首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seismic reflection profiles from the Murray Ridge in the Gulf of Oman, northwest Indian Ocean, show a significant component of extension across the predominantly strike-slip Indian–Arabian plate boundary. The Murray Ridge lies along the northern section of the plate boundary, where its trend becomes more easterly and thus allows a component of extension. The Dalrymple Trough is a 25 km wide, steep-sided half-graben, bounded by large faults with components of both strike-slip and normal motion. The throw at the seabed of the main fault on the southeastern side of the half-graben reaches 1800 m. The northwest side of the trough is delineated by a series of smaller antithetic normal faults. Wide-angle seismic, gravity and magnetic models show that the Murray Ridge and Dalrymple Trough are underlain by a crystalline crust up to 17 km thick, which may be continental in origin. Any crustal thinning due to extension is limited, and no new crust has been formed.
We favour a plate model in which the Indian–Arabian plate boundary was initially located further west than the Owen Fracture Zone, possibly along the Oman continental margin, and suggest that during the Oligocene–Early Miocene Indian Ocean plate reorganization, the plate boundary moved to the site of the present Owen Fracture Zone and that motion further west ceased. At this time, deformation began along the Murray Ridge, with both the uplift of basement highs, and subsidence in the troughs tilting the lowest sedimentary unit. Qalhat Seamount was formed at this time. Subsequent sediments were deposited unconformably on the tilted lower unit and then faulted to produce the present basement topography. The normal faulting was accompanied by hanging-wall subsidence, footwall uplift, and erosion. Flat-lying recent sediments show that the major vertical movements have ceased, although continuing earthquakes show that some faulting is still active along the plate boundary.  相似文献   

2.
Baxter  Cooper  Hill  & O'Brien 《Basin Research》1999,11(2):97-111
The Vulcan Sub-basin, located in the Timor Sea, north-west Australia, developed during the Late Jurassic extension which ultimately led to Gondwanan plate breakup and the development of the present-day passive continental margin. This paper describes the evolution of upper crustal extension and the development of Late Jurassic depocentres in this subbasin, via the use of forward modelling techniques. The results suggest that a lateral variation in structural style exists. The south of the basin is characterized by relatively large, discrete normal faults which have generated deep sub-basins, whereas more distributed, small-scale faulting further north reflects a collapse of the early basin margin, with the development of a broader, 'sagged' basin geometry. By combining forward and reverse modelling techniques, the degree of associated lithosphere stretching can be quantified. Upper crustal faulting, which represents up to 10% extension, is not balanced by extension in the deeper, ductile lithosphere; the magnitude of this deeper extension is evidenced by the amount of post-Valanginian thermal subsidence. Reverse modelling shows that the lithosphere stretching
factor has a magnitude of up to β=1.55 in the southern Vulcan Sub-basin, decreasing to β=1.2 in the northern Vulcan Sub-basin. It is proposed that during plate breakup, deformation in the Vulcan Sub-basin consisted of depth-dependent lithosphere extension. This additional component of lower crustal and lithosphere stretching is considered to reflect long-wavelength partitioning of strain associated with continental breakup, which may have extended 300–500 km landward of the continent–ocean boundary.  相似文献   

3.
By inversion analysis of the baseline changes and horizontal displacements observed with GPS (Global Positioning System) during 1990–1994, a high-angle reverse fault was detected in the Shikoku-Kinki region, southwest Japan. The active blind fault is characterized by reverse dip-slip (0.7±0.2  m yr−1 within a layer 17–26  km deep) with a length of 208±5  km, a (down-dip) width of 9±2  km, a dip-angle of 51°±2° and a strike direction of 40°±2° (NE). Evidence from the geological investigation of subfaults close to the southwestern portion of the fault, two historical earthquakes ( M L=7.0, 1789 and 6.4, 1955) near the centre of the fault, and an additional inversion analysis of the baseline changes recorded by the nationwide permanent GPS array from 18 January to 31 December 1995 partially demonstrates the existence of the fault, and suggests that it might be a reactivation of a pre-existing fault in this region. The fact that hardly any earthquakes ( M L>2.0) occurred at depth on the inferred fault plane suggests that the fault activity was largely aseismic. Based on the parameters of the blind fault estimated in this study, we evaluated stress changes in this region. It is found that shear stress concentrated and increased by up to 2.1 bar yr−1 at a depth of about 20  km around the epicentral area of the 1995 January 17  Kobe earthquake ( M L=7.2, Japan), and that the earthquake hypocentre received a Coulomb failure stress of about 5.6 bar yr−1 during 1990–1994. The results suggest that the 1995  Kobe earthquake could have been induced or triggered by aseismic fault movement.  相似文献   

4.
Signature of remnant slabs in the North Pacific from P-wave tomography   总被引:1,自引:0,他引:1  
A 3-D ray-tracing technique was used in a global tomographic inversion in order to obtain tomographic images of the North Pacific. The data reported by the Geophysical Survey of Russia (1955–1997) were used together with the catalogues of the International Seismological Center (1964–1991) and the US Geological Survey National Earthquake Information Center (1991–1998), and the recompiled catalogue was reprocessed. The final data set, used for following the inversion, contained 523 430 summary ray paths. The whole of the Earth's mantle was parametrized by cells of 2° × 2° and 19 layers. The large and sparse system of observation equations was solved using an iterative LSQR algorithm.
A subhorizontal high-velocity anomaly is revealed just above the 660 km discontinuity beneath the Aleutian subduction zone. This high-velocity feature is observed at latitudes of up to ~70°N and is interpreted as a remnant of the subducted Kula plate, which disappeared through ridge subduction at about 48 Ma. A further positive velocity perturbation feature can be identified beneath the Chukotka peninsula and Okhotsk Sea, extending from ~300 to ~660 km depth and then either extending further down to ~800 km (Chukotka) or deflecting along the 660 km discontinuity (Okhotsk Sea). This high-velocity anomaly is interpreted as a remnant slab of the Okhotsk plate accreted to Siberia at ~55 Ma.  相似文献   

5.
The asymmetry (skewness) of marine magnetic anomaly 32 (72.1–73.3  Ma) on the Pacific plate has been analysed in order to estimate a new palaeomagnetic pole. Apparent effective remanent inclinations of the seafloor magnetization were calculated from skewness estimates of 108 crossings of anomaly 32 distributed over the entire Pacific plate and spanning a great-circle distance of ~12  000  km. The data were inverted to obtain a palaeomagnetic pole at 72.1°N, 26.8°E with a 95 per cent confidence ellipse having a 4.0° major semi-axis oriented 98° clockwise of north and a 1.8° minor semi-axis; the anomalous skewness is 14.2° ± 3.7°. The possible dependence of anomalous skewness on spreading rate was investigated with two empirical models and found to have a negligible effect on our palaeopole analysis over the range of relevant spreading half-rates, ~25 to ~90  mm  yr−1 . The new pole is consistent with the northward motion for the Pacific plate indicated by coeval palaeocolatitude and palaeoequatorial data, but differs significantly from, and lies to the northeast of, coeval seamount poles. We attribute the difference to unmodelled errors in the seamount poles, mainly in the declinations. Comparison with the northward motion inferred from dated volcanoes along the Hawaiian–Emperor seamount chain indicates 13° of southward motion of the Hawaiian hotspot since 73  Ma. When the pole is reconstructed with the Pacific plate relative to the Pacific hotspots, it differs by 14°–18° from the position of the pole relative to the Indo–Atlantic hotspots. This has several possible explanations including bias in one or more of the palaeomagnetic poles, motion between the Pacific and Indo–Atlantic hotspots, and errors in plate reconstructions relative to the hotspots.  相似文献   

6.
The ERS-1 satellite, launched in 1991, has provided altimetric observations of the Greenland Ice Sheet and 80 per cent of the Antarctica Ice Sheet north of 82°S. It was placed in a geodetic (168-day repeat) orbit between April 1994 and March 1995, yielding a 1.5  km across-track spacing at latitude 70° with a higher along-track sampling of 350  m. We have analysed the waveform altimetric data from this period to compute maps with a 1/30° grid size. Data processing consists of correcting for environmental factors and editing and retracking the waveforms. A further step consists of reducing the radial orbit error through crossover analysis and correcting the slope error to second order. The high-resolution topography of both ice sheets reveals numerous details. A kilometre-scale surface roughness running at 45° from the flow direction is the dominant topographic characteristic of both continents. Antarctica also exhibits many scars due to local flow anomalies. Several physical processes can be identified: abrupt transitions from deformation to sliding and vice versa, and impressive strike-slip phenomena, inducing en echelon folds.  相似文献   

7.
A moderate earthquake of   M w= 6.8  occurred on 2003 December 10. It ruptured the Chihshang Fault in eastern Taiwan which is the most active segment of the Longitudinal fault as a plate suture fault between the Luzon arc of the Philippine Sea plate and the Eurasian plate. The largest coseismic displacements were 13 cm (horizontal) and 26 cm (vertical). We analyse 40 strong motion and 91 GPS data to model the fault geometry and coseismic dislocations. The most realistic shape of the Chihshang fault surface is listric in type. The dipping angle of the seismic zone is steep (about 60°–70°) at depths shallower than 10 km and then gradually decreases to 40°–50° at depths of 20–30 km. Thus the polygonal elements in Poly3D are well suited for modelling complex surfaces with curving boundaries. Using the strong motion data, the displacement reaches 1.2 m dip-slip on the Chihshang Fault and decreases to 0.1 m near surface. The slip averages 0.34 m, releasing a scalar moment of 1.6E26 dyne-cm. For GPS data, our model reveals that the maximal dislocation is 1.8 m dip-slip. The dislocations decrease to 0.1 m near the surface. The average slip is 0.48 m, giving a scalar moment of 2.2E26 dyne-cm. Regarding post-seismic deformation, a displacements of 0.5 m were observed near the Chihshang Fault, indicating the strain had not been totally released, as a probable result of near-surface locking of the fault zone.  相似文献   

8.
Interpretation of seismic reflection data have led to a new model of the development of the Queen Charlotte Basin. New multi-channel data collected in 1988 and an extensive network of unpublished older single- and multi-channel profiles from industry image a complex network of sub-basins. Structural styles vary along the axis of the basin from broadly spaced mainly N-trending sub-basins in Queen Charlotte Sound, to closely spaced NW-trending sub-basins in Hecate Strait, to an E-W en echelon belt of sub-basins in Dixon Entrance. Transtensional tectonics dominated in the Miocene and transpression dominated in the Pliocene except in Queen Charlotte Sound. The data we present prove that the origin of the basin is extensional and its most recent deformation is compressive. Evidence for the strike-slip origin of tectonism includes along-axis variations in structures, simultaneous extension and compression in adjacent sub-basins, lack of correlations across faults, and mixed normal and reverse faults within structures. We infer that the Pacific-North America plate boundary has been west of the Queen Charlotte Islands since the Miocene when relative plate motions have been dominantly strike-slip. The formation and development of the Queen Charlotte Basin is the result of distributed shear; by which a small percentage of the plate motion has been taken up in a network of faults across the continental margin. As this region of crust deforms it interacts with neighbouring rigid crust resulting in extension dominating in the south of the basin and compression in the north. Continental crust adjacent to some transform plate boundaries can be sheared over a wide region; the network of basins in southwestern California is a good analogue for the Queen Charlotte Basin.  相似文献   

9.
Miocene strata in the southern Taranaki Basin (STB), up to 3 km thick, provide a distal record of erosion associated with plate boundary deformation in New Zealand. 2D and 3D seismic reflection data tied to drillhole stratigraphy have been used to constrain four main phases of basin development. These are: (a) Early Miocene (22–19 Ma) subsidence, dominantly bathyal water depths and deposition of minor submarine fans along the eastern basin margin. (b) Middle Miocene (19–14 Ma) widespread submarine fan deposition on a bathyal basin floor in the central STB. (c) Rapid Middle–Late Miocene (14–7 Ma) progradation of the shelf break northwards across the STB. (d) Widespread uplift and erosion of the STB during the latest Miocene–Pliocene (7–4.5 Ma). Bathyal water depths and fan deposition in the Early Miocene were influenced by vertical motions on major reverse faults and regional subsidence produced by subduction of the Pacific plate beneath northern New Zealand. Subsequent submarine fan deposition and northward shelf‐break progradation reflect increasing input of terrigenous material, primarily eroded from an uplifting region to the south of the STB. Sedimentation patterns in the STB are consistent with the age and locations of conglomerates deposited in onshore West Coast basins, related to this uplift and erosion. Sediment transport in the West Coast region was mainly parallel to NNE trending active reverse faults, and in the STB was perpendicular to the NE‐SW orientated shelf break, especially from ca. 14–7 Ma, when sedimentation rates exceeded fault‐displacement rates. Increases in sedimentation rates in the STB coincide with regional increases in the rates of shortening that appear to reflect plate boundary‐wide events and have been attributed to, or correlated with, increases in the plate convergence rate. Miocene sedimentation patterns in the STB thus reflect both intra‐basinal deformation and tectonic signals from the wider developing New Zealand plate boundary.  相似文献   

10.
We use annual GPS observations on the Reykjanes Peninsula (RP) from 2000 to 2006 to generate maps of surface velocities and strain rates across the active plate boundary. We find that the surface deformation on the RP is consistent with oblique plate boundary motion on a regional scale, although considerable temporal and spatial strain rate variations are observed within the plate boundary zone. A small, but consistent increase in eastward velocity is observed at several stations on the southern part of the peninsula, compared to the 1993–1998 time period. The 2000–2006 velocities can be modelled by approximating the plate boundary as a series of vertical dislocations with left-lateral motion and opening. For the RP plate boundary we estimate left-lateral motion  18+4−3 mm yr−1  and opening of  7+3−2 mm yr−1  below a locking depth of  7+1−2 km  . The resulting deep motion of  20+4−3 mm yr−1  in the direction of  N(100+8−6)°E  agrees well with the predicted relative North America–Eurasia rate. We calculate the areal and shear strain rates using velocities from two periods: 1993–1998 and 2000–2006. The deep motion along the plate boundary results in left-lateral shear strain rates, which are perturbed by shallow deformation due to the 1994–1998 inflation and elevated seismicity in the Hengill–Hrómundartindur volcanic system, geothermal fluid extraction at the Svartsengi power plant, and possibly earthquake activity on the central part of the peninsula.  相似文献   

11.
About six separately orientated cores were collected at each of 14 sites distributed throughout the arcuate, west-dipping, 6  km thick, Freetown layered igneous complex. Alternating field and thermal demagnetization both isolate a stable component of remanent magnetism which corresponds to a palaeomagnetic south pole from 13 sites (nine reverse, four normal polarity) at 82.9°S, +32.7°E ( α 95 = 5.6°). This is indistinguishable from that reported in 1971 based on alternating field demagnetization of cores from 10 orientated hand samples.
  The difference between the Freetown pole (age: 193 ± 3  Ma) and other mid-Jurassic poles from West Africa could be due to its greater age. The difference between the whole West African Jurassic pole group and the Karoo pole from southern Africa, however, suggests moderate (∼10°) differential rotation of West Africa relative to the Kaapvaal craton.
  A prevalent magnetic foliation fabric coincides generally with the petrological layering, as might be expected, but a ubiquitous magnetic lineation is predominantly down-dip. This is compatible with a down-dip pyroxene lineation reported to be present in some field outcrops, and interpreted in terms of late-stage deformation during the slow crystallization and cooling of the large igneous body. However, a fold test shows that the igneous layering had already achieved its present attitude before the Complex cooled to ∼570 °C (the maximum blocking temperature of the characteristic remanence).  相似文献   

12.
The style of extension and strain distribution during the early stages of intra-continental rifting is important for understanding rift-margin development and can provide constraints for lithospheric deformation mechanisms. The Corinth rift in central Greece is one of the few rifts to have experienced a short extensional history without subsequent overprinting. We synthesise existing seismic reflection data throughout the active offshore Gulf of Corinth Basin to investigate fault activity history and the spatio-temporal evolution of the basin, producing for the first time basement depth and syn-rift sediment isopachs throughout the offshore rift. A major basin-wide unconformity surface with an age estimated from sea-level cycles at ca . 0.4 Ma separates distinct seismic stratigraphic units. Assuming that sedimentation rates are on average consistent, the present rift formed at 1–2 Ma, with no clear evidence for along-strike propagation of the rift axis. The rift has undergone major changes in relative fault activity and basin geometry during its short history. The basement depth is greatest in the central rift (maximum ∼3 km) and decreases to the east and west. In detail however, two separated depocentres 20–50 km long were created controlled by N- and S-dipping faults before 0.4 Ma, while since ca . 0.4 Ma a single depocentre (80 km long) has been controlled by several connected N-dipping faults, with maximum subsidence focused between the two older depocentres. Thus isolated but nearby faults can persist for timescales ca . 1 Ma and form major basins before becoming linked. There is a general evolution towards a dominance of N-dipping faults; however, in the western Gulf strain is distributed across several active N- and S-dipping faults throughout rift history, producing a more complex basin geometry.  相似文献   

13.
We describe results of an active-source seismology experiment across the Chilean subduction zone at 38.2°S. The seismic sections clearly show the subducted Nazca plate with varying reflectivity. Below the coast the plate interface occurs at 25 km depth as the sharp lower boundary of a 2–5 km thick, highly reflective region, which we interpret as the subduction channel, that is, a zone of subducted material with a velocity gradient with respect to the upper and lower plate. Further downdip along the seismogenic coupling zone the reflectivity decreases in the area of the presumed 1960 Valdivia hypocentre. The plate interface itself can be traced further down to depths of 50–60 km below the Central Valley. We observe strong reflectivity at the plate interface as well as in the continental mantle wedge. The sections also show a segmented forearc crust in the overriding South American plate. Major features in the accretionary wedge, such as the Lanalhue fault zone, can be identified. At the eastern end of the profile a bright west-dipping reflector lies perpendicular to the plate interface and may be linked to the volcanic arc.  相似文献   

14.
Shear wave splitting measurements from S arrivals of local earthquakes recorded at the Incorporated Research Institutions for Seismology (IRIS) broadband sensor SNZO are used to determine a basic anisotropic structure for the subduction zone in the Wellington region. With the use of high-frequency filters, fast anisotropic polarization ( φ ) and splitting time ( δt ) measurements typical of crustal anisotropy are evident, but the larger splitting expected from the mantle is often not resolved. The small splitting seen agrees well with the results of previous studies concerning shallow crustal anisotropy. With the use of lower-frequency filters, measurements more consistent with mantle anisotropy are made. Anisotropy of 4.4 ± 0.9 per cent with a fast polarization of 29° ± 38° is calculated for the subducting slab, from 20 to 70  km depth. Using this result in addition to the results of previous studies, a model is proposed. The model requires a frequency-dependent anisotropy of less than 1.4 per cent when measured with a period of ~2  s to be present in the sub-slab mantle.
Separate from this population, a band of events in northern Cook Strait with an 86° ± 10° fast polarization is seen. This is at about 40° from the strike of the Hikurangi margin, and suggests a source of shear strain 40° removed from that found in the majority of the region. The cause of this is probably a deformation in the subducting slab in this region, as it moves towards a greater incline to the south.  相似文献   

15.
We use data from the Chile Argentina Geophysical Experiment (CHARGE) broad-band seismic deployment to refine past observations of the geometry and deformation within the subducting slab in the South American subduction zone between 30°S and 36°S. This region contains a zone of flat slab subduction where the subducting Nazca Plate flattens at a depth of ∼100 km and extends ∼300 km eastward before continuing its descent into the mantle. We use a grid-search multiple-event earthquake relocation technique to relocate 1098 events within the subducting slab and generate contours of the Wadati-Benioff zone. These contours reflect slab geometries from previous studies of intermediate-depth seismicity in this region with some small but important deviations. Our hypocentres indicate that the shallowest portion of the flat slab is associated with the inferred location of the subducting Juan Fernández Ridge at 31°S and that the slab deepens both to the south and the north of this region. We have also determined first motion focal mechanisms for ∼180 of the slab earthquakes. The subhorizontal T -axis solutions for these events are almost entirely consistent with a slab pull interpretation, especially when compared to our newly inferred slab geometry. Deviations of T -axes from the direction of slab dip may be explained with a gap within the subducting slab below 150 km in the vicinity of the transition from flat to normal subducting geometry around 33°S.  相似文献   

16.
A detailed geophysical survey of the Ghoubbet Al Kharab (Djibouti) clarifies the small-scale morphology of the last submerged rift segment of the propagating Aden ridge before it enters the Afar depression. The bathymetry reveals a system of antithetic normal faults striking N130°E, roughly aligned with those active along the Asal rift. The 3.5 kHz sub-bottom profiler shows how the faults cut distinct layers within the recent, up to 60 m thick, sediment cover on the floor of the basin. A large volcanic structure, in the centre of the basin, the 'Ghoubbet' volcano, separates two sedimentary flats. The organization of volcanism and the planform of faulting, with en echelon subrifts along the entire Asal–Ghoubbet rift, appear to confirm the westward propagation of this segment of the plate boundary. Faults throughout the rift have been active continuously for the last 8400 yr, but certain sediment layers show different offsets. The varying offsets of these layers, dated from cores previously retrieved in the southern basin, imply Holocene vertical slip rates of 0.3–1.4 mm yr−1 and indicate a major decrease in sedimentation rate after about 6000 yr BP, and a redistribution of sediments in the deepest troughs during the period that preceded that change.  相似文献   

17.
A thrust wedge with unusual geometry has developed under very oblique (50–60°) convergence between the Pacific and Australian Plates, along the 240‐km length of the Fiordland margin, New Zealand. The narrow (25 km‐wide) wedge comprises three overlapping components, lying west of the offshore section of the Alpine Fault, and straddles a change of > 30° in the regional strike of the plate boundary. Swath bathymetry, marine seismic reflection profiles, and dated samples together reveal the stratigraphy, structure, and evolution of the wedge and the underthrusting, continental, Caswell High (Australian Plate). Lateral variations in the composition and structure of the accretionary wedge, and the depth of the décollement thrust, result partly from variations in crustal structure and basement relief of the underthrust plate, and from associated variations in the thickness of turbidites available for frontal accretion. In the southern Fiordland Basin the underthrust plate is undergoing flexural uplift and extension, and a thick turbidite section is available for accretion. Along‐strike, a structurally elevated portion of the underthrust plate is very obliquely colliding with the central part of the accretionary wedge, the turbidite section available for accretion is condensed, and structural inversion occurs in the underthrust plate. Growth of the thrust wedge is inferred to have commenced in the Pliocene prior to 3 ± 1 Ma, but much of the wedge developed in the Quaternary. The spatial distribution of thrusting has varied through time, with most late Quaternary shortening occurring on structures within 10 km of the right‐stepping deformation front. Estimates of the magnitude and rates of deformation indicate that the wedge accommodates a significant component of the oblique convergence between the Pacific and Australian Plates. Shortening of up to 7.3 ± 1.4 km and 9.1 ± 1.8 km within the southern and central parts of the wedge, respectively, represent about 5–15% of the total 70–140 km of shortening predicted across the plate boundary since 6.4 Ma, and about 10–30% since 3 Ma. Late Quaternary shortening rates of the order of 1–5 mm yr?1, estimated across both the northern and southern parts of the wedge, represent about 10–50 and 5–21% of the total NUVEL‐1 A shortening across the plate boundary at these respective latitudes, implying that most shortening is occurring onshore. Furthermore, possible oblique‐slip thrusting within the wedge may be accommodating boundary‐parallel displacement of 0–6 mm yr?1, representing 0–17% of the total predicted within the plate boundary.  相似文献   

18.
Well-preserved, actively deforming folds in the Tien Shan of Kyrgyzstan provide a natural laboratory for the study of the evolution of thrust-related folds. The uplifted limbs of these folds comprise weakly indurated Cenozoic strata that mantle well-lithified Palaeozoic bedrock. Their contact is a regionally extensive unconformity that provides a persistent and readily traceable marker horizon. Based on the deformation of this marker, preserved fold geometries support simple geometric models for along-strike gradients in fold amplitude and displacement along the underlying faults, linkage among multiple structures, transfer of displacement among folds and evolution of the folds as geomorphic entities. Subsequent to initial uplift and warping of the unconformity surface, steeply dipping reverse faults cut the forelimbs of many of these folds. Wind gaps, water gaps, recent faulting and progressive stripping of the more readily eroded Cenozoic strata indicate the ongoing lateral propagation and vertical growth of fault-related folds. The defeat of formerly antecedent rivers coincides in several places with marked increases in erosional resistance where their incising channels first encountered Palaeozoic bedrock. Persistent dip angles on the backlimbs of folds indicate strikingly uniform geometries of the underlying faults as they propagate both laterally and vertically through the crust. Deformation switches irregularly forward and backward in both time and space among multiple active faults and folds with no systematic pattern to the migration of deformation. This distributed deformation appears characteristic of the entire Kyrgyz Tien Shan.  相似文献   

19.
Shear-wave splitting from local deep earthquakes is investigated to clarify the volume and the location of two anisotropic bodies in the mantle wedge beneath central Honshu, Japan. We observe a spatial variation in splitting parameters depending on the combination of sources and receivers, nearly N–S fast in the northern region, nearly E–W fast in the southern region and small time delays in the eastern region. Using forward modelling, two models with 30 and 10 per cent anisotropy are tested by means of a global search for the locations of anisotropic bodies with various volumes. The optimum model is obtained for 30 per cent anisotropy, which means a 5 per cent velocity difference between fast and slow polarized waves. The northern anisotropic body has a volume of 1.00° (longitude) × 0.5° (latitude) × 75 km (depth), with the orientation of the symmetry axis being N20°E. The southern anisotropic body has a volume of 1.25° × 1.25° × 100 km with the symmetry axis along N95°E. Our results show that the anisotropic bodies are located in low-velocity and low- Q regions of the mantle. This, together with petrological data and the location of volcanoes in the arc, suggests that the possible cause of the anisotropy is the preferred alignment of cracks filled with melt.  相似文献   

20.
The Ethiopian side of central Afar was struck in August 1989 by the largest seismic sequence (three 6.1 ≤ M s ≤ 6.3 events, 15 with M s or m b ≥ 5.0) since that of Serdo in 1969. Using the Djibouti seismological network, we relocated 297 of the events of that sequence. As most of the large events took place outside the network, we assessed the accuracy and stability of earthquake relocations by using three different velocity models and two relocation codes to try to relate individual shocks to distinct faults and surface breaks. A majority of the events apparently occurred underneath the floor of the Dôbi graben, an area about 45  km long and 15  km wide, rupturing boundary and inner floor faults, in agreement with the surface cracks and scarps that we mapped in the area. The relocation shows that the principal events propagated about 50  km northwestwards along the graben in the first 40  hr. A day and a half after the beginning of the sequence, smaller events ( M ≤ 4) started to propagate more than 55  km eastwards, towards Asal Lake. Using two three-component stations installed near the Ethiopian border, we could determine reliable depths for 21 events. The depths are compatible with a seismogenic crust about 14  km thick in the Dôbi and Hanle graben area. Although the Dôbi sequence ruptured about 50  km of the fault array extending from Serdo to Asal, where the regional stress was released by earthquakes in 1969 and 1978, respectively, a seismic gap about 50  km long still subsists along the northern part of the Gaggade region (Der'êla half-graben).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号