首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present thermal infrared photometry and spectrophotometry of four near-Earth asteroids (NEAs), namely (433) Eros, (66063) 1998 RO1, (137032) 1998 UO1, and (138258) 2000 GD2, using the United Kingdom Infrared Telescope (UKIRT) in 2002. For two objects, i.e. (433) Eros and (137032) 1998 UO1, quasi-simultaneous optical observations were also obtained, using the Jacobus Kapteyn Telescope (JKT). For (127032) 1998 UO1, we obtain a rotation period P=3.0±0.1 h and an absolute visual magnitude HV=16.7±0.4. The Standard Thermal Model (STM), Fast Rotating Model (FRM) and near-Earth asteroid Thermal Model (NEATM) have been fitted to the IR fluxes to determine effective diameters Deff, geometric albedos pv, and beaming parameters η. The derived values are (433) Eros: Deff=23.3±3.5 km (at lightcurve maximum), pv=0.24±0.07, η=0.95±0.19; (66063) 1998 RO1: , ; (137032) 1998 UO1: Deff<1.13 km, pv>0.29; (138258) 2000 GD2: Deff=0.27±0.04 km, , η=0.74±0.15. (66063) 1998 RO1 is a binary asteroid from lightcurve characteristics [Pravec, P., and 56 colleagues, 2006. Icarus 181, 63-93] and we estimate the effective diameter of the primary (Dp) and secondary (Ds) components: and . The diameter and albedo of (138258) 2000 GD2 are consistent with the trend of decreasing diameter for S- and Q-type asteroids found by Delbó et al. [Delbó, M., Harris, A.W., Binzel, R.P., Pravec, P., Davies, J.K., 2003. Icarus 166, 116-130]. A possible trend of increasing beaming parameter with diameter for small (less than about 3 km) S- and Q-type asteroids is found.  相似文献   

2.
We have observed (66652) 1999 RZ253 with the Hubble Space Telescope at seven separate epochs and have fit an orbit to the observed relative positions of this binary. Two orbital solutions have been identified that differ primarily in the inclination of the orbit plane. The best fit corresponds to an orbital period, days, semimajor axis a=4660±170 km and orbital eccentricity e=0.460±0.013 corresponding to a system mass m=3.7±0.4×1018 kg. For a density of the albedo at 477 nm is p477=0.12±0.01, significantly higher than has been commonly assumed for objects in the Kuiper belt. Multicolor, multiepoch photometry shows this pair to have colors typical for the Kuiper belt with a spectral gradient of 0.35 per 100 nm in the range between 475 and 775 nm. Photometric variations at the four epochs we observed were as large as 12±3% but the sampling is insufficient to confirm the existence of a lightcurve.  相似文献   

3.
Darrell F. Strobel 《Icarus》2006,182(1):251-258
Tidal waves driven by Titan's orbital eccentricity through the time-dependent component of Saturn's gravitational potential attain nonlinear, saturation amplitudes (|T|>10 K, , and ) in the upper atmosphere (?500 km) due to the approximate exponential growth as the inverse square root of pressure. The gravitational tides, with vertical wavelengths of ∼100-150 km above 500 km altitude, carry energy fluxes sufficient in magnitude to affect the energy balance of the upper atmosphere with heating rates in the altitude range of 500-900 km.  相似文献   

4.
With the collection of six years of MGS tracking data and three years of Mars Odyssey tracking data, there has been a continual improvement in the JPL Mars gravity field determination. This includes the measurement of the seasonal changes in the gravity coefficients (e.g., , , , , , ) caused by the mass exchange between the polar ice caps and atmosphere. This paper describes the latest gravity field MGS95J to degree and order 95. The improvement comes from additional tracking data and the adoption of a more complete Mars orientation model with nutation, instead of the IAU 2000 model. Free wobble of the Mars' spin axis, i.e. polar motion, has been constrained to be less than 10 mas by looking at the temporal history of and . A strong annual signature is observed in , and this is a mixture of polar motion and ice mass redistribution. The Love number solution with a subset of Odyssey tracking data is consistent with the previous liquid outer core determination from MGS tracking data [Yoder et al., 2003. Science 300, 299-303], giving a combined solution of k2=0.152±0.009 using MGS and Odyssey tracking data. The solutions for the masses of the Mars' moons show consistency between MGS, Odyssey, and Viking data sets; Phobos GM=(7.16±0.005)×10−4 km3/s2 and Deimos GM=(0.98±0.07)×10−4 km3/s2. Average MGS orbit errors, determined from differences in the overlaps of orbit solutions, have been reduced to 10-cm in the radial direction and 1.5 m along the spacecraft velocity and normal to the orbit plane. Hence, the ranging to the MGS and Odyssey spacecraft has resulted in position measurements of the Mars system center-of-mass relative to the Earth to an accuracy of one meter, greatly reducing the Mars ephemeris errors by several orders of magnitude, and providing mass estimates for Asteroids 1 Ceres, 2 Pallas, 3 Juno, 4 Vesta, and 324 Bamberga.  相似文献   

5.
Hubble Space Telescope observations of Uranus- and Neptune-crossing object (65489) Ceto/Phorcys (provisionally designated 2003 FX128) reveal it to be a close binary system. The mutual orbit has a period of 9.554±0.011 days and a semimajor axis of 1840±48 km. These values enable computation of a system mass of (5.41±0.42)×1018 kg. Spitzer Space Telescope observations of thermal emission at 24 and 70 μm are combined with visible photometry to constrain the system's effective radius and geometric albedo . We estimate the average bulk density to be , consistent with ice plus rocky and/or carbonaceous materials. This density contrasts with lower densities recently measured with the same technique for three other comparably-sized outer Solar System binaries (617) Patroclus, (26308) 1998 SM165, and (47171) 1999 TC36, and is closer to the density of the saturnian irregular satellite Phoebe. The mutual orbit of Ceto and Phorcys is nearly circular, with an eccentricity ?0.015. This observation is consistent with calculations suggesting that the system should tidally evolve on a timescale shorter than the age of the Solar System.  相似文献   

6.
We observed near-Earth Asteroid (NEA) 2002 CE26 in August and September 2004 using the Arecibo S-band (2380-MHz, 12.6-cm) radar and NASA's Infrared Telescope Facility (IRTF). Shape models obtained based on inversion of our delay-Doppler images show the asteroid to be 3.5±0.4 km in diameter and spheroidal; our corresponding nominal estimates of its visual and radar albedos are 0.07 and 0.24, respectively. Our IRTF spectrum shows the asteroid to be C-class with no evidence of hydration. Thermal models from the IRTF data provide a size and visual albedo consistent with the radar-derived estimate. We estimate the spin-pole to be within a few tens of degrees of λ=317°, β=−20°. Our radar observations reveal a secondary approximately 0.3 km in diameter, giving this binary one of the largest size differentials of any known NEA. The secondary is in a near-circular orbit with period 15.6±0.1 h and a semi-major axis of 4.7±0.2 km. Estimates of the binary orbital pole and secondary rotation rate are consistent with the secondary being in a spin-locked equatorial orbit. The orbit corresponds to a primary mass of M=1.95±0.25×1013 kg, leading to a primary bulk density of , one of the lowest values yet measured for a main-belt or near-Earth asteroid.  相似文献   

7.
P. Rousselot  J.-M. Petit  A. Sergeev 《Icarus》2005,176(2):478-491
We present photometric observations of Centaur (60558) 2000 EC98 and trans-neptunian object (55637) 2002 UX25 at different phase angles and with different filters (mainly R but also V and B for some data). Results for 2000 EC98 are: (i) a rotation period of 26.802±0.042 h if a double-peaked lightcurve is assumed, (ii) a lightcurve amplitude of 0.24±0.06 for the R band, (iii) a phase curve with H=9.03±0.01 and G=−0.39±0.08 (R filter) and H=9.55±0.04 and G=−0.50±0.35 (V filter) or a slope of (R filter) and 0.22±0.06 (V filter), (iv) the color indices B-V=0.76±0.15 and V-R=0.51±0.09 (for α=0.1-0.5°) and 0.55±0.08 (for α=1.4-1.5°). The rotation period is amongst the longest ever measured for Centaurs and TNOs. We also show that our photometry was not contaminated by any cometary activity down to magnitude ?27/arcsec2. For 2002 UX25 the results are: (i) a rotation period of 14.382±0.001 h or 16.782±0.003 h (if a double-peaked lightcurve is assumed) (ii) a lightcurve amplitude of 0.21±0.06 for the R band (and the 16.782 h period), (iii) a phase curve with H=3.32±0.01 and G=+0.16±0.18 or a slope of (R filter), (iv) the color indices B-V=1.12±0.26 and V-R=0.61±0.12. The phase curve reveals also a possible very narrow and bright opposition surge. Because such a narrow surge appears only for one point it needs to be confirmed.  相似文献   

8.
We describe a strategy for scheduling astrometric observations to minimize the number required to determine the mutual orbits of binary transneptunian systems. The method is illustrated by application to Hubble Space Telescope observations of (42355) Typhon-Echidna, revealing that Typhon and Echidna orbit one another with a period of 18.971±0.006 days and a semimajor axis of 1628±29 km, implying a system mass of (9.49±0.52)×1017 kg. The eccentricity of the orbit is 0.526±0.015. Combined with a radiometric size determined from Spitzer Space Telescope data and the assumption that Typhon and Echidna both have the same albedo, we estimate that their radii are and , respectively. These numbers give an average bulk density of only , consistent with very low bulk densities recently reported for two other small transneptunian binaries.  相似文献   

9.
Thermal inertia determines the temperature distribution over the surface of an asteroid and therefore governs the magnitude the Yarkovsky effect. The latter causes gradual drifting of the orbits of km-sized asteroids and plays an important role in the delivery of near-Earth asteroids (NEAs) from the main belt and in the dynamical spreading of asteroid families. At present, very little is known about the thermal inertia of asteroids in the km size range. Here we show that the average thermal inertia of a sample of NEAs in the km-size range is . Furthermore, we identify a trend of increasing thermal inertia with decreasing asteroid diameter, D. This indicates that the dependence of the drift rate of the orbital semimajor axis on the size of asteroids due to the Yarkovsky effect is a more complex function than the generally adopted D−1 dependence, and that the size distribution of objects injected by Yarkovsky-driven orbital mobility into the NEA source regions is less skewed to smaller sizes than generally assumed. We discuss how this fact may help to explain the small difference in the slope of the size distribution of km-sized NEAs and main-belt asteroids.  相似文献   

10.
We have obtained full-disk spatially resolved spectra of the Venus nightside at near-infrared wavelengths during July 2007 using the Anglo-Australian Telescope and Infrared Imager and Spectrograph 2 (IRIS2). The data have been used to map the intensity and rotational temperature of the O2(a1Δg) airglow band at . The temperatures agree with those obtained in earlier IRIS2 observations and are significantly higher than expected from the Venus International Reference Atmosphere (VIRA) profile. We also report the detection of the corresponding ν=0-1O2 airglow band at with a similar spatial distribution to the ν=0-0 band. Observations in the thermal window have been used to image surface topography using two different methods of cloud correction. We have also obtained images that can be used to study cloud motion.  相似文献   

11.
12.
13.
14.
In this paper it is derived that the libration of Mercury can be described by where Φ0 is the unknown libration amplitude, M is Mercury's mean anomaly and K=−9.483. Φ0 can be determined by comparing pairs of images of the same landmarks taken by an orbiter at different positions of Mercury. If the angle between the orbit plane of a polar orbiter and Mercury's line of periapsis is between −60° and 60° and if one landmark at the equator is imaged per day with a relative precision of , then the libration amplitude can be determined in two Mercury years (176 days) with an accuracy of or better, which is sufficient to answer the question whether Mercury has a solid or fluid core.  相似文献   

15.
Micha? Drahus  Wac?aw Waniak 《Icarus》2006,185(2):544-557
The article presents results of CCD photometry in R-band of a dynamically new Comet C/2001 K5 (LINEAR), obtained at a heliocentric distance of about 5.6 AU, after the perihelion passage. Being so distant from the Sun, this comet was extremely active (Afρ close to 2000 cm), exhibiting quite well developed dust coma and tail. During the observations, general photometric behavior of the comet with heliocentric distance r was well described by the 2.5nlog(r) function with coefficient n=5. The radial profiles of the coma were found to be undulated, with mean slope of the dependence between cometary magnitude and 2.5log of aperture radius (at comet distance) equal to . The light curve of Comet LINEAR exhibited short-term variability which we attributed to cyclic changes of dust emission, induced by nucleus rotation. Model computations by some authors have revealed that active comets can change their spin status quite substantially even during a single orbital revolution. Thus, attempting to search for a rotation frequency, we have modified the classical PDM approach by including the spin acceleration term. Such DynamicalPDM (DPDM) method revealed the most reliable solution for the frequency f0=0.019048±0.000013 h−1 and its first time-derivative (index “zero” denotes reference to the mid time of the whole observing run), indicating a rapid spin-down of the nucleus. These parameters are equivalent to the rotation period of 52.499±0.036 h and its relative increment of 0.02729±0.00013. We present the most probable evolution of the rotation frequency of Comet LINEAR, based on the results of periodicity analysis and a simple, almost parameter independent, dynamical model of nucleus rotation. It is also shown that the DPDM may be an effective tool for determination of a nucleus radius, which provided us with the value of 1.53±0.25 km for Comet LINEAR.  相似文献   

16.
This work presents model calculations of the diurnal airglow emissions from the OH Meinel bands and the O2 IR atmospheric band in the neutral atmosphere of Mars. A time-dependent photochemical model of the lower atmosphere below 80 km has been developed for this purpose. Special emphasis is placed on the nightglow emissions because of their potential to characterize the atomic oxygen profile in the 50-80 km region. Unlike on Earth, the OH Meinel emission rates are very sensitive to the details of the vibrational relaxation pathway. In the sudden death and collisional cascade limits, the maximum OH Meinel column intensities for emissions originating from a fixed upper vibrational level are calculated to be about 300 R, for transitions v=9→v?8, and 15,000 R, for transitions v=1→v=0, respectively. During the daytime the 1.27 μm emission from O2(), primarily formed from ozone photodissociation, is of the order of MegaRayleighs (MR). Due to the long radiative lifetime of O2(), a luminescent remnant of the dayglow extends to the dark side for about two hours. At night, excited molecular oxygen is expected to be produced through the three body reaction O + O + CO2. The column emission of this nighttime component of the airglow is estimated to amount to 25 kR. Both nightglow emissions, from the OH Meinel bands and the O2 IR atmospheric band, overlap in the 50-80 km region. Photodissociation of CO2 in the upper atmosphere and the subsequent transport of the atomic oxygen produced to the emitting layer are revealed as key factors in the nightglow emissions from these systems. The Mars 5 upper constraint for the product [H][O3] is revised on the basis of more recent values for the emission probabilities and collisional deactivation coefficients.  相似文献   

17.
Data acquired by the Ion Neutral Mass Spectrometer (INMS) on the Cassini spacecraft during its close encounter with Titan on 26 October 2004 reveal the structure of its upper atmosphere. Altitude profiles of N2, CH4, and H2, inferred from INMS measurements, determine the temperature, vertical mixing rate, and escape flux from the upper atmosphere. The mean atmospheric temperature in the region sampled by the INMS is 149±3 K, where the variance is a consequence of local time variations in temperature. The CH4 mole fraction at 1174 km is 2.71±0.1%. The effects of diffusive separation are clearly seen in the data that we interpret as an eddy diffusion coefficient of , that, along with the measured CH4 mole fraction, implies a mole fraction in the stratosphere of 2.2±0.2%. The H2 distribution is affected primarily by upward flow and atmospheric escape. The H2 mole fraction at 1200 km is 4±1×10−3 and analysis of the altitude profile indicates an upward flux of , referred to the surface. If horizontal variations in temperature and H2 density are small, this upward flux also represents the escape flux from the atmosphere. The CH4 density exhibits significant horizontal variations that are likely an indication of dynamical processes in the upper atmosphere.  相似文献   

18.
The fossilized size distribution of the main asteroid belt   总被引:1,自引:0,他引:1  
Planet formation models suggest the primordial main belt experienced a short but intense period of collisional evolution shortly after the formation of planetary embryos. This period is believed to have lasted until Jupiter reached its full size, when dynamical processes (e.g., sweeping resonances, excitation via planetary embryos) ejected most planetesimals from the main belt zone. The few planetesimals left behind continued to undergo comminution at a reduced rate until the present day. We investigated how this scenario affects the main belt size distribution over Solar System history using a collisional evolution model (CoEM) that accounts for these events. CoEM does not explicitly include results from dynamical models, but instead treats the unknown size of the primordial main belt and the nature/timing of its dynamical depletion using innovative but approximate methods. Model constraints were provided by the observed size frequency distribution of the asteroid belt, the observed population of asteroid families, the cratered surface of differentiated Asteroid (4) Vesta, and the relatively constant crater production rate of the Earth and Moon over the last 3 Gyr. Using CoEM, we solved for both the shape of the initial main belt size distribution after accretion and the asteroid disruption scaling law . In contrast to previous efforts, we find our derived function is very similar to results produced by numerical hydrocode simulations of asteroid impacts. Our best fit results suggest the asteroid belt experienced as much comminution over its early history as it has since it reached its low-mass state approximately 3.9-4.5 Ga. These results suggest the main belt's wavy-shaped size-frequency distribution is a “fossil” from this violent early epoch. We find that most diameter D?120 km asteroids are primordial, with their physical properties likely determined during the accretion epoch. Conversely, most smaller asteroids are byproducts of fragmentation events. The observed changes in the asteroid spin rate and lightcurve distributions near D∼100-120 km are likely to be a byproduct of this difference. Estimates based on our results imply the primordial main belt population (in the form of D<1000 km bodies) was 150-250 times larger than it is today, in agreement with recent dynamical simulations.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号