首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present results of polarimetric observations of the Galilean satellites Io, Europa, Ganymede, and Callisto at phase angles ranging from 0.19° to 2.22°. The observations in the UBVR filters were performed using a one-channel photoelectric polarimeter attached to 70-cm telescope of the Chuguev Observation Station (Ukraine) on November 19-December 7, 2000. We have observed the polarization opposition effect for Io, Europa, and Ganymede to be a sharp secondary spike of negative polarization with an amplitude of about −0.4% centered at phase angles of 0.2°-0.7° and superimposed on the regular negative polarization branch. Although these minima for Io, Europa, and Ganymede show many similarities, they also exhibit a number of distinctions. The polarization opposition effect appears to be wavelength-dependent, at least for Europa and Ganymede. No polarization opposition effect was found for Callisto. The results obtained are discussed within the framework of different mechanisms of light scattering.  相似文献   

2.
Oceans in the icy Galilean satellites of Jupiter?   总被引:1,自引:0,他引:1  
Tilman Spohn  Gerald Schubert 《Icarus》2003,161(2):456-467
Equilibrium models of heat transfer by heat conduction and thermal convection show that the three satellites of Jupiter—Europa, Ganymede, and Callisto—may have internal oceans underneath ice shells tens of kilometers to more than a hundred kilometers thick. A wide range of rheology and heat transfer parameter values and present-day heat production rates have been considered. The rheology was cast in terms of a reference viscosity ν0 calculated at the melting temperature and the rate of change A of viscosity with inverse homologous temperature. The temperature dependence of the thermal conductivity k of ice I has been taken into account by calculating the average conductivity along the temperature profile. Heating rates are based on a chondritic radiogenic heating rate of 4.5 pW kg−1 but have been varied around this value over a wide range. The phase diagrams of H2O (ice I) and H2O + 5 wt% NH3 ice have been considered. The ice I models are worst-case scenarios for the existence of a subsurface liquid water ocean because ice I has the highest possible melting temperature and the highest thermal conductivity of candidate ices and the assumption of equilibrium ignores the contribution to ice shell heating from deep interior cooling. In the context of ice I models, we find that Europa is the satellite most likely to have a subsurface liquid ocean. Even with radiogenic heating alone the ocean is tens of kilometers thick in the nominal model. If tidal heating is invoked, the ocean will be much thicker and the ice shell will be a few tens of kilometers thick. Ganymede and Callisto have frozen their oceans in the nominal ice I models, but since these models represent the worst-case scenario, it is conceivable that these satellites also have oceans at the present time. The most important factor working against the existence of subsurface oceans is contamination of the outer ice shell by rock. Rock increases the density and the pressure gradient and shifts the triple point of ice I to shallower depths where the temperature is likely to be lower then the triple point temperature. According to present knowledge of ice phase diagrams, ammonia produces one of the largest reductions of the melting temperature. If we assume a bulk concentration of 5 wt% ammonia we find that all the satellites have substantial oceans. For a model of Europa heated only by radiogenic decay, the ice shell will be a few tens of kilometers thinner than in the ice I case. The underlying rock mantle will limit the depth of the ocean to 80-100 km. For Ganymede and Callisto, the ice I shell on top of the H2O-NH3 ocean will be around 60- to 80-km thick and the oceans may be 200- to 350-km deep. Previous models have suggested that efficient convection in the ice will freeze any existing ocean. The present conclusions are different mainly because they are based on a parameterization of convective heat transport in fluids with strongly temperature dependent viscosity rather than a parameterization derived from constant-viscosity convection models. The present parameterization introduces a conductive stagnant lid at the expense of the thickness of the convecting sublayer, if the latter exists at all. The stagnant lid causes the temperature in the sublayer to be warmer than in a comparable constant-viscosity convecting layer. We have further modified the parameterization to account for the strong increase in homologous temperature, and therefore decrease in viscosity, with depth along an adiabat. This modification causes even thicker stagnant lids and further elevated temperatures in the well-mixed sublayer. It is the stagnant lid and the comparatively large temperature in the sublayer that frustrates ocean freezing.  相似文献   

3.
Several approaches have been used to estimate the ice shell thickness on Callisto, Ganymede, and Europa. Here we develop a method for placing a strict lower bound on the thickness of the strong part of the shell (lithosphere) using measurements of topography. The minimal assumptions are that the strength of faults in the brittle lithosphere is controlled by lithostatic pressure according to Byerlee's law and the shell has relatively uniform density and thickness. Under these conditions, the topography of the ice provides a direct measure of the bending moment in the lithosphere. This topographic bending moment must be less than the saturation bending moment of the yield strength envelope derived from Byerlee's law. The model predicts that the topographic amplitude spectrum decreases as the square of the topographic wavelength. This explains why Europa is rugged at shorter wavelengths (∼10 km) but extremely smooth, and perhaps conforming to an equipotential surface, at longer wavelengths (>100 km). Previously compiled data on impact crater depth and diameter [Schenk, P.M., 2002. Nature 417, 419-421] on Europa show good agreement with the spectral decrease predicted by the model and require a lithosphere thicker than 2.5 km. A more realistic model, including a ductile lower lithosphere, requires a thickness greater than 3.5 km. Future measurements of topography in the 10-100 km wavelength band will provide tight constraints on lithospheric strength.  相似文献   

4.
Astrometric satellite positions are derived from timings of their eclipses in the shadow of Jupiter. The 548 data points span 20 years and are accurate to about 0.006 arcsec for Io and Europa and about 0.015 arcsec or better for Ganymede and Callisto. The precision of the data set and its nearly continuous distribution in time allows measurement of regular oscillations with an accuracy of 0.001 arcsec. This level of sensitivity permits detailed evaluation of modern ephemerides and reveals anomalies at the 1.3 year period of the resonant perturbations between Io, Europa and Ganymede. The E5 ephemeris shows large errors at that period for all three satellites as well as other significant anomalies. The L1 ephemeris fits the observations much more closely than E5 but discrepancies for the resonant satellites are still apparent and the measured positions of Io are drifting away from the predictions. The JUP230 ephemeris fits the observations more accurately than L1 although there is still a measurable discordance between the predictions and observations for Europa at the resonance period.  相似文献   

5.
The purpose of this study was to determine if any temporal variability in the broadband UV spectral properties of the icy Galilean satellites exists, and if so, to characterize its spatial distribution as a function of longitude in order to attempt to correlate any temporal changes with satellite surface interactions with the space environment. The temporal time period examined is between 1978-1984 (referred to as the 1980s data) and those from 1995-1996 (referred to as the 1990s data). The plausible temporal characteristics detected appear to vary from one satellite to the next. For Europa possible temporal variations are concentrated on the leading, anti-jovian quadrant. Example broadband UV spectra show Europa's spectral slope decreases (and darkens) with time on the leading and anti-jovian hemispheres, but remains essentially constant with time on the trailing hemisphere. The data quality does not support any definitive temporal changes for Ganymede. Possible temporal changes seen in the Callisto data set are concentrated on the jovian hemisphere. Example broadband UV spectra for Callisto show no definitive change in slope with time. The hypothesis is that these temporal differences in UV spectral properties are caused by variations in the surface ice chemistry due to temporal variability in the space environment. It is postulated that the UV spectral changes suggested for Europa may be linked to changes in H2O2 concentrations, whereas the changes on Callisto may be linked to variability in SO2 concentration.  相似文献   

6.
Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the jovian system is a source of X-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are both powerful sources of X-ray emission. Chandra observations revealed X-ray emission from the Io plasma torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from the moons is due to bombardment of their surfaces by highly energetic magnetospheric protons, and oxygen and sulfur ions. These ions excite atoms in their surfaces leading to fluorescent X-ray emission lines. These lines are produced against an intense background continuum, including bremsstrahlung radiation from surface interactions of primary magnetospheric and secondary electrons. Although the X-ray emission from the Galilean moons is faint when observed from Earth orbit, an imaging X-ray spectrometer in orbit around one or more of these moons, operating from 200 eV to 8 keV with 150 eV energy resolution, would provide a detailed mapping of the elemental composition in their surfaces. Surface resolution of 40 m for small features could be achieved in a 100-km orbit around one moon while also remotely imaging surfaces of other moons and Jupiter's upper atmosphere at maximum regional resolutions of hundreds of kilometers. Due to its relatively more benign magnetospheric radiation environment, its intrinsic interest as the largest moon in the Solar System, and its mini-magnetosphere, Ganymede would be the ideal orbital location for long-term observational studies of the jovian system. Here we describe the physical processes leading to X-ray emission from the surfaces of Jupiter's moons and the properties required for the technique of imaging X-ray spectroscopy to map the elemental composition of their surfaces, as well as studies of the X-ray emission from the planet's aurora and disk and from the Io plasma torus.  相似文献   

7.
The relationship between the k2/Q of the Galilean satellites and the k2J/QJ of Jupiter is derived from energy and momentum considerations. Calculations suggest that the Galilean satellites can be divided into two classes according to their Q values: Io and Ganymede have values between 10 and 50, while Europa and Callisto have values ranging from 200 to 700. The tidal contributions of the Galilean satellites to Jupiter's rotation are estimated. The main deceleration of Jupiter, which is about 99.04% of the total, comes from Io.  相似文献   

8.
Recent measurements of the high-energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EPD) have been analyzed in the range from 7 to 28 Jupiter radii. 10-min averages of these data between Jupiter orbit insertion in 1995 to the end of the mission have been analyzed to provide estimates of the electron differential fluxes at 1.5, 2, and 11 MeV in the jovian equatorial plane as a function of radial distance. These data provide a long term picture of the variations in the high-energy electron environment over the ∼8 years of the Galileo mission. This paper reviews those measurements and the statistics associated with them for the 8 year period. In general, the data variations are well behaved with variations being within a factor of ∼2 of a median value at a given distance from Jupiter. These results are analyzed in detail and the orbit variations discussed in the context of the overall data set. The results of this analysis of the long-term statistical variations in high-energy electron fluxes are directly applicable to models that estimate the effects of the radiation environment on Jupiter's moons and their atmospheres as they permit estimates of the possible range of radiation effects that might be expected.  相似文献   

9.
Laurel E. Senft 《Icarus》2011,214(1):67-81
Impact craters on icy satellites display a wide range of morphologies, some of which have no counterpart on rocky bodies. Numerical simulation studies have struggled to reproduce the diversity of features, such as central pits and transitions in crater depth with increasing diameter, observed on the icy Galilean satellites. The transitions in crater depth (at diameters of about 26 and 150 km on Ganymede and Callisto) have been interpreted as reflecting subsurface structure. Using the CTH shock physics code, we model the formation of craters with diameters between 400 m and about 200 km on Ganymede using different subsurface temperature profiles. Our calculations include recent improvements in the model equation of state for H2O and quasi-static strength parameters for ice. We find that the shock-induced formation of dense high-pressure polymorphs (ices VI and VII) creates a gap in the crater excavation flow, which we call discontinuous excavation. For craters larger than about 20 km, discontinuous excavation concentrates a hot plug of material (>270 K and mostly on the melting curve) in the center of the crater floor. The size and occurrence of the hot plug are in good agreement with the observed characteristics of central pit craters, and we propose that a genetic link exists between them. We also derive depth versus diameter curves for different internal temperature profiles. In a 120 K isothermal crust, calculated craters larger than about 30 km diameter are deeper than observed and do not reproduce the transition at about 26 km diameter. Calculated crater depths are shallower and in good agreement with observations between about 30 and 150 km diameter using a warm thermal gradient representing a convective interior. Hence, the depth-to-diameter transition at about 26 km reflects thermal weakening of ice. Finally, simulation results generally support the hypothesis that the anomalous interior morphologies for craters larger than 100 km are related to the presence of a subsurface ocean.  相似文献   

10.
This paper aims at studying the long-term orbital consequences of the perturbations related to De Haerdtl inequality, a current quasi-commensurability between the Galilean satellites of Jupiter Ganymede and Callisto. We used the method of Frequency Map Analysis to detect a chaotic behavior in a 5-bodies system where every inequality has been dropped, except of De Haerdtl one. We also used Frequency Analysis to draw the behavior of the arguments likely to become resonant, in several numerical integrations. We show that De Haerdtl inequality might have induced chaos in the past if Ganymede's and Callisto's eccentricities have been higher than 4×10−3. Moreover, we enlight the influence of Jupiter's obliquity on this chaos. We also enlight some aspects of this chaotic behavior, showing for instance stable chaos and single resonances. The main result of this study is that De Haerdtl inequality should be taken into account in every study of the long term orbital evolution of the Galilean satellites.  相似文献   

11.
The purpose of this paper is to present a critical review of some problems concerning the dynamics of Jupiter's Galilean system of satellites. Theory, ephemeris and observation are considered.Two theories were proposed by Ferraz-Mello and by Sagnier. The main characteristics of these theories are that the frequencies are allowed to be kept fixed for all times from the earlier stages, and so to have a purely trigonometric solution.For a completely satisfactory work we need many more observations than actually exist. Two kinds of observations seem to be the best suitable: long-focus photographic plates and photometric records of mutual events.The most recent photographic observations are discussed in order to state guidelines for future work. The problem of the precision of Sampson's tables is discussed on the grounds of the recent observations.Paper presented at IAU Colloquium, No. 28, Ithaca, N.Y., August, 1974.  相似文献   

12.
Audouin Dollfus 《Icarus》1975,25(3):416-431
New measurements of the amount of polarization of the Galilean satellites are given and, within the context of other data, are interpreted as follows. The polarization of Europa is consistent with a water-frost surface. Io has a surface of partly absorbing crystals thought to result from evaporates released from the mantle and damaged by radiation. Ganymede has alternating water-frost areas and darker terrain, possibly of a silicaceous nature. Callisto is explained as having a mantle of ice containing embedded blocks of rocks, which occurred when recent evaporation left the blocks piled at the surface in a chaotic manner. This event occurred after the vicinity of Jupiter had been cleared of small orbiting objects able to impact Callisto. Meteorites which continue to enter within the sphere of influence of Jupiter can collide with Callisto only on its leading hemisphere, which is thereby comminuted by impacts. The surface of the trailing hemisphere is not regolithic.  相似文献   

13.
The four Galilean satellites are thought to harbor one or even two global internal liquid layers beneath their surface layer. The iron core of Io and Ganymede is most likely (partially) liquid and also the core of Europa may be liquid. Furthermore, there are strong indications for the existence of a subsurface ocean in Europa, Ganymede, and Callisto. Here, we investigate whether libration observations can be used to prove the existence of these liquid layers and to constrain the thickness of the overlying solid layers. For Io, the presence of a small liquid core increases the libration of the mantle by a few percent with respect to an entirely solid Io and mantle libration observations could be used to determine the mantle thickness with a precision of several tens of kilometers given that the libration amplitude can be measured with a precision of 1 m. For Europa, Ganymede, and Callisto, the presence of a water ocean close to the surface increases by at least an order of magnitude the ice shell libration amplitude with respect to an entirely solid satellite. The shell libration depends essentially on the shell thickness and to a minor extent on the density difference between the ocean and the ice shell. The possible presence of a liquid core inside Europa and Ganymede has no noticeable influence on their shell libration. For a precision of several meters on the libration measurements, in agreement with the expected accuracy with the NASA/ESA EJSM orbiter mission to Europa and Ganymede, an error on the shell thickness of a few tens kilometers is expected. Therefore, libration measurements can be used to detect liquid layers such as Io’s core or water subsurface oceans in Europa, Ganymede, and Callisto and to constrain the thickness of the overlying solid surface layers.  相似文献   

14.

The resonance amongst three of the Galilean satellites is described in a way intended to demonstrate the similarities it has to the normal two-satellite resonance. The hypothesis that the resonance was formed by the action of tidal forces is discussed. The problem is too complicated to reach any firm conclusions, but the tidal hypothesis does not seem to be a satisfactory explanation.

  相似文献   

15.
We compare the moment of inertia (MOI) of a simple hydrostatic, two layer body as determined by the Radau–Darwin Approximation (RDA) to its exact hydrostatic MOI calculated to first order in the parameter q = Ω2R3/GM, where Ω, R, and M are the spin angular velocity, radius, and mass of the body, and G is the gravitational constant. We show that the RDA is in error by less than 1% for many configurations of core sizes and layer densities congruent with those of solid bodies in the Solar System. We then determine the error in the MOI of icy satellites calculated with the RDA due to nonhydrostatic effects by using a simple model in which the core and outer shell have slight degree 2 distortions away from their expected hydrostatic shapes. Since the hydrostatic shape has an associated stress of order ρΩ2R2 (where ρ is density) it follows that the importance of nonhydrostatic effects scales with the dimensionless number σ/ρΩ2R2, where σ is the nonhydrostatic stress. This highlights the likely importance of this error for slowly rotating bodies (e.g., Titan and Callisto) and small bodies (e.g., Saturn moons other than Titan). We apply this model to Titan, Callisto, and Enceladus and find that the RDA-derived MOI can be 10% greater than the actual MOI for nonhydrostatic stresses as small as ∼0.1 bars at the surface or ∼1 bar at the core–mantle boundary, but the actual nonhydrostatic stresses for a given shape change depends on the specifics of the interior model. When we apply this model to Ganymede we find that the stresses necessary to produce the same MOI errors as on Titan, Callisto, and Enceladus are an order of magnitude greater due to its faster rotation, so Ganymede may be the only instance where RDA is reliable. We argue that if satellites can reorient to the lowest energy state then RDA will always give an overestimate of the true MOI. Observations have shown that small nonhydrostatic gravity anomalies exist on Ganymede and Titan, at least at degree 3 and presumably higher. If these anomalies are indicative of the nonhydrostatic anomalies at degree 2 then these imply only a small correction to the MOI, even for Titan, but it is possible that the physical origin of nonhydrostatic degree 2 effects is different from the higher order terms. We conclude that nonhydrostatic effects could be present to an extent that allows Callisto and Titan to be fully differentiated.  相似文献   

16.
The main features of this theory are presented with special emphasis on the most specific of them: choice of the parameters, separation of the problem into subproblems (main problem, generalized main problem, complete problem), special adaptation of the method required by the resonant situation of the Galilean system.  相似文献   

17.
The aim of the present work is to compare photographic observations of the Galilean satellites of Jupiter with the theory developed by Sampson at the beginning of the century and corrected and implemented recently by Lieske.The comparisons between the observed and computed values give differences in geocentric angular distances of the order of 0.08 for modern observations (1968 to 1977) and of the order of 0.14 for older ones (1913 to 1928).These results lead to the suggestion that important long period defects still exist in the theory of Sampson-Lieske. This is not surprising, due to the difficulties of the computation of the long-period inequalities in mean longitudes, even in a first-order theory.Proceedings of the Conference on Analytical Methods and Ephemerides: Theory and Observations of the Moon and Planets. Facultés universitaires Notre Dame de la Paix, Namur, Belgium, 28–31 July, 1980  相似文献   

18.
Attention is drawn to the fact that not quite reliable data on the position of the polarization plane were used in study [Rosenbush, V.K. et al., Astrophys. J., 1997, vol. 487, no. 1, pp. 402–414] for the comparison of calculated and observed peaks in the polarization of the Galilean satellites of Jupiter near opposition. We propose the hypothesis that this polarization peak is formed by light interference on microcracks aligned in a required way rather than on closely-spaced particles.  相似文献   

19.
Some of the results of an investigation into the long period behavior of the orbits of the Galilean satellites of Jupiter are presented. Special purpose computer programs were used to perform all the algebraic manipulations and series expansions that are necessary to describe the mutual interactions among the satellites.The disturbing function was expanded as a Poisson series in the modified Keplerian elements referred to a Jovicentric coordinate system. The differential equations for the modified Keplerian elements were then formed, and all short period perturbations were removed using Kamel's perturbation method. Approximate analytical solutions for these differential equations are derived, and the general form of the solutions are given.  相似文献   

20.
Cycloids, arcuate features observed on Europa’s surface, have been interpreted as tensile cracks that form in response to diurnal tidal stress caused by Europa’s orbital eccentricity. Stress from non-synchronous rotation may also contribute to tidal stress, and its influence on cycloid shapes has been investigated as well. Obliquity, fast precession, and physical libration would contribute to tidal stress but have often been neglected because they were expected to be negligibly small. However, more sophisticated analyses that include the influence of Jupiter’s other large satellites and the state of Europa’s interior indicate that perhaps these rotational parameters are large enough to alter the tidal stress field and the formation of tidally-driven fractures. We test tidal models that include obliquity, fast precession, stress due to non-synchronous rotation, and physical libration by comparing how well each model reproduces observed cycloids. To do this, we have designed and implemented an automated parameter-searching algorithm that relies on a quantitative measure of fit quality, which we use to identify the best fits to observed cycloids. We then apply statistical techniques to determine the tidal model best supported by the data. By incorporating obliquity, fits to observed southern hemisphere cycloids improve, and we can reproduce equatorial and equator-crossing cycloids. Furthermore, we find that obliquity plus physical libration is the tidal model best supported by the data. With this model, the obliquities range from 0.32° to 1.35°. The libration amplitudes are 0.72–2.44°, and the libration phases are −6.04° to 17.72° with one outlier at 84.5°. The variability in obliquity is expected if Europa’s ice shell is mechanically decoupled from the interior, and the libration amplitudes are plausible in the presence of a subsurface ocean. Indeed, the presence of a decoupling ocean may result in feedbacks that cause all of these rotational parameters to become time-variable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号