首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some interesting results on gamma-ray line emission and its time profiles observed by Hinotori are presented. Possible explanations of gamma-ray line and hard X-ray emissions for the impulsive and gradual flares are discussed. Relationship between the gamma-ray line emission and acceleration and escape of the solar particles is also studied.  相似文献   

2.
E. Hiei  T. Okamoto  K. Tanaka 《Solar physics》1983,86(1-2):185-191
Flare activity was observed near the limb with two coronagraphs at the Norikura Solar Observatory and the Soft X-ray Crystal Spectrometer (SOX) aboard HINOTORI. A prominence activation occurred and then Hα brightenings were seen on the disk near the prominence. The prominence became very bright and its electron density increased to 1012.8 cm?3 in 1/2 hour. Loop prominence systems appeared above the Hα brightenings about half an hour after the onset of the flare, and were observed in the coronal lines CaXV 5694Å, FeXIV 5303Å, and FeX 6374Å. Shifted and asymmetric profiles of the emission line of 5303Å were sometimes observed, and turbulent phenomena occurred even in the thermal phase. The energy release site of the flare at the onset would be lower than 20 000 km above the solar limb.  相似文献   

3.
The search for the still unrevealed spectral shape of the mysterious THz solar flare emissions is one of the current most challenging research issues. The concept, fabrication and performance of a double THz photometer system, named SOLAR-T, is presented. Its innovative optical setup allows observations of the full solar disk and the detection of small burst transients at the same time. The detecting system was constructed to observe solar flare THz emissions on board of stratospheric balloons. The system has been integrated to data acquisition and telemetry modules for this application. SOLAR-T uses two Golay cell detectors preceded by low-pass filters made of rough surface primary mirrors and membranes, 3 and 7 THz band-pass filters, and choppers. Its photometers can detect small solar bursts (tens of solar flux units) with sub second time resolution. Tests have been conducted to confirm the entire system performance, on ambient and low pressure and temperature conditions. An artificial Sun setup was developed to simulate performance on actual observations. The experiment is planned to be on board of two long-duration stratospheric balloon flights over Antarctica and Russia in 2014–2016.  相似文献   

4.
5.
A pair of carefully matched telescopes and videometers were constructed and tested to determine their suitability to obtain routine standardized measurements of solar flares. Useful data were obtained from both telescopes during four flares between March 1971 and March 1972. Errors in the current international patrol are typically a factor of two. The mismatch of the areas of the four measured by these telescope systems was only 10%, indicating the extent of the possible improvement to be obtained by careful matching and intercalibration of patrol instruments.  相似文献   

6.
A theoretical study is made of the visible and UV line radiation of He i atoms and He ii ions from a plane-parallel model flare layer. Solutions are obtained of the statistically steady state equations for a 30 level He i-ii-iii model, with parametric representation of the line and continuum radiation fields. Optical depths and some line intensities are presented for a 1000 km thick layer. Results are given for electron temperatures 104 to 5 × 104 K and electron densities 1010 to 1014 cm–3.Work sponsored by the NASA, Marshall Space Flight Center, Alabama under contract NAS8-27988.  相似文献   

7.
The radial brightness distribution of the quiet Sun at 8.6 mm is synthesized from observations using a sixteen element east-west interferometer in Nagoya. The observed brightness is flat from the disk center to 0.8R . A slight darkening appeared between 0.8R and the limb. No evidence of the bright ring near the limb is found. The radio radius at 8.6 mm is 1.015±0.005R . In addition there exists a coronal component just outside the radio limb.  相似文献   

8.
9.
A slowly evolving, flaring loop was observed by the UVSP, XRP, and HXIS instruments onboard SMM on June 10, 1980. Simultaneous radio observations from Toyokawa (Japan) are also available. The SMM instruments have an angular resolution ranging from 3 to 30 arc sec by which the loop structure may be determined. It appears that these observations cannot be accounted for by a single loop model even assuming a variable temperature and pressure. The additional presence of a hot and tenuous isothermal plasma is necessary to explain the harder emission (HXIS). X-ray and UV data are used to fit the differential emission measure as a function of temperature and a model of the flare is deduced, which is then checked against radio data. An estimate of the heating function along the loop and of the total energy content of the loop is also given.  相似文献   

10.
We developed a simple model for a flare loop, which was used to fit the emission in the microwave (17 GHz) and millimetre-wave (80 GHz) ranges for the giant flare of 1991 June 4. The simplicity of the model enabled the exploration of a wide range of parameters in a reasonable time. It was possible, using the simple model, to derive from the 17- and 80-GHz data the magnetic field and the number density for every measurement point in the time range we chose to fit.  相似文献   

11.
The Rosette Nebula was photographed through filters isolating the H,OII andOIII nebular emission lines. Isophotes were constructed at these wavelengths. Measurements of the radial velocity differences across the Rosette were obtained from an interferogram. These were compared to some conflicting measurements made by previous authors. Some small regions in the Rosette and Barnard's Arc were shown to be emitting lines wider than the bulk of the matter.  相似文献   

12.
A simple model is presented to account for theYohkoh flare observations of Feldmanet al. (1994), and Masuda (1994). Electrons accelerated by the flare are assumed to encounter the dense, small regions observed by Feldmanet al. at the tops of impulsively flaring coronal magnetic loops. The values of electron density and volume inferred by Feldmanet al. imply that these dense regions present an intermediate thick-thin target to the energised electrons. Specifically, they present a thick (thin) target to electrons with energy much less (greater) thanE c , where 15 keV <E c < 40 keV. The electrons are either stopped at the loop top or precipitate down the field lines of the loop to the footpoints. Collisional losses of the electrons at the loop top produce the heating observed by Feldmanet al. and also some hard X-rays. It is argued that this is the mechanism for the loop-top hard X-ray sources observed in limb flares by Masuda. Adopting a simple model for the energy losses of electrons traversing the dense region and the ambient loop plasma, hard X-ray spectra are derived for the loop-top source, the footpoint sources and the region between the loop top and footpoints. These spectra are compared with the observations of Masuda. The model spectra are found to qualitatively agree with the data, and in particular account for the observed steepening of the loop-top and footpoint spectra between 14 and 53 keV and the relative brightnesses of the loop-top and footpoint sources.  相似文献   

13.
Hyder advocated the idea that the optical (H) flares can be identified with the response of the solar chromosphere to an infalling material stream resulting from the disparition brusque of a prominence. Since some flares are observed without any apparent association with infalling streams, in this paper we examine the possibility of identifying the optical flare with the response of the chromosphere to a supersonic disturbance, i.e., a shock, propagating downward. The undisturbed chromosphere is represented by the Harvard-Smithsonian Reference Atmosphere and the evolution of the shock is evaluated with the use of the CCW (Chisnell, Chester, Whitham) approximation based on the theory of characteristics. It is shown that the chromosphere is heated by the shock and that radiation is enhanced, and that the enhanced radiation terminates the shock around the height of the temperature minimum. Numerical results obtained and possible future improvements of this type of study are discussed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

14.
R. Muller 《Solar physics》1975,45(1):105-114
High resolution pictures (about 0.3) of photospheric faculae near the solar limb have been obtained with the Pic du Midi 50 cm refractor; their granular structure then clearly appears. The microphotometric study of these facular granules shows that the ratio of their intensity to the photospheric intensity, I f/I ph (cos) reaches a maximum near cos = 0.3 and then decreases towards the limb. The values of this ratio have been corrected with a most likely spread function. Then a temperature model of a facular granule is obtained: with respect to the neighbouring photosphere, this granule appears as a photospheric hot cloud which does not extend high in the solar atmosphere (thickness 100 km above 5000 = 1). The temperature excess is 750K at maximum. This hot region is located over a layer which is cooler than the normal photosphere at the same level. Another hot region might extend above the photospheric hot cloud, possibly up to the chromosphere. This photospheric facula model which is confined to the lower photosphere seems to indicate that this phenomenon is different from the photospheric network which is visible up to the lower chromosphere.  相似文献   

15.
On 26 July 1967, a magnetically quiet day (ΣKp = 12?) with high whistler activity at Halley Bay, it was found possible, by measurement of whistler nose-frequency and dispersion and the bearings of the whistler exit points, to make a detailed study of the magnetospheric structure associated with the whistler ducts.During the period 0509–2305 UT most of the exit points of whistlers inside the plasmasphere were situated along a strip about 100km wide passing through Halley Bay in an azimuthal direction 30°E of N between 57° and 62° invariant latitude. A mechanism which can give rise to such a well-defined locus which co-rotates with the Earth is not clear. Nevertheless, it does appear that the locus coincides with the contour of solar zenith angle 102° at 1800 UT 25 July. This was also the time of occurrence of a sub-storm and it is suggested that the magnetospheric structure was initiated by proton precipitation along the solar zenith angle 102° contour.At mid-day knee-whistlers observed outside the plasmapause had exit points which were closely aligned along an L-shell at an invariant latitude of 62.5°. They exhibited a marked variation (~ 3:1) in electron tube content over about 12° of invariant longitude and a drift of about 8 msec?1 to lower L-shells.Throughout the period of observation the plasmapause lay about 2° polewards of the mean position found by Carpenter (1968) for moderately disturbed days.  相似文献   

16.
17.
We extract a temporal sequence of the 1355 UT 4 July, 1974 event from monochromatic filtergrams in Na light obtained in Rome on the McMath region No. 13043-July 1974. It is, to our knowledge, the first temporal sequence of a flare seen through a narrow-band filter (80 mÅ) in the Na-D lines. Due to the properties of Na filtergrams we could also derive quite easily the exact relative position among sunspots, magnetic fields and flare-knots. The last result is indeed a very useful tool when studying an active region. For the McMath No. 13043 we were able to infer some interesting remarks about the magnetic pattern at the flaring site.  相似文献   

18.
19.
The ejection velocities of meteoroids belonging to the Leonid and Perseid meteoroid streams are deduced from the observed differences between the longitude of the ascending node of the outburst meteoroids and that of the parent comet. The difference is very sensitive to the true anomaly of the ejection point, as well as the ejection velocity, and probable values for both are discussed.  相似文献   

20.
We present observations of another post-flare arch following an eruptive flare, detected in X-ray lines above the western solar limb on 2 May 1985.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号