of global mean temperature alone and linearly related to it. Linear regression provides some evidence of a small rapid negative response in the LW from water vapour, related largely to decreased relative humidity (RH), but the response here, too, is dwarfed by subsequent response to warming. The large rapid SW cloud response is related to cloud fraction changes??and not optical properties??resulting from small cloud decreases ranging from the tropical mid troposphere to the mid latitude lower troposphere, in turn associated with decreased lower tropospheric RH. These regions correspond with levels of enhanced heating rates and increased temperatures from the CO2 increase. The pattern of SW cloud fraction response to SST changes differs quite markedly to this, with large positive radiation responses originating in the upper troposphere, positive contributions in the lowest levels and patterns of positive/negative contributions in mid latitude low levels. Overall SW cloud feedback was diagnosed as negative, due to the substantial negative SW feedback in cloud optical properties more than offsetting these. This study therefore suggests the rapid response to CO2 forcing is (apart from a possible small negative response from LW water vapour) essentially confined to cloud fraction changes affecting SW radiation, and further that significant feedbacks with temperature occur in all cloud components (including this one), and indeed in all other classically understood ??feedbacks??.  相似文献   

8.
Although there is a strong policy interest in the impacts of climate change corresponding to different degrees of climate change, there is so far little consistent empirical evidence of the relationship between climate forcing and impact. This is because the vast majority of impact assessments use emissions-based scenarios with associated socio-economic assumptions, and it is not feasible to infer impacts at other temperature changes by interpolation. This paper presents an assessment of the global-scale impacts of climate change in 2050 corresponding to defined increases in global mean temperature, using spatially-explicit impacts models representing impacts in the water resources, river flooding, coastal, agriculture, ecosystem and built environment sectors. Pattern-scaling is used to construct climate scenarios associated with specific changes in global mean surface temperature, and a relationship between temperature and sea level used to construct sea level rise scenarios. Climate scenarios are constructed from 21 climate models to give an indication of the uncertainty between forcing and response. The analysis shows that there is considerable uncertainty in the impacts associated with a given increase in global mean temperature, due largely to uncertainty in the projected regional change in precipitation. This has important policy implications. There is evidence for some sectors of a non-linear relationship between global mean temperature change and impact, due to the changing relative importance of temperature and precipitation change. In the socio-economic sectors considered here, the relationships are reasonably consistent between socio-economic scenarios if impacts are expressed in proportional terms, but there can be large differences in absolute terms. There are a number of caveats with the approach, including the use of pattern-scaling to construct scenarios, the use of one impacts model per sector, and the sensitivity of the shape of the relationships between forcing and response to the definition of the impact indicator.  相似文献   

9.
A version of the National Centre for Atmospheric Research (NCAR) coupled climate model is integrated under current climate conditions and in a series of experiments with climate forcings ranging from modest to very strong. The purpose of the experiments is to investigate the nature and behaviour of the climate feedback/sensitivity of the model, its evolution with time and climate state, the robustness of model parameterizations as forcing levels increase, and the possibility of a “runaway” warming under strong forcing. The model is integrated for 50 years, or to failure, after increasing the solar constant by 2.5, 10, 15, 25, 35, and 45% of its control value. The model successfully completes 50 years of integration for the 2.5, 10, 15, and 25% solar constant increases but fails for increases of 35% and 45%. The effective global climate sensitivity evolves with time and analysis indicates that a new equilibrium will be obtained for the 2.5, 10, and 15% cases but that runaway warming is underway for the 25% increase in solar constant. Feedback processes are analysed both locally and globally in terms of longwave and shortwave, clear-sky/surface, and cloud forcing components. Feedbacks in the system must be negative overall and of sufficient strength to balance the positive forcing if the system is to attain a new equilibrium. Longwave negative feedback processes strengthen in a reasonably linear fashion as temperature increases but shortwave feedback processes do not. In particular, solar cloud feedback becomes less negative and, for the 25% forcing case, eventually becomes positive, resulting in temperatures that “run away”. The conditions under which a runaway climate warming might occur have previously been investigated using simpler models. For sufficiently strong forcing, the greenhouse effect of increasing water vapour in a warmer atmosphere is expected to overwhelm the negative feedback of the longwave cooling to space as temperature increases. This is not, however, the reason for the climate instability experienced in the GCM. Instead, the model experiences a “cloud feedback” warming whereby the decrease in cloudiness that occurs when temperature increases beyond a critical value results in an increased absorption of solar radiation by the system, leading to the runaway warming.  相似文献   

10.
There are many indicators that human activity may change climate conditions all around the globe through emissions of greenhouse gases. In addition, aerosol particles are emitted from various natural and anthropogenic sources. One important source of aerosols arises from biomass burning, particularly in low latitudes where shifting cultivation and land degradation lead to enhanced aerosol burden. In this study the counteracting effects of greenhouse gases and aerosols on African climate are compared using climate model experiments with fully interactive aerosols from different sources. The consideration of aerosol emissions induces a remarkable decrease in short-wave solar irradiation near the surface, especially in winter and autumn in tropical West Africa and the Congo Basin where biomass burning is mainly prevailing. This directly leads to a modification of the surface energy budget with reduced sensible heat fluxes. As a consequence, temperature decreases, compensating the strong warming signal due to enhanced trace gas concentrations. While precipitation in tropical Africa is less sensitive to the greenhouse warming, it tends to decrease, if the effect of aerosols from biomass burning is taken into account. This is partly due to the local impact of enhanced aerosol burden and partly to modifications of the large-scale monsoon circulation in the lower troposphere, usually lagging behind the season with maximum aerosol emissions. In the model equilibrium experiments, the greenhouse gas impact on temperature stands out from internal variability at various time scales from daily to decadaland the same holds for precipitation under the additional aerosol forcing. Greenhouse gases and aerosols exhibit an opposite effect on daily temperature extremes, resulting in an compensation of the individual responses under the combined forcing. In terms of precipitation, daily extreme events tend to be reduced under aerosol forcing, particularly over the tropical Atlantic and the Congo basin. These results suggest that the simulation of the multiple aerosol effects from anthropogenic sources represents an important factor in tropical climate change, hence, requiring more attention in climate modelling attempts.  相似文献   

11.
We diagnose climate feedback parameters and CO2 forcing including rapid adjustment in twelve atmosphere/mixed-layer-ocean (“slab”) climate models from the CMIP3/CFMIP-1 project (the AR4 ensemble) and fifteen parameter-perturbed versions of the HadSM3 slab model (the PPE). In both ensembles, differences in climate feedbacks can account for approximately twice as much of the range in climate sensitivity as differences in CO2 forcing. In the AR4 ensemble, cloud effects can explain the full range of climate sensitivities, and cloud feedback components contribute four times as much as cloud components of CO2 forcing to the range. Non-cloud feedbacks are required to fully account for the high sensitivities of some models however. The largest contribution to the high sensitivity of HadGEM1 is from a high latitude clear-sky shortwave feedback, and clear-sky longwave feedbacks contribute substantially to the highest sensitivity members of the PPE. Differences in low latitude ocean regions (30°N/S) contribute more to the range than those in mid-latitude oceans (30–55°N/S), low/mid latitude land (55°N/S) or high latitude ocean/land (55–90°N/S), but contributions from these other regions are required to account fully for the higher model sensitivities, for example from land areas in IPSL CM4. Net cloud feedback components over the low latitude oceans sorted into percentile ranges of lower tropospheric stability (LTS) show largest differences among models in stable regions, mainly due to their shortwave components, most of which are positive in spite of increasing LTS. Differences in the mid-stability range are smaller, but cover a larger area, contributing a comparable amount to the range in climate sensitivity. These are strongly anti-correlated with changes in subsidence. Cloud components of CO2 forcing also show the largest differences in stable regions, and are strongly anticorrelated with changes in estimated inversion strength (EIS). This is qualitatively consistent with what would be expected from observed relationships between EIS and low-level cloud fraction. We identify a number of cases where individual models show unusually strong forcings and feedbacks compared to other members of the ensemble. We encourage modelling groups to investigate unusual model behaviours further with sensitivity experiments. Most of the models fail to correctly reproduce the observed relationships between stability and cloud radiative effect in the subtropics, indicating that there remains considerable room for model improvements in the future.  相似文献   

12.
Experiments with abrupt CO2 forcing allow the diagnosis of the response of global mean temperature and precipitation in terms of fast temperature independent adjustments and slow, linear temperature-dependent feedbacks. Here we compare responses, feedbacks and forcings in experiments performed as part of version 5 of the coupled model inter-comparison project (CMIP5). The experiments facilitate, for the first time, a comparison of fully coupled atmosphere-ocean general circulation models (GCM’s) under both linearly increasing and abrupt radiative forcing. In the case of a 1 % per year compounded increase in CO2 concentration, we find that the non-linear evolution of surface air temperature in time, when combined with the linear evolution of the radiative balance at the top of the atmosphere, results in a feedback parameter and effective climate sensitivity having an offset compared to values computed from abrupt 4× CO2 forcing experiments. The linear evolution of the radiative balance at the top of the atmosphere also contributes to an offset between the global mean precipitation response predicted in the 1 % experiment using linear theory and that diagnosed from the experiments themselves, and a potential error between the adjusted radiative forcing and that produced using a standard linear formula. The non-linear evolution of temperature and precipitation responses are also evident in the RCP8.5 scenario and have implications for understanding, quantifying and emulating the global response of the CMIP5 climate GCMs.  相似文献   

13.
14.
The climate, as represented by the mean Northern Hemisphere temperature, has shown substantial changes within the past century. The temperature record is utilized as a means of elucidating the relative importance of anthropogenic CO2 increase, volcanic aerosols, and possible solar insolation variations in externally forcing climate changes. Solar luminosity variations, suggested by observed solar radius variations on an ≈ 80 yr time scale, allow a self-consistent explanation of the hemispheric temperature trends. Evidence for solar influences on the climate is also found on the shorter 11 and 22 yr time scales present in solar activity cycles. The author is a staff scientist at the High Altitude Observatory, P.O. Box 3000, Boulder, CO 80307, of the National Center for Atmospheric Research. This work was completed while the author was a postdoctoral fellow in the Advanced Study Program of NCAR. Any opinions, findings and conclusions or recommendations expressed in this paper are those of the author and do not necessarily reflect the views of the National Science Foundation. The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

15.
Summary  A new technical procedure is introduced to determine the stratosphere adjusted radiative forcing at the tropopause in the framework of the 3-D climate model ECHAM4. However, the procedure appears to be appropriate for other GCMs as well. It allows to study in a straightforward way the problem of the general usefulness of radiative forcing as a reliable predictor of climate change. Some examples are given for illustration. It is, once again, confirmed that the climate sensitivity is practically equal for experiments with increased solar insolation and increased CO2 concentration. However, a higher climate sensitivity is obtained for ozone perturbations with a horizontally or vertically inhomogeneous distribution. The latter finding is in qualitative agreement with respective results reported in other studies, whereas the value of the climate sensitivity is exceptionally high in our model. The physical reasons for the unique model behaviour in the ozone experiments are currently not understood. Received August 28, 2000 Revised January 2, 2001  相似文献   

16.
On summing the components of radiative forcing of climate change   总被引:1,自引:0,他引:1  
 Radiative forcing is a useful concept in determining the potential influence of a particular mechanism of climate change. However, due to the increased number of forcing agents identified over the past decade, the total radiative forcing is difficult to assess. By assigning a range of probability distribution functions to the individual radiative forcings and using a Monte-Carlo approach, we estimate the total radiative forcing since pre-industrial times including all quantitative radiative forcing estimates to date. The resulting total radiative forcing has a 75–97% probability of being positive (or similarly a 3–25% probability of being negative), with mean radiative forcing ranging from +0.68 to +1.34 W m−2, and median radiative forcing ranging from +0.94 to +1.39 W m−2. Received: 14 March 2001 / Accepted: 1 June 2001  相似文献   

17.
18.
Centennial climate variability during the Holocene has been simulated in two 10,000 year experiments using the intermediate-complexity ECBilt model. ECBilt contains a dynamic atmosphere, a global 3-D ocean model and a thermodynamic sea-ice model. One experiment uses orbital forcing and solar irradiance forcing, which is based on the Stuiver et al. residual 14C record spliced into the Lean et al. reconstruction. The other experiment uses orbital forcing alone. A glacier model is coupled off-line to the climate model. A time scale analysis shows that the response in atmospheric parameters to the irradiance forcing can be characterised as the direct response of a system with a large thermal inertia. This is evident in parameters like surface air temperature, monsoon precipitation and glacier length, which show a stronger response for longer time scales. The oceanic response, on the other hand, is strongly modified by internal feedback processes. The solar irradiance forcing excites a (damped) mode of the thermohaline circulation (THC) in the North Atlantic Ocean, similar to the loop-oscillator modes associated with random-noise freshwater forcing. This results in a significant peak (at time scales 200–250 year) in the THC spectrum which is absent in the reference run. The THC response diminishes the sea surface temperature response at high latitudes, while it gives rise to a signal in the sea surface salinity. A comparison of the model results with observations shows a number of encouraging similarities.  相似文献   

19.
Progress in understanding how terrestrial ice volume is linked to Earths orbital configuration has been impeded by the cost of simulating climate system processes relevant to glaciation over orbital time scales (103–105 years). A compromise is usually made to represent the climate system by models that are averaged over one or more spatial dimensions or by three-dimensional models that are limited to simulating particular snapshots in time. We take advantage of the short equilibration time (10 years) of a climate model consisting of a three-dimensional atmosphere coupled to a simple slab ocean to derive the equilibrium climate response to accelerated variations in Earths orbital configuration over the past 165,000 years. Prominent decreases in ice melt and increases in snowfall are simulated during three time intervals near 26, 73, and 117 thousand years ago (ka) when aphelion was in late spring and obliquity was low. There were also significant decreases in ice melt and increases in snowfall near 97 and 142 ka when eccentricity was relatively large, aphelion was in late spring, and obliquity was high or near its long term mean. These glaciation-friendly time intervals correspond to prominent and secondary phases of terrestrial ice growth seen within the marine 18O record. Both dynamical and thermal effects contribute to the increases in snowfall during these periods, through increases in storm activity and the fraction of precipitation falling as snow. The majority of the mid- to high latitude response to orbital forcing is organized by the properties of sea ice, through its influence on radiative feedbacks that nearly double the size of the orbital forcing as well as its influence on the seasonal evolution of the latitudinal temperature gradient.  相似文献   

20.
The paleoclimatic variability at frequencies ranging from 10–4 cycle per year (cpy) to 10–5 cpy is investigated using a set of four deep-sea cores from the Atlantic, Pacific and Indian Oceans. Dominant features are the presence of orbital frequencies corresponding to mean periods of 117.7, 43.6, 24.9 and 19.3 kyr. These are statistically significant according to such advanced spectral tools as Blackman-Tukey, maximum entropy and the highly efficient Thomson technique. However, the main purpose of this paper is methodological, describing the statistical analyses of time series with modern methods in order to stress their relative power, advantages and disadvantages. The more advanced statistical methods confirm the coincidence of the dominant periods in the deep sea cores and those in the astronomical elements, including combination tones. Three frequency bands of high paleoclimatic variability centred at 15.4, 13 and 10.8 kyr are indeed also detected. These two last periods are very close to those predicted by the climatic non-linear model of Ghil and Le Treut and found by Pestiaux et al. and Yiou et al.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号