首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 366 毫秒
1.
A model for the hydrogen coma of a comet on the basis of the Monte Carlo method is presented. In this model isotropic ejections of H atoms produced by photodissociation of H2O and OH, thermalization of the H atoms due to collisions with ambient H2O molecules, and the solar radiation pressure have been taken into account. A production spectrum of H atoms from OH is evaluated by using the predissociation rates and the level populations of OH, confirming that the spectrum has a sharp peak around 8.0 km sec?1 with the standard deviation of 0.1 km sec?1. Including the above effects, velocity distribution functions of the H atoms at various positions in the coma for the first time, as well as their density and outflow velocity profiles, have been calculated. It is pointed out that the collisional thermalization process in the inner coma is an important factor at small heliocentric distances in determining the density profiles and the velocity distributions. It is shown that thermalization leads to an increase in the H density in the inner coma larger than those expected from other models such as the vectorial model, in which collision is not taken into account. Lyman α isophotes and its line profiles in the optically thin region are computed by using the velocity distribution function.  相似文献   

2.
S.M. Lederer  H. Campins  D.J. Osip 《Icarus》2009,199(2):477-843
We describe a 3-dimensional, time-dependent Monte Carlo model developed to analyze the chemical and physical nature of a cometary gas coma. Our model includes the necessary physics and chemistry to recreate the conditions applicable to Comet Hale-Bopp when the comet was near 1 AU from the Sun. Two base models were designed and are described here. The first is an isotropic model that emits particles (parents of the observed gases) from the entire nucleus; the second is a jet model that ejects parent particles solely from discrete active areas on the surface of the comet nucleus, resulting in coma jets. The two models are combined to produce the final model, which is compared with observations. The physical processes incorporated in both base models include: (1) isotropic ejection of daughter molecules (the observed gases) in the parent's frame of reference, (2) solar radiation pressure, (3) solar insolation effects, (4) collisions of daughter products with other molecules in the coma, and (5) acceleration of the gas in the coma. The observed daughter molecules are produced when a parent decays, which is represented by either an exponential decay distribution (photodissociation of the parent gas) or a triangular distribution (production from a grain extended source). Application of this model to the analysis the OH, C2 and CN gas jets observed in the coma of Comet Hale-Bopp is the focus of the accompanying paper [Lederer, S.M., Campins, H., Osip, D.J., 2008. Icarus, in press (this issue)].  相似文献   

3.
A longstanding problem in thermophysical modeling of cometary nuclei has been to accurately formulate the boundary conditions at the nucleus/coma interface. A correct treatment of the problem, where the Knudsen layer gas just above the cometary surface (which is not in thermodynamic equilibrium) is modeled in parallel with the nucleus, is extremely time-consuming and has so far been avoided. Instead, simplifying assumptions regarding the coma properties are used, e.g., the surface gas density is assumed equal to zero or set to the local saturation value, and the coma backflux is neglected or given some realistic but approximate value. The resulting inaccuracy regarding the exchange of mass, energy, and momentum between the nucleus and the coma, may introduce significant errors in the calculated nucleus temperature profiles, gas production rates, and momentum transfer efficiencies. In this paper, we present a practical, accurate, and time-efficient tool which makes it possible to consider the nucleus and the innermost coma of a comet (the former assumed to consist of a porous mixture of crystalline water ice and dust) as a coupled, physically consistent system. The tool consists of interpolation tables for the surface gas density and pressure, the recondensing coma backflux, and the cooling energy flux due to diffusely scattered coma molecules. The tables cover a wide range of surface temperatures and sub-surface temperature profiles, and can be used to improve the boundary conditions used in thermophysical models. The interpolation tables have been obtained by calculating the transmission distribution functions of gas emerging from sublimating porous ice/dust mixtures with various temperature profiles, which then are used as source functions in a Direct Simulation Monte Carlo model of inelastic intermolecular collisions in the Knudsen layer.  相似文献   

4.
Direct sublimation of a comet nucleus surface is usually considered to be the main source of gas in the coma of a comet. However, evidence from a number of comets including the recent spectacular images of Comet 103P/Hartley 2 by the EPOXI mission indicates that the nucleus alone may not be responsible for all, or possibly at times even most, of the total amount of gas seen in the coma. Indeed, the sublimation of icy grains, which have been injected into the coma, appears to constitute an important source. We use the fully-kinetic Direct Simulation Monte Carlo model of Tenishev et al. (Tenishev, V.M., Combi, M.R., Davidsson, B. [2008]. Astrophys. J., 685, 659?677; Tenishev, V.M., Combi, M.R., Rubin, M. [2011]. Astrophys. J., 732) to reproduce the measurements of column density and rotational temperature of water in Comet 73P-B/Schwassmann–Wachmann 3 obtained with a very high spatial resolution of ~30 km using IRCS/Subaru in May 2006 (Bonev, B.P., Mumma, M.J., Kawakita, H., Kobayashi, H., Villanueva, G.L. [2008]. Icarus, 196, 241?248). For gas released solely from the cometary nucleus at a heliocentric distance of 1 AU, modeled rotational temperatures start at 110 K close to the surface and decrease to only several tens of degrees by 10–20 nucleus radii. However, the measured decay of both rotational temperature and column density with distance from the nucleus is much slower than predicted by this simple model. The addition of a substantial (distributed) source of gas from icy grains in the model slows the decay in rotational temperature and provides a more gradual drop in column density profiles. Together with a contribution of rotational heating of water molecules by electrons, the combined effects allow a much better match to the IRCS/Subaru observations. From the spatial distributions of water abundance and temperature measured in 73P/SW3-B, we have identified and quantified multiple mechanisms of release. The application of this tool to other comets may permit such studies over a range of heliocentric and geocentric distances.  相似文献   

5.
Sodium D-line emission (5890 and 5896 Å) has been observed in bright comets at small to moderate heliocentric distances for many years. We present here the first in depth study of a set of spatial profiles of the sodium D-line emission constructed from long-slit spectroscopic observations of Comets Bennett C/1969 Y1, Kohoutek C/1973 D1, and 1P/Halley. Preliminary analysis of these data lead to the suggestion by Combiet al.(1996,A Plasmagenic Source for Gaseous Sodium in Comets.Presented at Asteroids, Comets, Meteors) that a major fraction of the gaseous sodium was produced by an extended source in the tail and that the source was likely to be some charged species. Dissociative recombination of a molecular ion was suggested. The spatial profiles of sodium are not like typical neutral species. The inner region from the nucleus (<2 × 104km) can be explained in terms of a model that accounts for collisional entrainment in the expanding coma and the heliocentric velocity dependent fluorescence rate and radiation pressure acceleration. This source comes either directly from the nucleus or has a very short-lived parent (?103s). Away from the nucleus, down the tail and to the sides, the spatial profile slope flattens, indicating a second extended source. The striking similarity of the extended region of sodium spatial profiles with those of ions (H2O+), both along and perpendicular to the tail, is highly suggestive that an ion source is responsible for the production of the extended component of gaseous sodium in the coma. The production rate of the highly variable extended source when present is four to five times that of the direct nucleus source. Observations (Schneideret al., 1991,Science253,1394–1397) and quantitative model analyses (Wilson and Schneider, 1994,Icarus111,31–34) have shown that a dissociative recombination of a sodium bearing molecular ion (NaX+) produces a peculiar component of the neutral sodium near Io. It displays a variable spatial morphology consistent with that of a molecular ion source “picked-up” in the plasma torus corotating with Jupiter's magnetic field. The rapid onset of the appearance of gaseous sodium in bright comets, its spatial distribution in the extended coma and near tail, and recent observations of sodium tails are all consistent with our original suggestion of this plasma source for sodium in comets.  相似文献   

6.
We have investigated the role that energetic hydrogen atoms, produced in cometary comae by the photodissociation of water molecules, could have in driving chemical reactions that are endothermic, or possess activation energy barriers. We have developed a model of the density and energy spectrum of these atoms in the coma and have incorporated a number of reactions driven by fast H atoms into our existing coma model. We find that, in high-activity comets close to the Sun, such reactions are competitive with direct photodissociation as the principal destruction mechanism for molecules with long lifetimes in the solar radiation field. We show that measurements of the CH2OH : CH3O ratio may be used to assess the importance of suprathermal reactions in the coma. We also confirm that these reactions are probably unable to account for the observed HNC : HCN ratios.  相似文献   

7.
《Planetary and Space Science》1999,47(6-7):745-763
An improved magnetohydrodynamic (MHD) model with chemistry is presented. The analysis of the source and sink terms for H2O + shows that for small comets up to 11% of water molecules are finally ionized. For large comets (such as Halley) this fraction decreases to less than 3%. From the MHD scaling laws a similarity law for the individual ion densities is deduced which takes into account that the mother molecules are depleted by dissociation. This is applied to H2O + ions. Radial density profiles from model calculations, observations by Giotto near comet Halley, and ground based observations of three comets confirm this scaling law for H2O + ions. From the similarity law for the density a scaling law for the column density is derived which is more convenient to apply for ground based observations. From these scaling laws methods are derived which allow the determination of the water production rate from the ground based images of the H2O + ions. Finally, the two dimensional images of model column densities are compared with observations.  相似文献   

8.
Comet 1996 B2 (Hyakutake) displayed strong evidence for break-up, with a prominent antisunward dust spike and fragments traveling antisunward for many days after an eruptive event in late March 1996. Because of its high orbital inclination and rapid southward motion after perihelion, its post-perihelion activity was not well monitored from the ground. The SWAN all-sky Lyman-alpha camera on the SOHO spacecraft was ideally placed for long-term monitoring of the hydrogen coma of Comet Hyakutake both before and after perihelion. The SWAN images were analyzed with a new time-resolved model (TRM) that provides daily averages of the water production rate and an estimate of the hydrogen atom lifetime (dominated by charge exchange with solar wind protons) during extended periods throughout the apparition. A long-term variation of water production rate of , where r is the heliocentric distance in AU was found. The daily average values of the production rate covered the March 19 outburst and two more outbursts seen in the April before perihelion, which had progressively shorter durations at respectively smaller heliocentric distances. The long-term variation of the production rate was found to be consistent with the seasonal effect predicted by the jet rotation model of Schleicher and Woodney [2003. Analyses of dust coma morphology of Comet Hyakutake (1996 B2) near perigee: Outburst behavior, jet motion, source region locations, and the nucleus pole orientation. Icarus 162, 190-213] when added to a more steady source that is about two-thirds of the maximum of the jet source. The seasonal effect in their model found the dust jet source largely not illuminated after perihelion, coinciding with somewhat reduced overall activity and the absence of outbursts and fragmentation. The locations of the dust jets appear to be responsible for the outbursts and fragmentation before perihelion. The erratic behavior of the pre-perihelion jet sources as contrasted with the smoother variation from the rest of the surface after perihelion indicates there is a strong heterogeneity in the physical make-up of active areas on the nucleus.  相似文献   

9.
The observation of ions created by ionization of cometary gas, either by ground-based observations or byin situmeasurements can give us useful information about the gas production and composition of comets. However, due to the interaction of ions with the magnetized solar wind and their high chemical reactivity, it is not possible to relate measured ion densities (or column densities) directly to the parent gas densities. In order to quantitatively analyze measured ion abundances in cometary comae it is necessary to understand their dynamics and chemistry. We have developed a detailed ion–chemical network of cometary atmospheres. We include production of ions by photo- and electron impact-ionization of a background neutral atmosphere, charge exchange of solar wind ions with cometary atoms/molecules, reactions between ions and molecules, and dissociative recombination of molecular ions with thermal electrons. By combining the ion–chemical network with the three-dimensional plasma flow as computed by a new fully three-dimensional MHD model of cometary plasma environments (Gombosiet al.1996) we are able to compute the density of the major cometary ions everywhere in the coma. The input parameters for our model are the solar wind conditions (density, speed, temperature, magnetic field) and the composition and production rate of the gas. We applied our model to Comet P/Halley in early March 1986, for which the input parameters are reasonably well known. We compare the resulting column density of H2O+with ground-based observations of H2O+from DiSantiet al.(1990). The results of our model are in good agreement with both the spatial distribution and the absolute abundance of H2O+and with their variations with the changing overall water production rate between two days. The results are encouraging that it will be possible to obtain production rates of neutral cometary constituents from observations of their ion products.  相似文献   

10.
Magnitudes of comets P/Giacobini-Zinner (1984e), P/Halley (1982i), P/Hartley-Good (1985 1), and Thiele (1985 m) in the bandpasses of the standard IHW comet filters are presented. For comet P/Halley production rates for CN, C3, C2, and solids were derived. For the gaseous components these show a strong dependence on heliocentric distance. The dependence is less steep for the solids which may be due to relatively pronounced backscattering properties in case of comet P/Halley. During one night (1985 Dec. 22/23) intensity profiles along three sections through the coma of comet P/Halley were measured. Compared with theoretical profiles they show a global anisotropy of the coma and possibly local structure.  相似文献   

11.
T.A. Ellis 《Icarus》2008,194(1):357-367
Intensity profiles were obtained for the C2 and CN emission and blue continuum of Comet Bradfield (1987s), from observations obtained over a 10 week period starting shortly before perihelion. Model intensity profiles were produced and then fitted to the observed profiles, and used to put constraints on some of the dust and gas parameters. Most of these parameters, including the gas and dust outflow speeds from the cometary nucleus and the molecular lifetimes, were consistent with expected values. The best fitting models incorporate significant dust particle fragmentation and extended emission of CN from dust, both occurring in the inner coma. In addition, although there may have been enhancement of gas and dust emission on the sunward side of the cometary nucleus, it appears that the tailward side maintained a significant level of activity.  相似文献   

12.
Very-high spectral resolution observations of the neutral Na emission have enabled measurements of the velocity dispersions of the Na atoms within ∼40,000 km of the opto center of Hale-Bopp. Asymmetric Na D line profiles imply both an in situ or core Na source and a secondary Na source at locations within the inner coma. The core velocity distribution had a FWHM of 2 km s-1. The extended source FWHM increased with distance from the nucleus (up to ∼6 km s-1, but appeared smaller in the more dusty regions (∼2.5–3.0 km s-1) of the inner coma. The D2/D1 line strength ratio was consistent with an optically thin inner coma. Within 5,000 km of the opto center the continuum spatial intensity profiles decreased as ∼r-1 while the Na D emission decreased at less than r-1. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Methane and ammonia abundances in the coma of Halley are derived from Giotto IMS data using an Eulerian model of chemical and physical processes inside the contact surface to simulate Giotto HIS ion mass spectral data for mass-to-charge ratios (m/q) from 15 to 19. The ratio m/q = 19/18 as a function of distance from the nucleus is not reproduced by a model for a pure water coma. It is necessary to include the presence of NH3, and uniquely NH3, in coma gases in order to explain the data. A ratio of production rates Q(NH3)/Q(H2O) = 0.01-0.02 results in model values approximating the Giotto data. Methane is identified as the most probable source of the distinct peak at m/q = 15. The observations are fit best with Q(CH4)/Q(H2O) = 0.02. The chemical composition of the comet nucleus implied by these production rate ratios is unlike that of the outer planets. On the other hand, there are also significant differences from observations of gas phase interstellar material.  相似文献   

14.
The study presents the results of numerical simulations of mass-transfer processes in the near-surface layer of the cometary nucleus and in the inner part of the cometary atmosphere, which is formed under the action of solar radiation. The gas-kinetic model of the inner part of the cometary atmosphere surrounding a spherical nucleus (Skorov et al., 2004) is extended to the case of a nonspherical nucleus with axial symmetry. After high-resolution images of comets 19P/Borrelly and Wild 2 have been obtained by Deep Space 1 and Stardust spacecraft, such an extension seems to be vital and important. The nucleus and the inner part of the coma are closely related to each other because of the permanent exchange of energy and mass; therefore, they are modeled consistently. As in the first part of our study, the boundary conditions at the inner boundary of the simulation domain, which are necessary for gas-kinetic simulations, were determined from the self-consistent model of heat and mass transfer in a porous cometary nucleus that was developed earlier by the authors. The model took into account the volumetric character of the radiation absorption in a porous sublimating medium, the kinetic regime of the transport of sublimation products in the pores, and the backward gas fluxes from the coma due to intermolecular collisions. We considered different models of the nucleus structure that determined the effective gas production. Using the direct simulation Monte Carlo method, we computed the two-dimensional gas flow from a heterogeneous nonspherical cometary nucleus. The simulations were performed using the SMILE software. The parallel computer implementation of the software made it possible to calculate the spatial structure of the gas flow for the entire circumnucleus zone.  相似文献   

15.
I apply the well controlled hydro-PM (HPM) approximation of Gnedin &38; Hui to model the column density distribution of the Ly α forest for 25 different flat cosmological scenarios, including variants of the standard cold dark matter (CDM), tilted CDM, CDM with a cosmological constant, and cold + hot dark matter (CHDM) models. I show that, within the accuracy of the HPM approximation, the slope of the column density distribution reflects the degree of non-linearity of the cosmic gas distribution and is a function of the rms linear density fluctuation at the characteristic filtering scale only. The amplitude of the column density distribution, expressed as the value for the ionizing intensity, is derived as a function of the cosmological parameters (to about 40 per cent accuracy). The observational data are currently consistent with the value for the ionizing intensity being constant in the redshift interval z  ∼ −4.  相似文献   

16.
对称模式下的CHAMP弯曲角掩星数据同化   总被引:5,自引:0,他引:5  
简单介绍了无线电掩星技术探测行星大气的发展史,列举了该技术中存在的若干问题。从 Eyre提出的统计学的最优估计反演方法,比较了用相位、弯曲角和折射率作为同化因子时出现的问题和各自的优缺点。对弯曲角同化因子,以欧洲中期天气预报中心(ECMWF)资料为背景场,运用一维变分技术,进行CHAMP掩星观测资料变分同化反演,从而获得水汽和温度剖面。将反演获得的气象剖面与非同化的剖面作比较,并且采用相应的探空气球资料作为验证,可以看出变分同化技术比传统的标准反演技术反演误差小。证实掩星数据资料的一维变分同化技术可以改进目前的数值天气预报模式。  相似文献   

17.
Benzene has recently been observed in the atmosphere of Jupiter, Saturn and also Titan. This compound is required as a precursor for larger aromatic species (PAHs) that may be part of aerosol particles. Several photochemical models have tried to reproduce the observed quantities of benzene in the atmospheres of Jupiter (both low- and high-latitudes regions), Saturn and Titan. In this present work, we have conducted a sensitivity study of benzene and PAHs formation, using similar photochemical schemes both for Titan and Jupiter (low-latitudes conditions). Two different photochemical schemes are used, for which the modeled composition fairly agrees with observational constraints, both for Jupiter and Titan. Some disagreements are specific to each atmospheric case, which may point to needed improvements, especially in kinetic data involved in the corresponding chemical cycles. The observed benzene mole fraction in Titan's stratosphere is reproduced by the model, but in the case of Jupiter, low-latitudes benzene abundance is only 3% of the observed column density, which may indicate a possible influence of latitudinal transport, since abundance of benzene is much higher in auroral regions. Though, the photochemical scheme of C6 compounds at temperature and pressure conditions of planetary atmospheres is still very uncertain. Several variations are therefore done on key reactions in benzene production. These variations show that benzene abundance is mainly sensitive to reactions that may affect the propargyl radical. The effect of aerosol production on hydrocarbons composition is also tested, as well as possible heterogenous recombination of atomic hydrogen in the case of Titan. PAHs are a major pathway for aerosol production in both models. The mass production profiles for aerosols are discussed for both Titan and Jupiter. Total production mass fluxes are roughly three times the one expected by observational constraints in both cases. Such comparative studies are useful to bring more constraints on photochemical models.  相似文献   

18.
Chiuderi Drago  F.  Alissandrakis  C.E.  Bastian  T.  Bocchialini  K.  Harrison  R.A. 《Solar physics》2001,199(1):115-132
In this paper we compare simultaneous extreme ultraviolet (EUV) line intensity and microwave observations of a filament on the disk. The EUV line intensities were observed by the CDS and SUMER instruments on board SOHO and the radio data by the Very Large Array and the Nobeyama radioheliograph. The main results of this study are the following: (1) The Lyman continuum absorption is responsible for the lower intensity observed above the filament in the EUV lines formed in the transition region (TR) at short wavelengths. In the TR lines at long wavelengths the filament is not visible. This indicates that the proper emission of the TR at the filament top is negligible. (2) The lower intensity of coronal lines and at radio wave lengths is due to the lack of coronal emission: the radio data supply the height of the prominence, while EUV coronal lines supply the missing hot matter emission measure (EM). (3) Our observations support a prominence model of cool threads embedded in the hot coronal plasma, with a sheath-like TR around them. From the missing EM we deduce the TR thickness and from the neutral hydrogen column density, derived from the Lyman continuum and Hei absorption, we estimate the hydrogen density in the cool threads.  相似文献   

19.
Typical intensity profiles across a sunspot at several heliocentric angles are selected from recent observations of the Wilson Effect. In addition, the profile of the mean intensity at the surface of the spot is inferred from these observed profiles.With these data, the transfer equation is solved for the two-dimensional source function distribution within the sunspot for several models of the opacity distribution. For an opacity model in which unit optical depth in the umbra occurs at least 700 km below unit optical depth in the mean photosphere, it is possible to reproduce qualitatively all the features of the observed profiles.Although no assumption is made about the extent of the umbra below the surface, these solutions clearly show that, at a depth of 700 km below unit optical depth in the photosphere, the diameter of the umbral region, which is 10800 km at the surface, has increased to about 12000 km. Thus the shape of the umbral region below the surface is part of an inverted cone of semi-vertical angle approximately 45°. The run of gas pressure and density in the umbra is computed for the model and compared with the corresponding photospheric values.Of the National Bureau of Standards and University of Colorado.  相似文献   

20.
We have tried to determine the rate of chemical evolution of high redshift galaxies from the observed redshift distribution of the heavy element absorption systems in the spectra of QSOs, taking into account the evolution in the intensity of the metagalactic UV ionizing radiation background, the radius and/or the co-moving number density of, and the fraction of mass in the form of gas in, the absorbers. The data for both the Lyman limit systems and the C IV systems have been fitted simultaneously. It seems that the abundance of carbon has possibly increased by about a factor of 5 to 20 from the cosmic time corresponding to the redshift ≃ 4 to 2. The data also suggest that either the radius or the co-moving number density of the galaxies increased with redshift up to z = 2.0 and decreased slowly thereafter. The total mass of the halo gas was higher in the past, almost equal to the entire mass of the galaxy at z = 4. The hydrogen column density distribution for Lyman limit systems predicted by the model is in agreement with the observed distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号