首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent geomorphic, remote sensing, and atmospheric modeling studies have shown evidence for abundant ground ice deposits in the martian mid-latitudes. Numerous potential water/ice-rich flow features have been identified in craters in these regions, including arcuate ridges, gullies, and small flow lobes. Previous studies (such as in Newton Basin) have shown that arcuate ridges and gullies are mainly found in small craters (∼2-30 km in diameter). These features are located on both pole-facing and equator-facing crater walls, and their orientations have been found to be dependent on latitude. We have conducted surveys of craters >20 km in diameter in two mid-latitude regions, one in the northern hemisphere in Arabia Terra, and one in the southern hemisphere east of Hellas basin. In these regions, prominent lobes, potentially ice-rich, are commonly found on the walls of craters with diameters between ∼20-100 km. Additional water/ice-rich features such as channels, valleys, alcoves, and debris aprons have also been found in association with crater walls. In the eastern Hellas study region, channels were found to be located primarily on pole-facing walls, whereas valleys and alcoves were found primarily on equator-facing walls. In the Arabia Terra study region, these preferences are less distinct. In both study regions, lobate flows, gullies, and arcuate ridges were found to have pole-facing orientation preferences at latitudes below 45° and equator-facing orientation preferences above 45°, similar to preferences previously found for gullies and arcuate ridges in smaller craters. Interrelations between the features suggest they all formed from the mobilization of accumulated ice-rich materials. The dependencies of orientations on latitude suggest a relationship to differences in total solar insolation along the crater walls. Differences in slope of the crater wall, differences in total solar insolation with respect to wall orientation, and variations in topography along the crater rim can explain the variability in morphology of the features studied. The formation and evolution of these landforms may best be explained by multiple cycles of deposition of ice-rich material during periods of high obliquity and subsequent modification and transport of these materials down crater walls.  相似文献   

2.
The unusual 80 km diameter Noachian-aged Asimov crater in Noachis Terra (46°S, 5°E) is characterized by extensive Noachian-Hesperian crater fill and a younger superposed annulus of valleys encircling the margins of the crater floor. These valleys provide an opportunity to study the relationships of gully geomorphology as a function of changing slope orientation relative to solar insolation. We found that the level of development of gullies was highly correlated with slope orientation and solar insolation. The largest and most complex gully systems, with the most well-developed fluvial landforms, are restricted to pole-facing slopes. In contrast, gullies on equator-facing slopes are smaller, more poorly developed and integrated, more highly degraded, and contain more impact craters. We used a 1D version of the Laboratoire de Météorologie Dynamique GCM, and slope geometries (orientation and angle), driven by predicted spin-axis/orbital parameter history, to assess the distribution and history of surface temperatures in these valleys during recent geological history. Surface temperatures on pole-facing slopes preferential for water ice accumulation and subsequent melting are predicted to occur as recently as 0.5-2.1 Ma, which is consistent with age estimates of gully activity elsewhere on Mars. In contrast, the 1D model predicts that water ice cannot accumulate on equator-facing slopes until obliquities exceed 45°, suggesting they are unlikely to have been active over the last 5 Ma. The correlation of the temperature predictions and the geological evidence for age differences suggests that there were two phases of gully formation in the last few million years: an older phase in which top-down melting occurred on equator-facing slopes and a younger more robust phase on pole-facing slopes. The similarities of small-scale fluvial erosion features seen in the gullies on Mars and those observed in gullies cut by seasonal and perennial snowmelt in the Antarctic Dry Valleys supports a top-down melting origin for these gullies on Mars.  相似文献   

3.
The mode of formation of gullies on Mars, very young erosional–depositional landforms consisting of an alcove, channel, and fan, is one of the most enigmatic problems in martian geomorphology. Major questions center on their ages, geographic and stratigraphic associations, relation to recent ice ages, and, if formed by flowing water, the sources of the water to cause the observed erosion/deposition. Gasa (35.72°S, 129.45°E), a very fresh 7-km diameter impact crater and its environment, offer a unique opportunity to explore these questions. We show that Gasa crater formed during the most recent glacial epoch (2.1–0.4 Ma), producing secondary crater clusters on top of the latitude-dependent mantle (LDM), interpreted to be a layered ice-dust-rich deposit emplaced during this glacial epoch. High-resolution images of a pre-Gasa impact crater ~100 km northeast of Gasa reveal that portions of the secondary-crater-covered LDM have been removed from pole-facing slopes in crater interiors near Gasa; gullies are preferentially located in these areas and channels feeding alcoves and fans can be seen to emerge from the eroding LDM layers to produce multiple generations of channel incision and fan lobes. We interpret these data to mean that these gullies formed extremely recently in the post-Gasa-impact time-period by melting of the ice-rich LDM. Stratigraphic and topographic relationships are interpreted to mean that under favorable illumination geometry (steep pole-facing slopes) and insolation conditions, melting of the debris-covered ice-rich mantle took place in multiple stages, most likely related to variations in spin-axis/orbital conditions. Closer to Gasa, in the interior of the ~18 km diameter LDM-covered host crater in which Gasa formed, the pole-facing slopes display two generations of gullies. Early, somewhat degraded gullies, have been modified by proximity to Gasa ejecta emplacement, and later, fresh appearing gullies are clearly superposed, cross-cut the earlier phase, and show multiple channels and fans, interpreted to be derived from continued melting of the LDM on steep pole-facing slopes. Thus, we conclude that melting of the ice-rich LDM is a major source of gully activity both pre-Gasa crater and post-Gasa crater formation. The lack of obscuration of Gasa secondary clusters formed on top of the LDM is interpreted to mean that the Gasa impact occurred following emplacement of the last significant LDM layers at these low latitudes, and thus near the end of the ice ages. This interpretation is corroborated by the lack of LDM within Gasa. However, Gasa crater contains a robustly developed set of gullies on its steep, pole-facing slopes, unlike other very young post-LDM craters in the region. How can the gullies inside Gasa form in the absence of an ice-rich LDM that is interpreted to be the source of water for the other adjacent and partly contemporaneous gullies? Analysis of the interior (floor and walls) of the host crater suggest that prior to the Gasa impact, the pole-facing walls and floor were occupied by remnant debris-covered glaciers formed earlier in the Amazonian, which are relatively common in crater interiors in this latitude band. We suggest that the Gasa impact cratering event penetrated into the southern portion of this debris-covered glacier, emplaced ejecta on top of the debris layer covering the ice, and caused extensive melting of the buried ice and flow of water and debris slurries on the host crater floor. Inside Gasa, the impact crater rim crest and wall intersected the debris-covered glacier deposits around the northern, pole-facing part of the Gasa interior. We interpret this exposure of ice-rich debris-covered glacial material in the crater wall to be the source of meltwater that formed the very well-developed gullies along the northern, pole-facing slopes of Gasa crater.  相似文献   

4.
R.J. Soare  J.S. Kargel  F. Costard 《Icarus》2007,191(1):95-112
We have identified a number of gullies that could be aqueous in origin near or at the rim of several impact craters in Utopia Planitia and western Elysium Planitia (30.0°-59.0° N; 241.0°-291.0° W). Based on the sharpness of their incisions and the general absence of superposed craters, we ascribe a relatively recent origin to the gullies. Scalloped depressions are commonplace throughout the region, as well as on the crater walls, rims and floors near the areas of gully issuance. Occasionally, the depressions cross-cut the gully debris-aprons, suggesting that the formation of some depressions is even more recent than that of the gullies. Previous research has proposed that the depressions are collapse basins formed by thermokarst processes. On Earth, thermokarst landforms occur in areas of low gradient topography where the permanently frozen ground (permafrost) is ice rich and has undergone a change in thermal equilibrium. This change can be triggered by long-term or episodic/cyclic climate change and accompanying rises in mean temperatures towards ∼0 °C as well as by rises in seasonally sustained summer temperatures well above ∼0 °C. In order to explain the origin of the rim or near-rim gullies we invoke high obliquity and the possibility that this region of Mars experienced obliquity-driven rises in temperature, atmospheric pressure and humidity sufficient to keep surface water and near-surface ground-ice stable for extended periods of time. We propose that gully formation is closely related to local freeze-thaw processes that, in turn, generate a thermokarst landscape (of which the gullies are a part). This geological and climatological scenario comprises the following steps:
1.
An inundation of meltwater at high obliquity (due to the thawing of an atmospherically-deposited snowpack or ice-sheet) and the subsequent saturation of the underlying regolith to tens of metres of depth.
2.
Loss of water on the surface, perhaps as obliquity decreases slightly, followed by the progressive freezing of the saturated regolith; this creates an aggrading mass of ice-rich regolith.
3.
Obliquity-induced temperature rises that engender the thaw, drainage and partial evaporation of the near-surface, ice-rich regolith.
4.
Localised formation of thermokarst collapse-basins (alases), as water is evacuated from these basins.
5.
Formation of gullies near, or at, some impact-crater rims as the result of meltwater migration from nearby alases through the thawed regolith to the areas of gully issuance.
Although the plains' materials in this region are in part very old (possibly Hesperian or even Noachian), the mantling deposits and their deformation by thermokarst processes appears to be relatively young. This suggests that recent climatic conditions could have been episodically warmer and wetter than had been previously thought.  相似文献   

5.
Hydrogeological modification of Meteor Crater produced a spectacular set of gullies throughout the interior wall in response to rainwater precipitation, snow melting, and possible groundwater discharge. The crater wall has an exceptionally well-developed centripetal drainage pattern consisting of individual alcoves, channels, and fans. Some of the gullies originate from the rim crest and others from the middle crater wall where a lithologic transition occurs; broad gullies occur along the crater corner radial faults. Deeply incised alcoves are well developed on the soft Coconino Sandstone exposed on the middle crater wall, beneath overlying dolomite. In general, the gully locations are along crater wall radial fractures and faults, which are favorable locales of erosion due to preferential rock breakup from faulting, and groundwater flow/discharge; these structural discontinuities are also the locales where the surface runoff from rain precipitation and snow melting can preferentially flow, causing erosion and crater degradation. Channels are well developed on the talus deposits and alluvial fans on the periphery of the crater floor. Caves exposed on the lower crater level point to percolation of surface runoff and selective discharge through fractures on the crater wall. In addition, lake sediments on the crater floor provide significant evidence of a past pluvial climate, when the water table was higher, and groundwater may have seeped from springs on the crater wall. Although these hydrological processes continue at Meteor Crater today, conditions at the crater are much more arid than they were soon after impact, reflecting a climatic shift. This climate shift and the hydrological modifications observed at Meteor Crater provide insights for landscape sculpturing on Mars during various parts of its history.  相似文献   

6.
The Amazonian period of Mars has been described as static, cold, and dry. Recent analysis of high-resolution imagery of equatorial and mid-latitude regions has revealed an array of young landforms produced in association with ice and liquid water; because near-surface ice in these regions is currently unstable, these ice-and-water-related landforms suggest one or more episodes of martian climate change during the Amazonian. Here we report on the origin and evolution of valley systems within a degraded crater in Noachis Terra, Asimov Crater. The valleys have produced a unique environment in which to study the geomorphic signals of Amazonian climate change. New high-resolution images reveal Hesperian-aged layered basalt with distinctive columnar jointing capping interior crater fill and providing debris, via mass wasting, for the surrounding annular valleys. The occurrence of steep slopes (>20°), relatively narrow (sheltered) valleys, and a source of debris have provided favorable conditions for the preservation of shallow-ice deposits. Detailed mapping reveals morphological evidence for viscous ice flow, in the form of several lobate debris tongues (LDT). Superimposed on LDT are a series of fresh-appearing gullies, with typical alcove, channel, and fan morphologies. The shift from ice-rich viscous-flow formation to gully erosion is best explained as a shift in martian climate, from one compatible with excess snowfall and flow of ice-rich deposits, to one consistent with minor snow and gully formation. Available dating suggests that the climate transition occurred >8 Ma, prior to the formation of other small-scale ice-rich flow features identified elsewhere on Mars that have been interpreted to have formed during the most recent phases of high obliquity. Taken together, these older deposits suggest that multiple climatic shifts have occurred over the last tens of millions of years of martian history.  相似文献   

7.
Ridges that resemble terrestrial moraines are commonly visible at the foot of many mid-latitude crater walls in Mars Global Surveyor Mars Orbiter Camera images. These moraine-like ridges are often associated with hillside gullies, mantling material, and glacier-like flows, and are usually in contact with crater fill, suggesting possible interrelationships. We consider terrestrial glacier systems that may be analogs of martian moraine-like ridges and glacier-like flows and suggest that the formation of some gullies and crater fill is intimately tied to ice deposition, ice flow, and rock-glacier processes. Upper limits on age suggest the possibility that many of these features formed during the last, or last few, high obliquity cycles.  相似文献   

8.
Gullies are extremely young erosional/depositional systems on Mars that have been carved by an agent that was likely to have been comprised in part by liquid water [Malin, M.C., Edgett, K.S., 2000. Evidence for recent groundwater seepage and surface runoff on Mars. Science 288, 2330-2335; McEwen, A.S. et al., 2007. A closer look at water-related geologic activity on Mars. Science 317, 1706-1709]. The strong latitude and orientation dependencies that have been documented for gullies require (1) a volatile near the surface, and (2) that insolation is an important factor for forming gullies. These constraints have led to two categories of interpretations for the source of the volatiles: (1) liquid water at depth beneath the melting isotherm that erupts suddenly (“groundwater”), and (2) ice at the surface or within the uppermost layer of soil that melts during optimal insolation conditions (“surface/near-surface melting”). In this contribution we synthesize global, hemispheric, regional and local studies of gullies across Mars and outline the criteria that must be met by any successful explanation for the formation of gullies. We further document trends in both hemispheres that emphasize the importance of top-down melting of recent ice-rich deposits and the cold-trapping of atmospherically-derived H2O frost/snow as important components in the formation of gullies. This provides context for the incorporation of high-resolution multi-spectral and hyper-spectral data from the Mars Reconnaissance Orbiter that show that (1) cold-trapping of seasonal H2O frost occurs at the alcove/channel-level on contemporary Mars; (2) gullies are episodically active systems; (3) gullies preferentially form in the presence of deposits plausibly interpreted as remnants of the Late Amazonian emplacement of ice-rich material; and (4) gully channels frequently emanate from the crest of alcoves instead of the base, showing that alcove generation is not necessarily a product of undermining and collapse at these locations, a prediction of the groundwater model. We interpret these various lines of evidence to mean that the majority of gullies on Mars are explained by the episodic melting of atmospherically emplaced snow/ice under spin-axis/orbital conditions characteristic of the last several Myr.  相似文献   

9.
Advances in dating gullies on Mars using superposition relationships and a stratigraphic marker horizon link gully chronostratigraphy to recent climate cycles. New observations of gully morphology show the close association of gully source regions, channels, and fan deposits with well-documented ice-rich latitude-dependent mantle deposits, the deposition of which is interpreted to be coincident with recent ice ages. On the basis of these close correlations, we interpret the formative processes for mid-latitude gullies to involve melting of these ice-rich mantling deposits and the generation of an aqueous phase leading to fluvial activity. Continued monitoring of gullies by spacecraft in the current “interglacial” climate period (∼0.4 Ma to the present) will permit assessment of changing rates and styles of gully activity in the now largely depleted source areas.  相似文献   

10.
A variety of Late Amazonian landforms on Mars have been attributed to the dynamics of ice-related processes. Evidence for large-scale, mid-latitude glacial episodes existing within the last 100 million to 1 billion years on Mars has been presented from analyses of lobate debris aprons (LDA) and lineated valley fill (LVF) in the northern and southern mid-latitudes. We test the glacial hypothesis for LDA and LVF along the dichotomy boundary in the northern mid-latitudes by examining the morphological characteristics of LDA and LVF surrounding two large plateaus, proximal massifs, and the dichotomy boundary escarpment north of Ismeniae Fossae (centered at 45.3°N and 39.2°E). Lineations and flow directions within LDA and LVF were mapped using images from the Context (CTX) camera, the Thermal Emission Imaging Spectrometer (THEMIS), and the High Resolution Stereo Camera (HRSC). Flow directions were then compared to topographic contours derived from the Mars Orbiter Laser Altimeter (MOLA) to determine the down-gradient components of LDA and LVF flow. Observations indicate that flow patterns emerge from numerous alcoves within the plateau walls, are integrated over distances of up to tens of kilometers, and have down-gradient flow directions. Smaller lobes confined within alcoves and superposed on the main LDA and LVF represent a later, less extensive glacial phase. Crater size-frequency distributions of LDA and LVF suggest a minimum (youngest) age of 100 Ma. The presence of ring-mold crater morphologies is suggestive that LDA and LVF are formed of near-surface ice-rich bodies. From these observations, we interpret LDA and LVF within our study region to result from formerly active debris-covered glacial flow, consistent with similar observations in the northern mid-latitudes of Mars. Glacial flow was likely initiated from the accumulation and compaction of snow and ice on plateaus and in alcoves within the plateau walls as volatiles were mobilized to the mid-latitudes during higher obliquity excursions. Together with similar analyses elsewhere along the dichotomy boundary, these observations suggest that multiple glacial episodes occurred in the Late Amazonian and that LDA and LVF represent significant reservoirs of non-polar ice sequestered below a surface lag for hundreds of millions of years.  相似文献   

11.
Mid-latitude pedestal craters on Mars offer crucial insights into the timing and extent of widespread ice-rich deposits during the Amazonian period. Our previous comprehensive analysis of pedestal craters strongly supports a climate-related formation mechanism, whereby pedestals result from impacts into ice-rich material at mid latitudes during periods of higher obliquity. The ice from this target deposit later sublimates due to obliquity changes, but is preserved beneath the protective cover of the armored pedestal. As such, the heights of pedestals act as a proxy for the thicknesses of the paleodeposits. In this analysis, our measurement of 2300 pedestal heights shows that although pedestals can reach up to ∼260 m in height, ∼82% are shorter than 60 m and only ∼2% are taller than 100 m. Mean pedestal heights are 48.0 m in the northern mid latitudes and 40.4 m in the southern mid latitudes, with the tallest pedestals located in Utopia Planitia, Acidalia Planitia and Malea Planum. We use these data in conjunction with prior climate model results to identify both regional and global trends regarding ice accumulation during obliquity excursions. Our data provide evidence for multiple episodes of emplacement and removal of the mid-latitude ice-rich deposit based on stratigraphic relationships between pedestal craters and the close proximity of pedestals with significantly different heights.  相似文献   

12.
Permafrost is ground remaining frozen (temperatures are below the freezing point of water) for more than two consecutive years. An active layer in permafrost regions is defined as a near-surface layer that undergoes freeze-thaw cycles due to day-average surface and soil temperatures oscillating about the freezing point of water. A “dry” active layer may occur in parched soils without free water or ice but significant geomorphic change through cryoturbation is not produced in these environments. A wet active layer is currently absent on Mars. We use recent calculations on the astronomical forcing of climate change to assess the conditions under which an extensive active layer could form on Mars during past climate history. Our examination of insolation patterns and surface topography predicts that an active layer should form on Mars in the geological past at high latitudes as well as on pole-facing slopes at mid-latitudes during repetitive periods of high obliquity. We examine global high-resolution MOLA topography and geological features on Mars and find that a distinctive latitudinal zonality of the occurrence of steep slopes and an asymmetry of steep slopes at mid-latitudes can be attributed to the effect of active layer processes. We conclude that the formation of an active layer during periods of enhanced obliquity throughout the most recent period of the history of Mars (the Amazonian) has led to significant degradation of impact craters, rapidly decreasing the steep slopes characterizing pristine landforms. Our analysis suggests that an active layer has not been present on Mars in the last ∼5 Ma, and that conditions favoring the formation of an active layer were reached in only about 20% of the obliquity excursions between 5 and 10 Ma ago. Conditions favoring an active layer are not predicted to be common in the next 10 Ma. The much higher obliquity excursions predicted for the earlier Amazonian appear to be responsible for the significant reduction in magnitude of crater interior slopes observed at higher latitudes on Mars. The observed slope asymmetry at mid-latitudes suggests direct insolation control, and hence low atmospheric pressure, during the high obliquity periods throughout the Amazonian. We formulate predictions on the nature and distribution of candidate active layer features that could be revealed by higher resolution imaging data.  相似文献   

13.
Jules M. Goldspiel 《Icarus》2011,211(1):238-743
Young gullies and gully deposits on walls of martian craters have been cited as evidence that liquid water flowed on the surface of Mars relatively recently. Effects of variable environmental conditions at the surface of Mars are modeled and applied to the case of groundwater emergence from shallow aquifers to investigate whether groundwater is a viable source to enable the erosion of these gullies. The model includes detailed treatment of ice growth in the aquifer. Model results indicate that groundwater discharge can be maintained under the current environmental conditions if the aquifer permeability is like that of terrestrial gravel or higher, if the aquifer is 350 K or warmer, or if the aquifer is a brine with a freezing point depressed to 250 K or below. Groundwater discharge cannot be maintained for the conservative case of a cold, pure water, semi-pervious aquifer. Cold (275 K) pure water pervious (gravel) aquifers, warm (350 K) pure water semi-pervious aquifers, and cold (275 K) CaCl2 brine semi-pervious aquifers all exhibit a dependence of discharge on season, latitude and slope orientation in our modeling. Seasonal, latitudinal and azimuthal discharge variations are strongest for cold CaCl2 brine semi-pervious aquifers, with discharges from this aquifer type favoring equator-facing slopes at mid and high southern latitudes. At all latitudes and slope azimuths under our nominal conditions, the cold pure water pervious aquifer, the cold pure water semi-pervious aquifer and the cold CaCl2 brine semi-pervious aquifer all freeze completely shortly after the simulations are started. Discharge restarts in the summer for the cold pure water pervious aquifer and the cold brine aquifer, but discharge does not restart for the cold pure water semi-pervious aquifer. The warm pure water semi-pervious aquifer maintains daily seeps throughout the year at all but high latitudes. In the case of the cold pure water pervious aquifer, approximately 500,000 m3 of water could be discharged from a mid-latitude, 150-m thick aquifer with a 20-m wide seepage face orientated towards the equator or the pole after a single undermining-induced event before ice growth seals the seepage face. For a brine semi-pervious aquifer with the same dimensions, 200-300 m3 of water could be released from a mid-latitude 20-m wide equator-facing seepage face before the fresh exposure is sealed for the fall and winter seasons. Our results do not rule out groundwater emergence as a means of creating some recent gullies, but they indicate that rather special and perhaps unusual conditions would be required.  相似文献   

14.
During the past 4 Mars years, Mars Orbiter Camera imaging capabilities have been used to document occurrence of seasonal patches of frost at latitudes as low as 33° S, and even 24° S. Monitoring reveals bright patches on pole-facing slopes; these appear in early southern winter and disappear in mid winter. The frost forms annually. Thermal Emission Spectrometer and daytime Thermal Emission Imaging System observations show surface temperatures on and near pole facing slopes reach the condensation temperature of CO2, indicating the patches consist of carbon dioxide rather than water frost. For several months, temperatures on pole-facing crater walls are so low that even carbon dioxide condenses on them, although the slopes are illuminated by the Sun every day. Thermal model calculations show slopes accumulate a several centimeter thick layer of CO2 frost. The frost becomes visible only months after it has begun to form, and has an orientational preference which is due to illumination bias at the time of observation. H2O condenses at higher temperatures and water frost must therefore also be present. Potential opportunities to observe seasonal water frost at low latitudes are also described.  相似文献   

15.
The discovery of presumably geologically recent gully features on Mars (Malin and Edgett, 2000, Science 288, 2330-2335) has spawned a wide variety of proposed theories of their origin including hypotheses of the type of erosive material. To test the validity of gully formation mechanisms, data from the Mars Global Surveyor spacecraft has been analyzed to uncover trends in the dimensional and physical properties of the gullies and their surrounding terrain. We located 106 Mars Orbiter Camera (MOC) images that contain clear evidence of gully landforms, distributed in the southern mid and high latitudes, and analyzed these images in combination with Mars Orbiter Laser Altimeter (MOLA) and Thermal Emission Spectrometer (TES) data to provide quantitative measurements of numerous gully characteristics. Parameters we measured include apparent source depth and distribution, vertical and horizontal dimensions, slopes, orientations, and present-day characteristics that affect local ground temperatures. We find that the number of gully systems normalized to the number of MOC images steadily declines as one moves poleward of 30° S, reaches a minimum value between 60°-63° S, and then again rises poleward of 63° S. All gully alcove heads occur within the upper one-third of the slope encompassing the gully and the alcove bases occur within the upper two-thirds of the slope. Also, the gully alcove heads occur typically within the first 200 meters of the overlying ridge with the exception of gullies equatorward of 40° S where some alcove heads reach a maximum depth of 1000 meters. While gullies exhibit complex slope orientation trends, gullies are found on all slope orientations at all the latitudes studied. Assuming thermal conductivities derived from TES measurements as well as modeled surface temperatures, we find that 79% of the gully alcove bases lie at depths where subsurface temperatures are greater than 273 K and 21% of the alcove bases lie within the solid water regime. Most of the gully alcoves lie outside the temperature-pressure phase stability of liquid CO2. Based on a comparison of measured gully features with predictions from the various models of gully formation, we find that models involving carbon dioxide, melting ground ice in the upper few meters of the soil, dry landslide, and surface snowmelt are the least likely to describe the formation of the martian gullies. Although some discrepancies still exist between prediction and observation, the shallow and deep aquifer models remain as the most plausible theories. Interior processes involving subsurface fluid sources are generally favored over exogenic processes such as wind and snowfall for explaining the origin of the martian gullies.  相似文献   

16.
Three localized sets of small arcuate ridges associated with slopes in the northern polar area of Mars (∼70°N latitude) are morphologically similar to sets of drop moraines left by episodes of advance and retreat of cold-based glaciers. Comparison with other glacial features on Mars shows that these features differ in important aspects from those associated with water–ice flow. Instead, we interpret these features to be due to perennial accumulation and flow of solid carbon dioxide during recent periods of very low spin-axis obliquity.  相似文献   

17.
A new survey of Mars Orbiter Camera (MOC) narrow-angle images of gullies in the 30°-45° S latitude band includes their distribution, morphology, local topographic setting, orientation, elevation, and slopes. These new data show that gully formation is favored over a specific range of conditions: elevation (−5000 to +3000 m), slope (>10°), and orientation (83.8% on pole-facing slopes). These data, and the frequent occurrence of gullies on isolated topographic highs, lead us to support the conclusion that climatic-related processes of volatile accumulation and melting driven by orbital variations are the most likely candidate for processes responsible for the geologically recent formation of martian gullies.  相似文献   

18.
We compare three previously independently studied crater morphologies - excess ejecta craters, perched craters, and pedestal craters - each of which has been proposed to form from impacts into an ice-rich surface layer. Our analysis identifies the specific similarities and differences between the crater types; the commonalities provide significant evidence for a genetic relationship among the morphologies. We use new surveys of excess ejecta and perched craters in the southern hemisphere in conjunction with prior studies of all of the morphologies to create a comprehensive overview of their geographic distributions and physical characteristics. From these analyses, we conclude that excess ejecta craters and perched craters are likely to have formed from the same mechanism, with excess ejecta craters appearing fresh while perched craters have experienced post-impact modification and infilling. Impacts that led to these two morphologies overwhelmed the ice-rich layer, penetrating into the underlying martian regolith, resulting in the excavation of rock that formed the blocky ejecta necessary to armor the surface and preserve the ice-rich deposits. Pedestal craters, which tend to be smaller in diameter, have the same average deposit thickness as excess ejecta and perched craters, and form in the same geographic regions. They rarely have ejecta around their crater rims, instead exhibiting a smooth pedestal surface. We interpret this to mean that they form from impacts into the same type of ice-rich paleodeposit, but that they do not penetrate through the icy surface layer, and thus do not generate a blocky ejecta covering. Instead, a process related to the impact event appears to produce a thin, indurated surface lag deposit that serves to preserve the ice-rich material. These results provide a new basis to identify the presence of Amazonian non-polar ice-rich deposits, to map their distribution in space and time, and to assess Amazonian climate history. Specifically, the ages, distribution and physical attributes of the crater types suggest that tens to hundreds of meters of ice-rich material has been episodically emplaced at mid latitudes in both hemispheres throughout the Amazonian due to obliquity-driven climate variations. These deposits likely accumulated more frequently in the northern lowlands, resulting in a larger population of all three crater morphologies in the northern hemisphere.  相似文献   

19.
A survey of THEMIS visible wavelength images in the Aeolis/Zephyria Plana region over the two western lobes of the equatorial Medusae Fossae Formation (MFF) shows ∼150 sinuous ridges having a variety of morphologies and contexts. To systematize investigation, we use a classification scheme including both individual ridge and ridge network types, as well as associations with impact craters and fan-shaped features. The morphology of the ridges, their location downslope from higher topography (e.g., crater rims and scarps), and their association with fan-shaped forms indicate that most sinuous ridges formed through overland aqueous flow. Analysis of observations by individual ridge type leads to interpretation of most of these sinuous ridges as inverted fluvial channels or floodplains and a few as possible eskers, with the origin of the remaining ridges under continuing investigation. About 15% of the sinuous ridges are associated with impact craters, but data analysis does not support a genetic relationship between the craters and the sinuous ridges. Instead, analysis of one sinuous ridge network associated with a crater indicates that the water source for the network was atmospheric in origin, namely, precipitation runoff. The broad areal distribution of these ∼150 ridges and the network morphologies, in particular the branched and subparallel types, suggest that an atmospheric water source is generally applicable to the population of sinuous ridges as a whole. This concentration of sinuous ridges is the largest single population of such landforms on Mars and among the youngest. These ridges are situated at a paleoscarp between Cerberus Palus and the Aeolis highlands, suggesting that the precipitation that formed them was orographic in origin. The ages of the equatorial MFF units in which this population of sinuous ridges is found imply that this orographic rain and/or snow fell during some period from the late Hesperian through the middle Amazonian.  相似文献   

20.
We use Viking and new MGS and Odyssey data to characterize the lobate deposits superimposed on aureole deposits along the west and northwest flanks of Olympus Mons, Mars. These features have previously been interpreted variously as landslide, pyroclastic, lava flow or glacial features on the basis of Viking images. The advent of multiple high-resolution image and topography data sets from recent spacecraft missions allow us to revisit these features and assess their origins. On the basis of these new data, we interpret these features as glacial deposits and the remnants of cold-based debris-covered glaciers that underwent multiple episodes of advance and retreat, occasionally interacting with extrusive volcanism from higher on the slopes of Olympus Mons. We subdivide the deposits into fifteen distinctive lobes. Typical lobes begin at a theater-like alcove in the escarpment at the base of Olympus Mons, interpreted to be former ice-accumulation zones, and extend outward as a tongue-shaped or fan-shaped deposit. The surface of a typical lobe contains (moving outward from the basal escarpment): a chaotic facies of disorganized hillocks, interpreted as sublimation till in the accumulation zone; arcuate-ridged facies characterized by regular, subparallel ridges and interpreted as the ridges of surface debris formed by the flow of underlying ice; and marginal ridges interpreted as local terminal moraines. Several lobes also contain a hummocky facies toward their margins that is interpreted as a distinctive type of sublimation till shaped by structural dislocations and preferential loss of ice. Blocky units are found extending from the escarpment onto several lobes; these units are interpreted as evidence of lava-ice interaction and imply that ice was present at a time of eruptive volcanic activity higher on the slopes of Olympus Mons. Other than minor channel-like features in association with lava-ice interactions, we find no evidence for the flow of liquid water in association with these lobate features that might suggest: (1) near-surface groundwater as a source for ice in the alcoves in the lobe source region at the base of the scarp, or (2) basal melting and drainage emanating from the lobes that might indicate wet-based glacial conditions. Instead, the array of features is consistent with cold-based glacial processes. The glacial interpretations outlined here are consistent with recent geological evidence for low-latitude ice-rich features at similar positions on the Tharsis Montes as well as with orbital dynamic and climate models indicating extensive snow and ice accumulation associated with episodes of increased obliquity during the Late Amazonian period of the history of Mars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号