首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Valles Marineris canyon system of Mars is closely related to large flood channels, some of which emerge full born from chaotic terrain in canyon floors. Coprates Chasma, one of the largest Valles Marineris canyons, is connected at its west end to Melas Chasma and on its east end to chaotic terrain-filled Capri and Eos Chasmata. The area from central Melas to Eos Chasmata contains a 1500 km long and about 1 km deep depression in its floor. Despite the large volumes of groundwater that likely discharged from chaotic terrain in this depression, no evidence of related fluvial activity has thus far been reported. We present an analysis of the regional topography which, together with photogeologic interpretation of available imagery, suggests that ponding due to late Hesperian discharge of water possibly produced a lake (mean depth 842 m) spanning parts of the Valles Marineris depression (VMD). Overflow of this lake at its eastern end resulted in delivery of water to downstream chaos regions and outflow channels. Our ponding hypothesis is motivated primarily by the identification of scarp and terrace features which, despite a lateral spread of about 1500 km, have similar elevations. Furthermore, these elevations correspond to the maximum ponding elevation of the region (−3560 m). Simulated ponding in the VMD yields an overflow point at its eastern extremity, in Eos Chasma. The neighborhood of this overflow point contains clear indicators of fluvial erosion in a consistent east-west orientation.  相似文献   

2.
We have used data from the Mars Reconnaissance Orbiter to study 30-80 m thick light-toned layered deposits on the plateaus adjacent to Valles Marineris at five locations: (1) south of Ius Chasma, (2) south of western Melas Chasma, (3) south of western Candor Chasma, (4) west of Juventae Chasma, and (5) west of Ganges Chasma. The beds within these deposits have unique variations in brightness, color, mineralogy, and erosional properties that are not typically observed in light-toned layered deposits within Valles Marineris or many other equatorial areas on Mars. Reflectance spectra indicate these deposits contain opaline silica and Fe-sulfates, consistent with low-temperature, acidic aqueous alteration of basaltic materials. We have found valley or channel systems associated with the layered deposits at all five locations, and the volcanic plains adjacent to Juventae, Ius, and Ganges exhibit inverted channels composed of light-toned beds. Valleys, channels, and light-toned layering along the walls of Juventae and Melas Chasmata are most likely coeval to the aqueous activity that affected the adjacent plateaus and indicate some hydrological activity occurred after formation of the chasmata. Although the source of water and sediment remains uncertain, the strong correlation between fluvial landforms and light-toned layered deposits argues for sustained precipitation, surface runoff, and fluvial deposition occurring during the Hesperian on the plateaus adjacent to Valles Marineris and along portions of chasmata walls.  相似文献   

3.
The Mars Global Surveyor Mars Orbiter Camera was used to obtain global maps of the martian surface with equatorial resolution of 7.5 km/pixel in two wavelength ranges: blue (400-450 nm) and red (575-625 nm). The maps used were acquired between March 15, 1999 (Ls=110°) and July 31, 2001 (Ls=205°), corresponding to approximately one and a quarter martian years. Using the global maps, cloud area (in km2) has been measured daily for water ice clouds topographically corresponding to Olympus Mons, Ascraeus Mons, Pavonis Mons, Arsia Mons, Alba Patera, the western Valles Marineris canyon system, and for other small surface features in the region. Seasonal trends in cloud activity have been established for the three Tharsis volcanoes, Olympus Mons, and Alba Patera. Olympus, Ascraeus, and Pavonis Mons show cloud activity from about Ls=0°-220° with a peak in cloud area near Ls=100°. One of our most interesting observational results is that Alba Patera shows a double peaked feature in the cloud area with peaks at Ls=60° and 140° and a minimum near Ls=100°. Arsia Mons shows nearly continuous cloud activity. The altitudes of several of these clouds have been determined from the locations of the visual cloud tops, and optical depths were measured for a number of them using the DISORT code of Stamnes et al. (1988, Appl. Opt. 27, 2502-2509). Several aspects of the observations (e.g., cloud heights, effects of increased dust on cloud activity) are similar to simulations in Richardson et al. (2002, J. Geophys. Res. 107, 5064). A search for short period variations in the cloud areas revealed only indirect evidence for the diurnal cloud variability in the afternoon hours; unambiguous evidence for other periodicities was not found.  相似文献   

4.
The quantitative measurement of surface roughness of planetary surfaces at all scales provides insights into geological processes. A characterization of roughness variations at the scale of a few tens of meters is proposed that complements the analysis of local topographic data of the martian surface at kilometer scale, as achieved from the Mars Orbiter Laser Altimeter (MOLA) data, and at the subcentimeter scale using photometric properties derived from multi-angular observations. Relying on a Gabor filtering process, an algorithm developed in the context of image classification for the purpose of texture analysis has been adapted to handle data from the High Resolution Stereo Camera (HRSC). The derivation of roughness within a wavelength range of tens of meters, combined with analyses at even longer wavelengths, gives an original view of the martian surface. The potential of this approach is evaluated for different examples for which the geological processes are identified and the geological units are mapped and characterized in terms of roughness.  相似文献   

5.
The Mars Global Surveyor Mars Orbiter Camera wide-angle cameras were used to obtain images of the north and south seasonal and residual polar caps between 1999 and 2003. Wide-angle red camera images were used in assembling mosaics of the north and south polar recessions and regression rates were measured and compared. There are small variations in the north polar recession between 2000 and 2002, especially between LS=7° and LS=50°, however there is no evidence for the plateau in the recession curves that has been observed in some prior years. The south polar recession changes very little from year to year, and the 2001 dust storm had little if any effect on the average cap recession that year. Albedo values of the geographic north pole were measured using wide-angle red and blue camera images, and the residual south polar cap configuration was compared between the three years observed by MOC. The albedo of the geographic north pole generally varies between 0.5 and 0.6 as measured from MOC wide-angle red camera images. There were only minor variations near the edges of the residual south polar cap between the three years examined.  相似文献   

6.
High Resolution Imaging Science Experiment (HiRISE) imagery and digital elevation models of the Candor Chasma region of Valles Marineris, Mars, reveal prominent and distinctive positive-relief knobs amidst light-toned layers. Three classifications of knobs, Types 1, 2, and 3, are distinguished from a combination of HiRISE and Thermal Emission Imaging System (THEMIS) images based on physical expressions (geometries, spatial relationships), and spectral data from Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Type 1 knobs are abundant, concentrated, topographically resistant features with their highest frequency in West Candor, which have consistent stratigraphic correlations of the peak altitude (height). These Type 1 knobs could be erosional remnants of a simple dissected terrain, possibly derived from a more continuous, resistant, capping layer of pre-existing material diagenetically altered through recrystallization or cementation. Types 2 and 3 knobs are not linked to a single stratigraphic layer and are generally solitary to isolated, with variable heights. Type 3 are the largest knobs at nearly an order of magnitude larger than Type 1 knobs. The variable sizes and occasional pits on the tops of Type 2 and 3 knobs suggest a different origin, possibly related to more developed erosion, preferential cementation, or textural differences from sediment/water injection or intrusion, or from a buried impact crater. Enhanced color HiRISE images show a brown coloration of the knob peak crests that is attributable to processing and photometric effects; CRISM data do not show any detectable spectral differences between the knobs and the host rock layers, other than albedo. These intriguing knobs hold important clues to deducing relative rock properties, timing of events, and weathering conditions of Mars history.  相似文献   

7.
E.Z. Noe Dobrea  F. Poulet 《Icarus》2008,193(2):516-534
We have identified the presence of polyhydrated sulfates in association with crystalline gray hematite in outcrop units of the chaotic terrain east of Valles Marineris. The hematite is found in abundances of up to ∼18%, and is usually associated with thin (∼10's of meters) cliff-forming layers of intermediate-toned outcrops (albedo ∼0.15-0.20) as well as mantling deposits adjacent to the outcrops. The polyhydrated sulfates are usually restricted to the bedrock unit, and are not found in the adjacent mantling units. In analogy to the observations performed at the Opportunity landing site, we hypothesize that erosion of the sulfate/hematite-bearing outcrops leaves the hematite behind as a lag and breaks the sulfates down to wind-transportable sizes. We also find that the layered outcrops present, for the most part, embayment or on-lap relationships with respect to the hummocks that constitute the chaotic terrain, suggesting that these units were emplaced via subaqueous or aeolian deposition and/or flow after the event that formed the associated chaos. These morphological observations, in conjunction with the correlation between hematite and polyhydrated sulfates also suggest an aqueous genesis for the crystalline gray hematite in these chaotic units, and presents evidence for the action of aqueous processes after the formation of at least some of the chaotic units on Mars.  相似文献   

8.
We examine the nature of the surface layer in Gale Crater as determined from high-resolution thermal and visible Mars Odyssey Thermal Emission Imaging System (THEMIS) data as well as how our conclusions compare to past analyses. At THEMIS resolution, the thermal surface structure is dominated by local control, thus providing us with detailed images that contain thermophysical information as well. Using these data sets we have created a map of the area, defining units based primarily on their geomorphology as determined from the daytime thermal and visible images and then using the nighttime thermal data to interpret the nature of the surface layer within each unit. Seven units have been defined: (i) partially blanketed knobby plateaus, (ii) crater walls with terrain similar to that on the plateaus on the upper half and exposed, rocky surfaces on the lower half, (iii)-(v) three floor units with varying combinations of bedrock and indurated and/or particulate deposits, (vi) sand sheets, and (vii) a central mound, consisting of indurated and/or rocky material forming layers, terraces, and slides, covered by particulate material that tapers in thickness downslope. Additionally, dozens of channels have been observed on the crater walls and central mound. The results indicate that aeolian processes have played a major role in shaping much of the present surface layer within Gale and may still be active today. Because of the dramatic size and structure of Gale, the winds are most likely controlled by the local topography. Additionally, the presence and frequency of channels within Gale bolster hypotheses involving aqueous episodes in the history of the crater.  相似文献   

9.
We examine the nature of the surface layer in a small area of the Melas Chasma region as determined from high-resolution thermal and visible Mars Odyssey Thermal Emission Imaging System (THEMIS) data as well as how our conclusions compare to past analyses. At THEMIS resolution, the thermal structure is dominated by local control and all significant thermal variations can be linked to morphology. Thus, THEMIS provides us with detailed images that contain thermophysical information as well, allowing us to create a surficial geologic map intended to reflect the surface structure of the region. Eight units have been defined: (i) blanketed plateaus with thermally distinct craters and fractures, (ii) blanketed canyon walls with rocky edges, (iii) indurated and/or rocky canyon wall slide material partially covered by aeolian material, (iv) an anomalous wall region with fluvial-like depressions partially filled with particulate material, (v) indurated and/or rocky ridged and non-ridged canyon floor landslide material mingled with aeolian material, (vi) sand sheets, (vii) indurated and/or rocky rounded blocks intermingled with small areas of aeolian material, and (viii) transverse dunes. The THEMIS thermal data support conclusions from previous studies but also reveal much more structure than was seen in the past. We have found that all significant thermal variations in this region can be linked to morphology but all morphological variations cannot be linked to significant thermal variations. THEMIS visible images provide an intermediate resolution that bridges the gap between MOC and Viking and allow for a more meaningful interpretation of the geologic context of a region. Surfaces indicate that landslides were an important geologic process long ago, shaping the canyon walls and floor, while aeolian processes have subsequently altered the surface layer in many locations and may still be active.  相似文献   

10.
D. Reiss  M. Zanetti  G. Neukum 《Icarus》2011,215(1):358-369
Active dust devils were observed in Syria Planum in Mars Observer Camera - Wide Angle (MOC-WA) and High Resolution Stereo Camera (HRSC) imagery acquired on the same day with a time delay of ∼26 min. The unique operating technique of the HRSC allowed the measurement of the traverse velocities and directions of motion. Large dust devils observed in the HRSC image could be retraced to their counterparts in the earlier acquired MOC-WA image. Minimum lifetimes of three large (avg. ∼700 m in diameter) dust devils are ∼26 min, as inferred from retracing. For one of these large dust devil (∼820 m in diameter) it was possible to calculate a minimum lifetime of ∼74 min based on the measured horizontal speed and the length of its associated dust devil track. The comparison of our minimum lifetimes with previous published results of minimum and average lifetimes of small (∼19 m in diameter, avg. min. lifetime of ∼2.83 min) and medium (∼185 m in diameter, avg. min. lifetime of ∼13 min) dust devils imply that larger dust devils on Mars are active for much longer periods of time than smaller ones, as it is the case for terrestrial dust devils. Knowledge of martian dust devil lifetimes is an important parameter for the calculation of dust lifting rates. Estimates of the contribution of large dust devils (>300-1000 m in diameter) indicate that they may contribute, at least regionally, to ∼50% of dust entrainment by dust devils into the atmosphere compared to the dust devils <300 m in diameter given that the size-frequency distribution follows a power-law. Although large dust devils occur relatively rarely and the sediment fluxes are probably lower compared to smaller dust devils, their contribution to the background dust opacity by dust devils on Mars could be at least regionally large due to their longer lifetimes and ability of dust lifting into high atmospheric layers.  相似文献   

11.
G Tobie  F Forget  F Lott 《Icarus》2003,164(1):33-49
In 1998, the Mars Orbiter Laser Altimeter revealed the presence of isolated or quasi-periodic thick clouds during the martian polar night. They are believed to be composed of CO2 ice particles and to be tilted against the wind direction, a feature characteristic of vertically propagating orographic gravity waves. To support that interpretation, we present here numerical simulations with a two-dimensional anelastic model of stratified shear flow that includes simple CO2 ice microphysics. In some of the simulations presented, the orography is an idealized trough, with dimensions characteristic of the many troughs that shape the Mars polar cap. In others, it is near the real orography. In the polar night conditions, our model shows that gravity waves over the north polar cap are strong enough to induce adiabatic cooling below the CO2 frost point. From this cooling, airborne heterogeneous nucleation of CO2 ice particles occurs from the ground up to the altitude of the polar thermal inversion. Although the model predicts that clouds can be present above 15 km, only low altitude clouds can backscatter the Laser beams of MOLA at a detectable level. Accordingly, the shape of the Laser echoes is related to the shape of the clouds at low level, but do not necessarily coincide with the top of the clouds. The model helps to interpret the cloud patterns observed by MOLA. Above an isolated orographic trough, an isolated extended sloping cloud tilted against the wind is obtained. The model shows that the observed quasi-periodic clouds are due to the succession of small-scale topographic features, rather than to the presence of resonant trapped lee waves. Indeed, the CO2 condensation greatly damps the buoyancy force, essential for the maintenance of gravity waves far from their sources. Simulations with realistic topography profiles show the cloud response is sensitive to the wind direction. When the wind is directed upslope of the polar cap, on the one hand, a large scale cloud, modulated by small-scale waves, forms just above the ground. On the other hand, when the wind is directed downslope, air is globally warmed, and periodic ice clouds induced by small-scale orography form at altitudes higher than 3-5 km above the ground. In both cases, a good agreement between the simulated echoes and the observed one is obtained. According to our model, we conclude that the observed clouds are quasi-stationary clouds made of moving ice particles that successively grow and sublimate by crossing cold and warm phases of orographic gravity waves generated by the successive polar troughs. We also find that the rate of ice precipitation is relatively weak, except when there is a large scale air dynamical cooling.  相似文献   

12.
M. Grott  E. Hauber  P. Kronberg 《Icarus》2007,186(2):517-526
Insight into the state of the early martian lithosphere is gained by modeling the topography above surface breaking thrust faults in the southern Thaumasia region. Crater counts of key surface units associated with the faulting indicate a scarp emplacement in the late Noachian-early Hesperian periods between 4.0 and 3.7 Gyr. The seismogenic layer thickness at the time of faulting is constrained to 27-35 km and 21-28 km for the two scarps investigated, implying paleo geothermal gradients of 12-18 and 15-23 K km−1, corresponding to heat flows of 24-36 and 30-46 mW m−2. The heat flow values obtained in this study are considerably lower than those derived from rift flank uplift at the close-by Coracis Fossae for a similar time period, indicating that surface heat flow is a strong function of regional setting. If viewed as representative for magmatically active and inactive regions, the thermal gradients at rifts and scarps span the range of admissible global mean values. This implies , with the true value probably being closer to the lower bound.  相似文献   

13.
The Mars Reconnaissance Orbiter observes Mars from a nearly circular, polar orbit. From this vantage point, the Mars Color Imager extends the ∼5 Mars years record of Mars Global Surveyor global, visible-wavelength multi-color observations of meteorological events and adds measurements at three additional visible and two ultraviolet wavelengths. Observations of the global distribution of ozone (which anti-correlates with water vapor) and water ice and dust clouds allow tracking of atmospheric circulation. Regional and local observations emphasize smaller scale atmospheric dynamics, especially those related to dust lifting and subsequent motion. Polar observations detail variations related to the polar heat budget, including changes in polar frosts and ices, and storms generated at high thermal contrast boundaries.  相似文献   

14.
Chris H. Okubo 《Icarus》2010,207(1):210-21
The structural geology of an outcropping of layered sedimentary deposits in southwest Candor Chasma is mapped using two adjacent high-resolution (1 m/pixel) HiRISE digital elevation models and orthoimagery. Analysis of these structural data yields new insight into the depositional and deformational history of these deposits. Bedding in non-deformed areas generally dips toward the center of west Candor Chasma, suggesting that these deposits are basin-filling sediments. Numerous kilometer-scale faults and folds characterize the deformation here. Normal faults of the requisite orientation and length for chasma-related faulting are not observed, indicating that the local sediments accumulated after chasma formation had largely ceased in this area. The cause of the observed deformation is attributed to landsliding within these sedimentary deposits. Observed crosscutting relationships indicate that a population of sub-vertical joints are the youngest deformational structures in the area. The distribution of strain amongst these joints, and an apparently youthful infill of sediment, suggests that these fractures have been active in the recent past. The source of the driving stress acting on these joints has yet to be fully constrained, but the joint orientations are consistent with minor subsidence within west Candor Chasma.  相似文献   

15.
In the western sector of Nepenthes Mensae, Mars, there are some geomorphological features that could be related to a standing water sheet in the area, such as fluvial terraces, deltas and shorelines. A detailed analysis of these features reveals two variations in water level, probably related to tectonic processes, as suggested by the existence of a fissural volcano at this site.  相似文献   

16.
Estimates of discharge for martian outflow channels have spanned orders of magnitude due in part to uncertainties in floodwater height. A methodology of estimating discharge based on bedforms would reduce some of this uncertainty. Such a methodology based on the morphology and granulometry of flood-formed (‘diluvial’) dunes has been developed by Carling (1996b, in: Branson, J., Brown, A.G., Gregory, K.J. (Eds.), Global Continental Changes: The Context of Palaeohydrology. Geological Society Special Publication No. 115, London, UK, 165-179) and applied to Pleistocene flood-formed dunes in Siberia. Transverse periodic dune-like bedforms in Athabasca Valles, Mars, have previously been classified both as flood-formed dunes and as antidunes. Either interpretation is important, as they both imply substantial quantities of water, but each has different hydraulic implications. We undertook photoclinometric measurements of these forms, and compared them with data from flood-formed dunes in Siberia. Our analysis of those data shows their morphology to be more consistent with dunes than antidunes, thus providing the first documentation of flood-formed dunes on Mars. Other reasoning based on context and likely hydraulics also supports the bedforms' classification as dunes. Evidence does not support the dunes being aeolian, although a conclusive determination cannot be made with present data. Given the preponderance of evidence that the features are flood-formed instead of aeolian, we applied Carling's (1996b, in: Branson, J., Brown, A.G., Gregory, K.J. (Eds.), Global Continental Changes: The Context of Palaeohydrology. Geological Society Special Publication No. 115, London, UK, 165-179) dune-flow model to derive the peak discharge of the flood flow that formed them. The resultant estimate is approximately 2×106 m3/s, similar to previous estimates. The size of the Athabascan dunes' in comparison with that of terrestrial dunes suggests that these martian dunes took at least 1-2 days to grow. Their flattened morphology implies that they were formed at high subcritical flow and that the flood flow that formed them receded very quickly.  相似文献   

17.
An extensive layered formation covers the high plateaus around Valles Marineris. Mapping based on HiRISE, CTX and HRSC images reveals these layered deposits (LDs) crop out north of Tithonium Chasma, south of Ius Chasma, around West Candor Chasma, and southwest of Juventae Chasma and Ganges Chasma. The estimated area covered by LDs is ∼42,300 km2. They consist of a series of alternating light and dark beds, a 100 m in total thickness that is covered by a dark unconsolidated mantle possibly resulting from their erosion. Their stratigraphic relationships with the plateaus and the Valles Marineris chasmata indicate that the LDs were deposited during the Early- to Late Hesperian, and possibly later depending on the region, before the end of the backwasting of the walls near Juventae Chasma, and probably before Louros Valles sapping near Ius Chasma. Their large spatial coverage and their location mainly on highly elevated plateaus lead us to conclude that LDs correspond to airfall dust and/or volcanic ash. The surface of LDs is characterized by various morphological features, including lobate ejecta and pedestal craters, polygonal fractures, valleys and sinuous ridges, and a pitted surface, which are all consistent with liquid water and/or water ice filling the pores of LDs. LDs were episodically eroded by fluvial processes and were possibly modified by sublimation processes. Considering that LDs correspond to dust and/or ash possibly mixed with ice particles in the past, LDs may be compared to Dissected Mantle Terrains currently observed in mid- to high latitudes on Mars, which correspond to a mantle of mixed dust and ice that is partially or totally dissected by sublimation. The analysis of CRISM and OMEGA hyperspectral data indicates that the basal layer of LDs near Ganges Chasma exhibits spectra with absorption bands at ∼1.4 μm, and ∼1.9 μm and a large deep band between ∼2.21 and ∼2.26 μm that are consistent with previous spectral analysis in other regions of LDs. We interpret these spectral characteristics as an enrichment of LDs in opaline silica or by Al-phyllosilicate-rich layers being overlain by hydroxylated ferric sulfate-rich layers. These alteration minerals are consistent with the aqueous alteration of LDs at low temperatures.  相似文献   

18.
Distinct competent layers are observed in the slopes of eastern Coprates Chasma, part of the Valles Marineris system on Mars. Our observations indicate that the stratigraphy of Coprates Chasma consists of alternating thin strong layers and thicker sequences of relatively weak layers. The strong, competent layers maintain steeper slopes and play a major role in controlling the overall shape and geomorphology of the chasmata slopes. The topmost competent layer in this area is well preserved and easy to identify in outcrops on the northern rim of Coprates Chasma less than 100 m below the southern Ophir Planum surface. The volume of the topmost emplaced layer is at least 70 km3 and may be greater than 2100 km3 if the unit underlies most of Ophir Planum. The broad extent of this layer allows us to measure elevation offsets within the north rim of the chasma and in a freestanding massif within Coprates Chasma where the layer is also observed. Rim outcrop morphology and elevation differences between Ophir and Aurorae Plana may be indicative of the easternmost extent of the topmost competent layer. These observations allow an insight into the depositional processes that formed the stratigraphic stack into which this portion of the Valles Marineris is carved, and they present a picture of some of the last volcanic activity in this area. Furthermore, the elevation offsets within the layer are evidence of significant subsidence of the massif and surrounding material.  相似文献   

19.
The Thermal Emission Imaging System (THEMIS) has provided the highest spatial resolution (100 m/pixel) thermal infrared (TIR) data of the surface of Mars to date. These data have enabled the discovery of many small-scale compositional units and helped to better constrain surface processes operating at these scales. However, with higher-resolution visible (VIS) instruments revealing smaller-scale surficial differences, there exists a need to detect and map compositional variability using TIR data at scales below 100 m. Because it is unlikely there will be a higher-resolution TIR instrument sent to Mars in the near future, creative image processing techniques commonly classified under the umbrella of “super-resolution” can be employed to improve or enhance the spatial resolution of the THEMIS TIR data. These approaches typically integrate another higher-resolution dataset and can either be qualitative for visual appeal, quantitative for data accuracy, or some combination of both. The super-resolution approach presented here produces enhanced TIR images that are radiometrically accurate, but also visually appealing. For the technique to be successfully applied, multi- to hyper-spectral data from two different spectral regions are required (e.g., the THEMIS TIR and VIS datasets). The focus here is to introduce this new super-resolution methodology and demonstrate its ability using existing THEMIS IR and VIS data. The quartzofeldspathic deposit in northern Syrtis Major was selected because of the spectral variability detected using the original IR resolution data and to better constrain the relationship between the small-scale surface morphology and areal extent of the deposit as well as its formation process. Despite being associated with the central peaks of two craters, the results here show no positive correlation between the small rocky outcrops and the quartzofeldspathic unit. A gradational contact exists between the unit and basaltic sands within the intercrater eolian material. The super-resolution approach offers an alternative approach to traditional sub-pixel deconvolution identification and provides a higher-resolution IR dataset for thermophysical and spectral analysis on Mars.  相似文献   

20.
In this paper, we have analyzed neutron spectroscopy data gathered by the High Energy Neutron Detector (HEND) instrument onboard Mars Odyssey for comparison of polar regions. It is known that observation of the neutron albedo of Mars provides important information about the distribution of water-ice in subsurface layers and about peculiarities of the CO2 seasonal cycle. It was found that there are large water-rich permafrost areas with contents of up to ∼50% water by mass fraction at both the north and south Mars polar regions. The water-ice layers at high northern latitudes are placed close to the surface, but in the south they are covered by a dry and relatively thick (10-20 cm) layer of soil. Analysis of temporal variations of neutron flux between summer and winter seasons allowed the estimation of the masses of the CO2 deposits which seasonally condense at the polar regions. The total mass of the southern seasonal deposition was estimated as 6.3×1015 kg, which is larger than the total mass of the seasonal deposition at the north by 40-50%. These results are in good agreement with predictions from the NASA Ames Research Center General Circulation Model (GCM). But, the dynamics of the condensation and sublimation processes are not quite as consistent with these models: the peak accumulation of the condensed mass of CO2 occurred 10-15 degrees of Ls later than is predicted by the GCM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号