首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Venus was observed at 2.4 and 3.7 μm with a resolving power of 4×104 using the long-slit high-resolution spectrograph CSHELL at NASA IRTF. The observations were made along a chord that covered a latitude range of ± 60° at a local time near 8:00. The continuous reflectivity and limb brightening at 2.4 μm are fitted by the clouds with a single scattering albedo 1−a=0.01 and a pure absorbing layer with τ=0.09 above the clouds. The value of 1−a agrees with the refractive index of H2SO4 (85%) and the particle radius of 1 μm. The absorbing layer is similar to that observed by the UV spectrometer at the Pioneer Venus orbiter. However, its nature is puzzling. CO2 was measured using its R32 and R34 lines. The retrieved product of the CO2 abundance and airmass is constant at 1.9 km-atm along the instrument slit in the latitude range of ± 60°. The CO mixing ratio (measured using the P21 line) is rather constant at 70 ppm, and its variations of ∼10% may be caused by atmospheric dynamics. The observed value is higher than the 50 ppm retrieved previously from a spectrum of the full disk, possibly, because of some downward extension of the mesospheric morningside bulge of CO. The observations of the HF R3 line reveal a constant HF mixing ratio of 3.5±0.5 ppb within ± 60° of latitude, which is within the scatter in the previous measurements of HF. OCS has been detected for the first time at the cloud tops by summing 17 lines of the P-branch. The previous detections of OCS refer to the lower atmosphere at 30-35 km. The retrieved OCS mixing ratio varies with a scale height of 1 to 3 km. The mean OCS mixing ratio is ∼2 ppb at 70 km and ∼14 ppb at 64 km. Vertical motions in the atmosphere may change the OCS abundance. The detected OCS should significantly affect Venus' photochemistry. A sensitive search for H2S using its line at 2688.93 cm−1 results in a 3 sigma upper limit of 23 ppb, which is more restrictive than the previous limit of 100 ppb.  相似文献   

2.
Variations of the upper cloud boundary and the CO, HF, and HCl mixing ratios were observed using the CSHELL spectrograph at NASA IRTF. The observations were made in three sessions (October 2007, January 2009, and June 2009) at early morning and late afternoon on Venus in the latitude range of ±60°. CO2 lines at 2.25 μm reveal variations of the cloud aerosol density (∼25%) and scale height near 65 km. The measured reflectivity of Venus at low latitudes is 0.7 at 2.25 μm and 0.028 at 3.66 μm, and the effective CO2 column density is smaller at 3.66 μm than those at 2.25 μm by a factor of 4. This agrees with the almost conservative multiple scattering at 2.25 μm and single scattering in the almost black aerosol at 3.66 μm. The expected difference is just a factor of (1 − g)−1 = 4, where g = 0.75 is the scattering asymmetry factor for Venus’ clouds. The observed CO mixing ratio is 52 ± 4 ppm near 08:00 and 40 ± 4 ppm near 16:30 at 68 km, and the higher ratio in the morning may be caused by extension of the CO morningside bulge to the cloud tops. The observed weak limb brightening in CO indicates an increase of the CO mixing ratio with altitude. HF is constant at 3.5 ± 0.2 ppb at 68 km in both morningside and afternoon observations and in the latitude range ±60°. Therefore the observations do not favor a bulge of HF, though HF is lighter than CO. Probably a source in the upper atmosphere facilitates the bulge formation. The recent measurements of HCl near 70 km are controversial (0.1 and 0.74 ppm) and require either a strong sink or a strong source of HCl in the clouds. The HCl lines of the (2-0) band are blended by the solar and telluric lines. Therefore we observed the P8 lines of the (1-0) band at 3.44 μm. These lines are spectrally clean and result in the HCl mixing ratio of 0.40 ± 0.03 ppm at 74 km. HCl does not vary with latitude within ±60°. Our observations support a uniformly mixed HCl throughout the Venus atmosphere.  相似文献   

3.
While CO, HCl, and HF, that were considered in the first part of this work, have distinct absorption lines in high-resolution spectra and were detected four decades ago, the lines of HDO, OCS, and SO2 are either very weak or blended by the telluric lines and have not been observed previously by ground-based infrared spectroscopy at the Venus cloud tops. The H2O abundance above the Venus clouds is typically below the detection limit of ground-based IR spectroscopy. However, the large D/H ratio on Venus facilitates observations of HDO. Converted to H2O with D/H ≈ 200, our observations at 2722 cm−1 in the Venus afternoon show a H2O mixing ratio of ∼1.2 ppm at latitudes between ±40° increasing to ±60° by a factor of 2. The observations in the early morning reveal the H2O mixing ratio that is almost constant at 2.9 ppm within latitudes of ±75°. The measured H2O mixing ratios refer to 74 km. The observed increase in H2O is explained by the lack of photochemical production of sulfuric acid in the night time. The recent observations at the P-branch of OCS at 4094 cm−1 confirm our detection of OCS. Four distributions of OCS along the disk of Venus at various latitudes and local times have been retrieved. Both regular and irregular components are present in the variations of OCS. The observed OCS mixing ratio at 65 km varies from ∼0.3 to 9 ppb with the mean value of ∼3 ppb. The OCS scale height is retrieved from the observed limb darkening and varies from 1 to 4 km with a mean value of half the atmospheric scale height. SO2 at the cloud tops has been detected for the first time by means of ground-based infrared spectroscopy. The SO2 lines look irregular in the observed spectra at 2476 cm−1. The SO2 abundances are retrieved by fitting by synthetic spectra, and two methods have been applied to determine uncertainties and detection limits in this fitting. The retrieved mean SO2 mixing ratio of 350 ± 50 ppb at 72 km favors a significant increase in SO2 above the clouds since the period of 1980-1995 that was observed by the SOIR occultations at Venus Express. Scale heights of OCS and SO2 may be similar, and the SO2/OCS ratio is ∼500 and may be rather stable at 65-70 km under varying conditions on Venus.  相似文献   

4.
We analyze observations taken with Cassini’s Visual and Infrared Mapping Spectrometer (VIMS), to determine the current methane and haze latitudinal distribution between 60°S and 40°N. The methane variation was measured primarily from its absorption band at 0.61 μm, which is optically thin enough to be sensitive to the methane abundance at 20-50 km altitude. Haze characteristics were determined from Titan’s 0.4-1.6 μm spectra, which sample Titan’s atmosphere from the surface to 200 km altitude. Radiative transfer models based on the haze properties and methane absorption profiles at the Huygens site reproduced the observed VIMS spectra and allowed us to retrieve latitude variations in the methane abundance and haze. We find the haze variations can be reproduced by varying only the density and single scattering albedo above 80 km altitude. There is an ambiguity between methane abundance and haze optical depth, because higher haze optical depth causes shallower methane bands; thus a family of solutions is allowed by the data. We find that haze variations alone, with a constant methane abundance, can reproduce the spatial variation in the methane bands if the haze density increases by 60% between 20°S and 10°S (roughly the sub-solar latitude) and single scattering absorption increases by 20% between 60°S and 40°N. On the other hand, a higher abundance of methane between 20 and 50 km in the summer hemisphere, as much as two times that of the winter hemisphere, is also possible, if the haze variations are minimized. The range of possible methane variations between 27°S and 19°N is consistent with condensation as a result of temperature variations of 0-1.5 K at 20-30 km. Our analysis indicates that the latitudinal variations in Titan’s visible to near-IR albedo, the north/south asymmetry (NSA), result primarily from variations in the thickness of the darker haze layer, detected by Huygens DISR, above 80 km altitude. If we assume little to no latitudinal methane variations we can reproduce the NSA wavelength signatures with the derived haze characteristics. We calculate the solar heating rate as a function of latitude and derive variations of ∼10-15% near the sub-solar latitude resulting from the NSA. Most of the latitudinal variations in the heating rate stem from changes in solar zenith angle rather than compositional variations.  相似文献   

5.
We present a study of the equatorial region of Jupiter, between latitudes ∼15°S and ∼15°N, based on Cassini ISS images obtained during the Jupiter flyby at the end of 2000, and HST images acquired in May and July 2008. We examine the structure of the zonal wind profile and report the detection of significant longitudinal variations in the intensity of the 6°N eastward jet, up to 60 m s−1 in Cassini and HST observations. These longitudinal variations are, in the HST case, associated with different cloud morphology. Photometric and radiative transfer analysis of the cloud features used as tracers in HST images show that at most there is only a small height difference, no larger than ∼0.5-1 scale heights, between the slow (∼100 m s−1) and fast (∼150 m s−1) moving features. This suggests that speed variability at 6°N is not dominated by vertical wind shears but instead we propose that Rossby wave activity is the responsible for the zonal variability. Removing this variability, we find that Jupiter’s equatorial jet is actually symmetric relative to equator with two peaks of ∼140-150 m s−1 located at latitudes 6°N and 6°S and at a similar pressure level. We also study the local dynamics of particular equatorial features such as several dark projections associated with 5 μm hot spots and a large, long-lived feature called the White Spot (WS) located at 6°S. Convergent flow at the dark projections appears to be a characteristic which depends on the particular morphology and has only been detected in some cases. The internal flow field in the White Spot indicates that it is a weakly rotating quasi-equatorial anticyclone relative to the ambient meridionally sheared flow.  相似文献   

6.
We have obtained spatially resolved near-infrared spectroscopy of the Venus nightside on 15 nights over three observing seasons. We use the depth of the CO absorption band at 2.3 μm to map the two-dimensional distribution of CO across both hemispheres. Radiative transfer models are used to relate the measured CO band depth to the volume mixing ratio of CO. The results confirm previous investigations in showing a general trend of increased CO abundances at around 60° latitude north and south as compared with the equatorial regions. Observations taken over a few nights generally show very similar CO distributions, but significant changes are apparent over longer periods. In past studies it has been assumed that the CO latitudinal variation occurs near 35 km altitude, at which K-band sensitivity to CO is greatest. By modeling the detailed spectrum of the excess CO at high latitudes we show that it occurs at altitudes around 45 km, much higher than has previously been assumed, and that there cannot be significant contribution from levels of 36 km or lower. We suggest that this is most likely due to downwelling of CO-rich gas from the upper atmosphere at these latitudes, with the CO being removed by around 40 km through chemical processes such as the reaction with SO3.  相似文献   

7.
Chemical kinetic model for the lower atmosphere of Venus   总被引:1,自引:0,他引:1  
A self-consistent chemical kinetic model of the Venus atmosphere at 0-47 km has been calculated for the first time. The model involves 82 reactions of 26 species. Chemical processes in the atmosphere below the clouds are initiated by photochemical products from the middle atmosphere (H2SO4, CO, Sx), thermochemistry in the lowest 10 km, and photolysis of S3. The sulfur bonds in OCS and Sx are weaker than the bonds of other elements in the basic atmospheric species on Venus; therefore the chemistry is mostly sulfur-driven. Sulfur chemistry activates some H and Cl atoms and radicals, though their effect on the chemical composition is weak. The lack of kinetic data for many reactions presents a problem that has been solved using some similar reactions and thermodynamic calculations of inverse processes. Column rates of some reactions in the lower atmosphere exceed the highest rates in the middle atmosphere by two orders of magnitude. However, many reactions are balanced by the inverse processes, and their net rates are comparable to those in the middle atmosphere. The calculated profile of CO is in excellent agreement with the Pioneer Venus and Venera 12 gas chromatographic measurements and slightly above the values from the nightside spectroscopy at 2.3 μm. The OCS profile also agrees with the nightside spectroscopy which is the only source of data for this species. The abundance and vertical profile of gaseous H2SO4 are similar to those observed by the Mariner 10 and Magellan radio occultations and ground-based microwave telescopes. While the calculated mean S3 abundance agrees with the Venera 11-14 observations, a steep decrease in S3 from the surface to 20 km is not expected from the observations. The ClSO2 and SO2Cl2 mixing ratios are ∼10−11 in the lowest scale height. The existing concept of the atmospheric sulfur cycles is incompatible with the observations of the OCS profile. A scheme suggested in the current work involves the basic photochemical cycle, that transforms CO2 and SO2 into SO3, CO, and Sx, and a minor photochemical cycle which forms CO and Sx from OCS. The net effect of thermochemistry in the lowest 10 km is formation of OCS from CO and Sx. Chemistry at 30-40 km removes the downward flux of SO3 and the upward flux of OCS and increases the downward fluxes of CO and Sx. The geological cycle of sulfur remains unchanged.  相似文献   

8.
We present a study of the vertical structure of clouds and hazes in the upper atmosphere of Saturn's Southern Hemisphere during 1994-2003, about one third of a Saturn year, based on Hubble Space Telescope images. The photometrically calibrated WFPC2 images cover the spectral region between the near-UV (218-255 nm) and the near-IR (953-1042 nm), including the 890 nm methane band. Using a radiative transfer code, we have reproduced the observed center-to-limb variations in absolute reflectivity at selected latitudes which allowed us to characterize the vertical structure of the entire hemisphere during this period. A model atmosphere with two haze layers has been used to study the variation of hazes with latitude and to characterize their temporal changes. Both hazes are located above a thick cloud, putatively composed of ammonia ice. An upper thin haze in the stratosphere (between 1 and 10 mbar) is found to be persistent and formed by small particles (radii ∼0.2 μm). The lower thicker haze close to the tropopause level shows a strong latitudinal dependence in its optical thickness (typically τ∼20-40 at the equator but τ∼5 at the pole, at 814 nm). This tropospheric haze is blue-absorbent and extends from 50 to 100 mbar to about ∼400 mbar. Both hazes show temporal variability, but at different time-scales. First, there is a tendency for the optical thickness of the stratospheric haze to increase at all latitudes as insolation increases. Second, the tropospheric haze shows mid-term changes (over time scales from months to 1-2 years) in its optical thickness (typically by a factor of 2). Such changes always occur within a rather narrow latitude band (width ∼5-10°), affecting almost all latitudes but at different times. Third, we detected a long-term (∼10 year) decrease in the blue single-scattering albedo of the tropospheric haze particles, most intense in the equatorial and polar areas. Long-term changes follow seasonal insolation variations smoothly without any apparent delay, suggesting photochemical processes that affect the particles optical properties as well as their size. In contrast, mid-term changes are sudden and show various time-scales, pointing to a dynamical origin.  相似文献   

9.
Cassini/VIMS limb observations have been used to retrieve vertical profiles of hydrogen cyanide (HCN) from its 3 μm emission in the region from 600 to 1100 km altitude at daytime. While the daytime emission is large up to about 1100 km, it vanishes at nighttime at very low altitudes, suggesting that the daytime emission originates under non-LTE conditions. The spectrally integrated radiances around 3.0 μm shows a monotonically decrease with tangent altitude, and a slight increase with solar zenith angle in the 40-80° interval around 800 km.A sophisticated non-LTE model of HCN energy levels has been developed in order to retrieve the HCN abundance. The population of the HCN 0 00 1 energy level, that contributes mostly to the 3.0 μm limb radiance, has been shown to change significantly with the solar zenith angle (SZA) and HCN abundance. Also its population varies with the collisional rate coefficients, whose uncertainties induced errors in the retrieved HCN of about 10% at 600-800 km and about 5% above. HCN concentrations have been retrieved from a set of spectra profiles, covering a wide range of latitudes and solar zenith angles, by applying a line-by-line inversion code. The results show a significant atmospheric variability above ∼800 km with larger values for weaker solar illumination. The HCN shows a very good correlation with solar zenith angles, irrespective of latitude and local time, suggesting that HCN at these high altitudes is in or close to photochemical equilibrium. A comparison with UVS and UVIS measurements show that these are close to the lower limit (smaller SZAs) of the VIMS observations above 750 km. However, they are in reasonable agreement when combining the rather large UV measurement errors and the atmospheric variability observed in VIMS. A comparison of the mean profile derived here with the widely used profile reported by Yelle and Griffith (Yelle R.V., Griffith, C.A. [2003]. Icarus 166, 107-115) shows a good agreement for altitudes ranging from 850 to 1050 km, while below these altitudes our result exhibits higher concentrations.  相似文献   

10.
We present here the annual behavior of atmospheric water vapor on Mars, as observed by the OMEGA spectrometer on board Mars Express during its first martian year. We consider all the different features of the cycle of water vapor: temporal evolution, both at a seasonal and at a diurnal scale; longitudinal distribution; and the vertical profile, through the variations in the saturation height. We put our results into the context of the current knowledge on the water cycle through a systematic comparison with the already published datasets. The seasonal behavior is in very good agreement with past and simultaneous retrievals both qualitatively and quantitatively, within the uncertainties. The average water vapor abundance during the year is ∼10 pr. μm, with an imbalance between northern and southern hemisphere, in favor of the first. The maximum of activity, up to 60 pr. μm, occurs at high northern latitudes during local summer and shows the dominance of the northern polar cap within the driving processes of the water cycle. A corresponding maximum at southern polar latitudes during the local summer is present, but less structured and intense. It reaches ∼25 pr. μm at its peak. Global circulation has some influence in shaping the water cycle, but it is less prominent than the results from previous instruments suggest. No significant correlation between water vapor column density and local hour is detected. We can constrain the amount of water vapor exchanged between the surface and the atmosphere to few pr. μm. This is consistent with recent results by OMEGA and PFS-LW. The action of the regolith layer on the global water cycle seems to be minor, but it cannot be precisely constrained. The distribution of water vapor on the planet, after removing the topography, shows the already known two-maxima system, over Tharsis and Arabia Terra. However, the Arabia Terra increase is quite fragmented compared with previous observations. A deep zone of minimum separates the two regions. The saturation height of water vapor is mainly governed by the variations of insolation during the year. It is confined within 5-15 km from the surface at aphelion, while in the perihelion season it stretches up to 55 km of altitude.  相似文献   

11.
Groundbased radio observations indicate that Jupiter's ammonia is globally depleted from 0.6 bars to at least 4-6 bars relative to the deep abundance of ∼3 times solar, a fact that has so far defied explanation. The observations also indicate that (i) the depletion is greater in belts than zones, and (ii) the greatest depletion occurs within Jupiter's local 5-μm hot spots, which have recently been detected at radio wavelengths. Here, we first show that both the global depletion and its belt-zone variation can be explained by a simple model for the interaction of moist convection with Jupiter's cloud-layer circulation. If the global depletion is dynamical in origin, then important endmember models for the belt-zone circulation can be ruled out. Next, we show that the radio observations of Jupiter's 5-μm hot spots imply that the equatorial wave inferred to cause hot spots induces vertical parcel oscillation of a factor of ∼2 in pressure near the 2-bar level, which places important constraints on hot-spot dynamics. Finally, using spatially resolved radio maps, we demonstrate that low-latitude features exceeding ∼4000 km diameter, such as the equatorial plumes and large vortices, are also depleted in ammonia from 0.6 bars to at least 2 bars relative to the deep abundance of 3 times solar. If any low-latitude features exist that contain 3-times-solar ammonia up to the 0.6-bar ammonia condensation level, they must have diameters less than ∼4000 km.  相似文献   

12.
Jupiter's equatorial atmosphere, much like the Earth's, is known to show quasi-periodic variations in temperature, particularly in the stratosphere, but variations in other jovian atmospheric tracers have not been studied for any correlations to these oscillations. Data taken at NASA's Infrared Telescope Facility (IRTF) from 1979 to 2000 were used to obtain temperatures at two levels in the atmosphere, corresponding to the upper troposphere (250 mbar) and to the stratosphere (20 mbar). We find that the data show periodic signals at latitudes corresponding to the troposphere zonal wind jets, with periods ranging from 4.4 (stratosphere, 95% confidence at 4° S planetographic latitude) to 7.7 years (troposphere, 97% confidence at 6° N). We also discuss evidence that at some latitudes the troposphere temperature variations are out of phase from the stratosphere variations, even where no periodicity is evident. Hubble Space Telescope images were used, in conjunction with Voyager and Cassini data, to track small changes in the troposphere zonal winds from 20° N to 20° S latitude over the 1994-2000 time period. Oscillations with a period of 4.5 years are found near 7°-8° S, with 80-85% significance. Further, the strongest evidence for a QQO-induced tropospheric wind change tied to stratospheric temperature change occurs near these latitudes, though tropospheric temperatures show little periodicity here. Comparison of thermal winds and measured zonal winds for three dates indicate that cloud features at other latitudes are likely tracked at pressures that can vary by up to a few hundred millibar, but the cloud altitude change required is too large to explain the wind changes measured at 7° S.  相似文献   

13.
Using the SPICAV-UV spectrometer aboard Venus Express in nadir mode, we were able to derive spectral radiance factors in the middle atmosphere of Venus in the 170-320 nm range at a spectral resolution of R ? 200 during 2006 and 2007 in the northern hemisphere. By comparison with a radiative transfer model of the upper atmosphere of Venus, we could derive column abundance above the visible cloud top for SO2 using its spectral absorption bands near 280 and 220 nm. SO2 column densities show large temporal and spatial variations on a horizontal scale of a few hundred kilometers. Typical SO2 column densities at low latitudes (up to 50°N) were found between 5 and 50 μm-atm, whereas in the northern polar region SO2 content was usually below 5 μm-atm. The observed latitudinal variations follow closely the cloud top altitude derived by SPICAV-IR and are thought to be of dynamical origin. Also, a sudden increase of SO2 column density in the whole northern hemisphere has been observed in early 2007, possibly related to a convective episode advecting some deep SO2 into the upper atmosphere.  相似文献   

14.
The Cassini Composite Infrared Spectrometer (CIRS) has been used to derive the vertical and meridional variation of temperature and phosphine (PH3) abundance in Saturn's upper troposphere. PH3 has a significant effect on the measured radiances in the thermal infrared and between May 2004 and September 2005 CIRS recorded thousands of spectra in both the far (10-600 cm−1) and mid (600-1400 cm−1) infrared, at a variety of latitudes covering the southern hemisphere. Low spectral resolution (15 cm−1) data has been used to constrain the temperature structure of the troposphere between 100 and 500 mbar. The vertical distributions of phosphine and ammonia were retrieved from far-infrared spectra at the highest spectral resolution (0.5 cm−1), and lower resolution (2.5 cm−1) mid-infrared data were used to map the meridional variation in the abundance of phosphine in the 250-500 mbar range. Temperature variations at the 250 mbar level are shown to occur on the same scale as the prograde and retrograde jets in Saturn's atmosphere [Porco, C.C., and 34 colleagues, 2005. Science 307, 1243-1247]. The PH3 abundance at 250 mbar is found to be enhanced at the equator when compared with mid-latitudes. At mid latitudes we see anti-correlation between temperature and PH3 abundance at 250 mbar, phosphine being enhanced at 45° S and depleted at 25 and 55° S. The vertical distribution is markedly different polewards of 60-65° S, with depleted PH3 at 500 mbar but a slower decline in abundance with altitude when compared with the mid-latitudes. This variation is similar to the variations of cloud and aerosol parameters observed in the visible and near infrared, and may indicate the subsidence of tropospheric air at polar latitudes, coupled with a diminished sunlight penetration depth reducing the rate of PH3 photolysis in the polar region.  相似文献   

15.
E.A. Cloutis  P. Hudon  T. Hiroi 《Icarus》2011,216(1):309-346
We have examined the spectral reflectance properties and available modal mineralogies of 39 CM carbonaceous chondrites to determine their range of spectral variability and to diagnose their spectral features. We have also reviewed the published literature on CM mineralogy and subclassification, surveyed the published spectral literature and added new measurements of CM chondrites and relevant end members and mineral mixtures, and measured 11 parameters and searched pair-wise for correlations between all quantities. CM spectra are characterized by overall slopes that can range from modestly blue-sloped to red-sloped, with brighter spectra being generally more red-sloped. Spectral slopes, as measured by the 2.4:0.56 μm and 2.4 μm:visible region peak reflectance ratios, range from 0.90 to 2.32, and 0.81 to 2.24, respectively, with values <1 indicating blue-sloped spectra. Matrix-enriched CM spectra can be even more blue-sloped than bulk samples, with ratios as low as 0.85. There is no apparent correlation between spectral slope and grain size for CM chondrite spectra - both fine-grained powders and chips can exhibit blue-sloped spectra. Maximum reflectance across the 0.3-2.5 μm interval ranges from 2.9% to 20.0%, and from 2.8% to 14.0% at 0.56 μm. Matrix-enriched CM spectra can be darker than bulk samples, with maximum reflectance as low as 2.1%. CM spectra exhibit nearly ubiquitous absorption bands near 0.7, 0.9, and 1.1 μm, with depths up to 12%, and, less commonly, absorption bands in other wavelength regions (e.g., 0.4-0.5, 0.65, 2.2 μm). The depths of the 0.7, 0.9, and 1.1 μm absorption features vary largely in tandem, suggesting a single cause, specifically serpentine-group phyllosilicates. The generally high Fe content, high phyllosilicate abundance relative to mafic silicates, and dual Fe valence state in CM phyllosilicates, all suggest that the phyllosilicates will exhibit strong absorption bands in the 0.7 μm region (due to Fe3+-Fe2+ charge transfers), and the 0.9-1.2 μm region (due to Fe2+ crystal field transitions), and generally dominate over mafic silicates. CM petrologic subtypes exhibit a positive correlation between degree of aqueous alteration and depth of the 0.7 μm absorption band. This is consistent with the decrease in fine-grained opaques that accompanies aqueous alteration. There is no consistent relationship between degree of aqueous alteration and evidence for a 0.65 μm region saponite-group phyllosilicate absorption band. Spectra of different subsamples of a single CM can show large variations in absolute reflectance and overall slope. This is probably due to petrologic variations that likely exist within a single CM chondrite, as duplicate spectra for a single subsample show much less spectral variability. When the full suite of available CM spectra is considered, few clear spectral-compositional trends emerge. This indicates that multiple compositional and physical factors affect absolute reflectance, absorption band depths, and absorption band wavelength positions. Asteroids with reflectance spectra that exhibit absorption features consistent with CM spectra (i.e., absorption bands near 0.7 and 0.9 μm) include members from multiple taxonomic groups. This suggests that on CM parent bodies, aqueous alteration resulted in the consistent production of serpentine-group phyllosilicates, however resulting absolute reflectances and spectral shapes seen in CM reflectance spectra are highly variable, accounting for the presence of phyllosilicate features in reflectance spectra of asteroids across diverse taxonomic groups.  相似文献   

16.
The latitudinal variation of Saturn’s tropospheric composition (NH3, PH3 and AsH3) and aerosol properties (cloud altitudes and opacities) are derived from Cassini/VIMS 4.6-5.1 μm thermal emission spectroscopy on the planet’s nightside (April 22, 2006). The gaseous and aerosol distributions are used to trace atmospheric circulation and chemistry within and below Saturn’s cloud decks (in the 1- to 4-bar region). Extensive testing of VIMS spectral models is used to assess and minimise the effects of degeneracies between retrieved variables and sensitivity to the choice of aerosol properties. Best fits indicate cloud opacity in two regimes: (a) a compact cloud deck centred in the 2.5-2.8 bar region, symmetric between the northern and southern hemispheres, with small-scale opacity variations responsible for numerous narrow light/dark axisymmetric lanes; and (b) a hemispherically asymmetric population of aerosols at pressures less than 1.4 bar (whose exact altitude and vertical structure is not constrained by nightside spectra) which is 1.5-2.0× more opaque in the summer hemisphere than in the north and shows an equatorial maximum between ±10° (planetocentric).Saturn’s NH3 spatial variability shows significant enhancement by vertical advection within ±5° of the equator and in axisymmetric bands at 23-25°S and 42-47°N. The latter is consistent with extratropical upwelling in a dark band on the poleward side of the prograde jet at 41°N (planetocentric). PH3 dominates the morphology of the VIMS spectrum, and high-altitude PH3 at p < 1.3 bar has an equatorial maximum and a mid-latitude asymmetry (elevated in the summer hemisphere), whereas deep PH3 is latitudinally-uniform with off-equatorial maxima near ±10°. The spatial distribution of AsH3 shows similar off-equatorial maxima at ±7° with a global abundance of 2-3 ppb. VIMS appears to be sensitive to both (i) an upper tropospheric circulation (sensed by NH3 and upper-tropospheric PH3 and hazes) and (ii) a lower tropospheric circulation (sensed by deep PH3, AsH3 and the lower cloud deck).  相似文献   

17.
The three-dimensional structure of Saturn's intense equatorial jet from latitudes 8° N to 20° S is revealed from detailed measurements of the motions and spectral reflectivity of clouds at visible wavelengths on high resolution images obtained by the Cassini Imaging Science Subsystem (ISS) in 2004 and early 2005. Cloud speeds at two altitude levels are measured in the near infrared filters CB2 and CB3 matching the continuum (effective wavelengths 750 and 939 nm) and in the MT2 and MT3 filters matching two methane absorption bands (effective wavelengths 727 and 889 nm). Radiative transfer models in selective filters covering an ample spectral range (250-950 nm) require the existence of two detached aerosol layers in the equator: an uppermost thin stratospheric haze extending between the pressure levels ∼20 and 40 mbar (tropopause level) and below it, a dense tropospheric haze-cloud layer extending between 50 mbar and the base of the ammonia cloud (between ∼1 and 1.4 bar). Individual cloud elements are detected and tracked in the tropospheric dense haze at 50 and 700 mbar (altitude levels separated by 142 km). Between latitudes 5° N and 12° S the winds increase their velocity with depth from 265 m s−1 at the 50 mbar pressure level to 365 m s−1 at 700 mbar. These values are below the high wind speeds of 475 m s−1 measured at these latitudes during the Voyager era in 1980-1981, indicating that the equatorial jet has suffered a significant intensity change between that period and 1996-2005 or that the tracers of the flow used in the Voyager images were rooted at deeper levels than those in Cassini images.  相似文献   

18.
Nightside infrared limb spectra of the Venus upper atmosphere, obtained by Venus Express VIRTIS, show strong scattering of thermal radiation. This scattering of upward-going radiation into the line-of-sight is dominant below 82.5 km even at a wavelength of 5 μm, which is indicative of relatively large particles. We show that 1 μm-sized sulfuric acid particles (also known as mode 2 particles) provide a good fit to the VIRTIS limb data at high altitudes. We retrieve vertical profiles of the mode 2 number density between 75 and 90 km at two latitude ranges: 20-30°N and 47-50°N. Between 20 and 30°N, scattering by mode 2 particles is the main source of radiance for altitudes between 80 and 85 km. Above altitudes of 85 km smaller particles can also be used to fit the spectra. Between 47 and 50°N mode 2 number densities are generally lower than between 20 and 30°N and the profiles show more variability. This is consistent with the 47-50° latitude region being at the boundary between the low latitudes and high latitudes, with the latter showing lower cloud tops and higher ultraviolet brightness (Titov, D.V., Taylor, F.W., Svedhem, H., Ignatiev, N.I., Markiewicz, W.J., Piccioni, G., Drossart, P. [2008]. Nature 456, 620-623).  相似文献   

19.
We report on mid-resolution (R∼2000) spectroscopic observations of Titan, acquired in November 2000 with the Very Large Telescope and covering the range 4.75-5.07 μm. These observations provide a detailed characterization of the CO (1-0) vibrational band, clearly separating for the first time individual CO lines (P10 to P19 lines of 13CO). They indicate that the CO/N2 mixing ratio in Titan’s troposphere is 32±10 ppm. Comparison with photochemical models indicates that CO is not in a steady state in Titan’s atmosphere. The observations confirm that Titan’s 5-μm continuum geometric albedo is ∼0.06, and further indicates a ∼20% albedo decrease over 4.98-5.07 μm. Nonzero flux is detected at the 0.01 geometric albedo level in the saturated core of the 12CO (1-0) band, at 4.75-4.85 μm, providing evidence for backscattering on the stratospheric haze. Finally, emission lines are detected at 4.75-4.835 μm, coinciding in position with lines from the CO(1-0) and/or CO(2-1) bands. Matching them by thermal emission would require Titan’s stratosphere to be much warmer (by ∼ 25 K at 0.1 mbar) than indicated by the methane 7.7-μm emission and the Voyager radio-occultation. We show instead that a nonthermal mechanism, namely solar-excited fluorescence, is a more plausible source for these emissions. Improved observations and laboratory measurements on the vibrational-translational relaxation of CO are needed for further interpretation of these emissions in terms of a CO stratospheric mixing ratio.  相似文献   

20.
《Planetary and Space Science》2007,55(12):1653-1672
The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on board the ESA/Venus Express mission has technical specifications well suited for many science objectives of Venus exploration. VIRTIS will both comprehensively explore a plethora of atmospheric properties and processes and map optical properties of the surface through its three channels, VIRTIS-M-vis (imaging spectrometer in the 0.3–1 μm range), VIRTIS-M-IR (imaging spectrometer in the 1–5 μm range) and VIRTIS-H (aperture high-resolution spectrometer in the 2–5 μm range). The atmospheric composition below the clouds will be repeatedly measured in the night side infrared windows over a wide range of latitudes and longitudes, thereby providing information on Venus's chemical cycles. In particular, CO, H2O, OCS and SO2 can be studied. The cloud structure will be repeatedly mapped from the brightness contrasts in the near-infrared night side windows, providing new insights into Venusian meteorology. The global circulation and local dynamics of Venus will be extensively studied from infrared and visible spectral images. The thermal structure above the clouds will be retrieved in the night side using the 4.3 μm fundamental band of CO2. The surface of Venus is detectable in the short-wave infrared windows on the night side at 1.01, 1.10 and 1.18 μm, providing constraints on surface properties and the extent of active volcanism. Many more tentative studies are also possible, such as lightning detection, the composition of volcanic emissions, and mesospheric wave propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号