首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Contemporary surveys provide a huge number of detections of small solar system bodies, mostly asteroids. Typically, the reported astrometry is not enough to compute an orbit and/or perform an identification with an already discovered object. The classical methods for preliminary orbit determination fail in such cases: a new approach is necessary. When the observations are not enough to compute an orbit we represent the data with an attributable (two angles and their time derivatives). The undetermined variables range and range rate span an admissible region of solar system orbits, which can be sampled by a set of Virtual Asteroids (VAs) selected by an optimal triangulation. The attributable results from a fit and has an uncertainty represented by a covariance matrix, thus the predictions of future observations can be described by a quasi-product structure (admissible region times confidence ellipsoid), which can be approximated by a triangulation with each node surrounded by a confidence ellipsoid. The problem of identifying two independent short arcs of observations has been solved. For each VA in the admissible region of the first arc we consider prediction at the time of the second arc and the corresponding covariance matrix, and we compare them with the attributable of the second arc with its own covariance. By using the penalty (increase in the sum of squares, as in the algorithms for identification) we select the VAs which can fit together both arcs and compute a preliminary orbit. Even two attributables may not be enough to compute an orbit with a convergent differential corrections algorithm. The preliminary orbits are used as first guess for constrained differential corrections, providing solutions along the Line Of Variations (LOV) which can be used as second generation VAs to further predict the observations at the time of a third arc. In general the identification with a third arc will ensure a least squares orbit, with uncertainty described by the covariance matrix.  相似文献   

2.
3.
We investigate a method to compute a finite set of preliminary orbits for solar system bodies using the first integrals of the Kepler problem. This method is thought for the applications to the modern sets of astrometric observations, where often the information contained in the observations allows only to compute, by interpolation, two angular positions of the observed body and their time derivatives at a given epoch; we call this set of data attributable. Given two attributables of the same body at two different epochs we can use the energy and angular momentum integrals of the two-body problem to write a system of polynomial equations for the topocentric distance and the radial velocity at the two epochs. We define two different algorithms for the computation of the solutions, based on different ways to perform elimination of variables and obtain a univariate polynomial. Moreover we use the redundancy of the data to test the hypothesis that two attributables belong to the same body (linkage problem). It is also possible to compute a covariance matrix, describing the uncertainty of the preliminary orbits which results from the observation error statistics. The performance of this method has been investigated by using a large set of simulated observations of the Pan-STARRS project.  相似文献   

4.
James Baer  Steven R. Chesley 《Icarus》2011,212(1):438-447
In calculating the orbit of a minor planet with a least-squares algorithm, current practice is to assume that all observations of a given era have the same uncertainty, and that the errors in these observations are uncorrelated. These assumptions are unrealistic; and they lead to sub-optimal orbits.Our objective is to develop and validate an observational error model that provides realistic estimates of the uncertainties and correlations in asteroid observations. When used to populate the covariance matrix of the least-squares algorithm, the resulting orbits are shown to more accurately and precisely represent asteroid trajectories.  相似文献   

5.
We propose two algorithms to provide a full preliminary orbit of an Earth-orbiting object with a number of observations lower than the classical methods, such as those by Laplace and Gauss. The first one is the Virtual debris algorithm, based upon the admissible region, that is the set of the unknown quantities corresponding to possible orbits for a given observation for objects in Earth orbit (as opposed to both interplanetary orbits and ballistic ones). A similar method has already been successfully used in recent years for the asteroidal case. The second algorithm uses the integrals of the geocentric 2-body motion, which must have the same values at the times of the different observations for a common orbit to exist. We also discuss how to account for the perturbations of the 2-body motion, e.g., the J 2 effect.  相似文献   

6.
7.
As an Earth co-orbital asteroid, (469219) Kamoòalewa is a near earth object (NEO) with high value of research, and one of the targets explored by the first Chinese asteroid exploration mission. Given its orbit characteristics, we build a refined dynamical model for this asteroid, in which the effects induced by nonspherical gravitational fields of the Sun, the Earth, and the Moon are combined. On the basis of the dynamical model of the asteroid (469219) Kamoòalewa, its orbit is determined with optical data from 2004 to 2018 available on the Minor Planet Center (MPC) database. The root mean square error of post-fit residuals is about 0.2 arc second (comparable with that of the Jet Propulsion Laboratory (JPL)/Horizons), and the post-fit residuals of optical observations in 2004 are decreased. At the end, we implement error analysis on the asteroid (469219) Kamoòalewa's orbit in detail, and also predict its orbit error at the time interval between 2020 and 2025.  相似文献   

8.
We propose a new formal definition of discovery for a Solar System object. It is based on an objective and mathematically rigorous algorithm to assess when a set of observations is enough to constitute a discovery. When this definition is satisfied, in almost all cases the orbit is defined well enough to establish the nature of the object discovered (Main Belt vs. Near Earth Asteroid, Trans-Neptunian vs. long period comet). The frequency of occurrence of exceptions is estimated by a set of numerical experiments. The availability of a non-subjective definition of discovery allows some rules to be adopted for the assignment of discovery credit with a minimum risk of dispute. Such rules should be fair, encourage good practice by the observers and acknowledge the contribution of the orbit computers providing the identifications and the orbits, as well as the one of all the contributing observers.  相似文献   

9.
The main problem in the orbit determination of the space debris population orbiting our planet is identifying which separate sets of data belong to the same physical object. The observations of a given object during a passage above an observing station are collectively called a Too Short Arc (TSA): data from a TSA cannot allow for a complete determination of an orbit. Therefore, we have to solve first the identification problem, finding two or more TSAs belonging to the same physical object and an orbit fitting all the observations. This problem is well known for the determination of orbits of asteroids: we shall show how to apply the methods developed for preliminary orbit determination of heliocentric objects to geocentric objects. We shall focus on the definition of an admissible region for space debris, both in the case of optical observations and radar observations; then we shall outline a strategy to perform a full orbit determination.  相似文献   

10.
We evaluate the asteroid impact risk from the discovery night onwards using six-dimensional statistical orbit computation techniques to examine the a posteriori probability density of the orbital elements. Close to the discovery moment the observational data of an object are typically exiguous: the number of observations is very small and/or the covered orbital arc is very short. For such data, the covariance matrices computed in the linear approximation (e.g., with the least-squares technique) are known to fail to describe the uncertainties in the orbital parameters. The technique of statistical ranging gives us rigorous means to assess the orbital uncertainties already on the discovery night. To examine the time evolution of orbital uncertainties, we make use of a new nonlinear Monte Carlo technique of phase-space sampling using volumes of variation, which complements the ranging technique for exiguous data and the least-squares technique for extensive observational data. We apply the statistical techniques to the near-Earth Asteroid 2004 AS1, which grabbed the attention of asteroid scientists because, for one day, it posed the highest and most immediate impact risk so far recorded. We take this extreme case to illustrate the ambiguities in the impact risk assessment for short arcs. We confirm that the weighted fraction of the collision orbits at discovery was large but conclude that this was mostly due to the discordance of the discovery-night observations. This case study highlights the need to introduce a regularization in terms of an a priori probability density to secure the invariance of the probabilistic analysis especially in the nonlinear orbital inversion for short arcs. We remark that a predominant role of the a priori can give indications of the feasibility of the probabilistic interpretation, that is, how reliable the results derived from the a posteriori probability density are. Nevertheless, the strict mathematical definition of, e.g., the collision probability remains valid, and our nonlinear statistical techniques give us the means to always deduce, at the very least, order-of-magnitude-estimates for the collision probability.  相似文献   

11.
We present a novel method for the search of linkages among astrometric observations of asteroids, that is, tentative identifications among asteroids observed. Having two different master sets of asteroid observations each containing a number of separate subsets, we define a linkage as a pair of subsets residing in separate master sets that can be tied together with an orbit for given observational errors. To find linkages among a wealth of observations we use an efficient stepwise filtering approach. First, we start with what we call phase-space address comparison. The first step substantially reduces the initially huge amount of pairs by requiring that pairs to be subjected to further analysis have similar geocentric spherical coordinates at common epochs (for example, at three epochs). Second, we search for orbits for each of the selected pairs of subsets. Succeeding in the effort proves that a linkage exists. If there are contradictions among linkages found—for example, a single subset being linked to several mutually exclusive subsets—additional new or archive observations are usually needed to discard erroneous linkages. The new method is built on six-dimensional statistical orbital inversion (Ranging), and is therefore particularly suitable for analyzing objects with the shortest observational arcs, that is, newly discovered asteroids (and comets). Results from extensive and successful tests on simulated survey observations are presented and discussed. Theoretical and empirical scaling results show that the method is applicable to future large-scale surveys that will increase the rate of asteroid discovery by at least two orders of magnitude. The successful linking of faint single-night observation sets obtained with the Very Large Telescope are briefly reviewed.  相似文献   

12.
In the current study, we use the polyhedral model to compute the potential of the asteroid. There are five equilibrium points in the gravitational field of the asteroid 283 Emma. We concluded that the zero-velocity surfaces and the equilibrium points change with the suppositive variation of the rotational speed of the asteroid. It is found that if the rotational speed equals a half as it is in present, the number of equilibrium points is also five. However, if the rotational speed equals twice as it is in present, there are only three equilibrium points left. Four different periodic orbits are calculated using the hierarchical grid searching method. We calculated characteristic multipliers of periodic orbits to investigate the stability of these periodic orbits. The orbit near the primary's equatorial plane is more likely to be stable when the separation/ primary-radius is a large number.  相似文献   

13.
The orbit of asteroid 2003 EH1 is very similar to the mean orbit of the Quadrantid meteoroid stream so that a close relationship between the two is very likely. It has already been suggested that Comet C/1490 Y1 could be the parent of the Quadrantids. If this is the case, then some relationship between the comet and the asteroid might be expected. The orbit of C/1490 Y1 is based on a short observing arc of about 6 weeks and all the observations were with the naked eye, so that its elements are very poorly determined. Hence, forward integration to determine whether asteroid 2003 EH1 represents the re-discovery of the dormant nucleus of C/1490 Y1 is not feasible. Instead we choose to integrate back in time the orbit of 2003 EH1, which is far better determined, and a family of 3500 clones, all of which are moving on an orbit that is consistent with the present known orbit of 2003EH1. We compare the results primarily with the recorded observations of the comet rather than the orbit of the comet derived by Hasegawa. We find that one clone is consistent with these observations.  相似文献   

14.
We consider dynamics of a Sun–Jupiter–Asteroid system, and, under some simplifying assumptions, show the existence of instabilities in the motions of an asteroid. In particular, we show that an asteroid whose initial orbit is far from the orbit of Mars can be gradually perturbed into one that crosses Mars’ orbit. Properly formulated, the motion of the asteroid can be described as a Hamiltonian system with two degrees of freedom, with the dynamics restricted to a “large” open region of the phase space reduced to an exact area preserving map. Instabilities arise in regions where the map has no invariant curves. The method of MacKay and Percival is used to explicitly rule out the existence of these curves, and results of Mather abstractly guarantee the existence of diffusing orbits. We emphasize that finding such diffusing orbits numerically is quite difficult, and is outside the scope of this paper.  相似文献   

15.
The orbital evolutions of the asteroid 3040 Kozai and model asteroids with similar orbits have been investigated. Their osculating orbits for an epoch 1991 December 10 were numerically integrated forward within the interval of 20,000 years, using a dynamical model of the solar system consisting of all inner planets, Jupiter, and Saturn.The orbit of the asteroid Kozai is stable. Its motion is affected only by long-period perturbations of planets. With change of the argument of perihelion of the asteroid Kozai, the evolution of the model asteroid orbits changes essentially, too. The model orbits with the argument of perihelion changed by the order of 10% show that asteroids with such orbital parameters may approach the Earth orbit, while asteroids with larger changes may even cross it, at least after 10,000 years. Long-term orbital evolution of asteroids with these orbital parameters is very sensitive on their angular elements.  相似文献   

16.
田伟 《天文学报》2021,62(2):16-62
作为一颗与地球共轨道的小行星,(469219)Kamo'oalewa是一个具有很高研究价值的近地小天体,也是中国首次小行星探测计划的目标天体之一.针对其轨道特性,建立了兼顾太阳、地球和月球非球形引力作用的小行星动力学模型.并在该模型的基础上,利用国际小行星中心(Minor Planet Center,MPC)提供的2004|2018年间的光学观测数据对该小行星的轨道进行确定.拟合后观测残差的均方根误差约为0:2″(与美国喷气推进实验室的Horizons在线历表系统相当),其中2004年期间数据的观测残差有所改进.最后,对小行星(469219)Kamo'oalewa的轨道误差进行了详细分析,并预报了2020-2025年期间该小行星的轨道误差.  相似文献   

17.
We consider the perturbations on near-earth asteroid orbits due to various forces stemming from solar radiation. We find that the existence of precise radar astrometric observations at multiple apparitions, spanning periods on the order of 10 years, allows the detection of such forces on bodies as large as kilometer across. Indeed, the perturbations are so substantial that certain of the forces can be essential to fit an orbit to the observations. In particular, we show that the recoil force of thermal radiation from the asteroid, known as the Yarkovsky effect, is the most important of these unmodeled perturbations. We also show that the effect of reflected light can be important if even moderate albedo variations are present, while moderate changes in oblateness appear to have a far smaller effect. An unexpected result is that the Poynting–Robertson effect, typically only considered for submillimeter dust particles, could be observable on smaller asteroids with high eccentricity, such as 1566 Icarus. Finally, we also study the possibility of improving the orbit uncertainty through well-timed optical observations which might help in better detection of these nongravitational perturbations.  相似文献   

18.
In addition to the detection of an asteroid moon or a binary asteroid, the knowledge of the satellite’s true orbit is of high importance to derive fundamental physical parameters of the binary system such as its mass and to shed light on its possible formation history and dynamical evolution (prograde/retrograde orbit, large/small eccentricity or inclination, etc.). A new methodology for preliminary orbit determination of binary asteroids – and visual binaries in general – is proposed. It is based on Thiele–Innes method combined with a ‘trial and error’ Monte-Carlo technique. This method provides the full set of solutions (bundle of orbits, with the 7 orbital elements) even for a reduced number of observations. The mass is a direct by-product of this orbit determination, from which one can next infer the bulk-density and porosity. In addition to the bundle of orbits, the method provides the marginal probability densities of the foreseen parameters. Such error analysis – since it avoids linear approximation – can be of importance for the prediction of the satellite’s position in the plane-of-sky during future stellar occultations or subsequent observations, but also for the analysis of the orbit’s secular evolution. After briefly describing the method, we present the algorithm and its application to some practical cases, with particular emphasis on asteroids binaries and applications on orbital evolution.  相似文献   

19.
An ephemeris has been obtained for Explorer 28 (IMP 3) which agrees well with 2 years of radio observations and with SAO observations a year later. This ephemeris is generated over the 3 year lifetime by a numerical integration method utilizing a set of initial conditions, at launch and without requiring further differential correction. Because highly eccentric orbits are difficult to compute with acceptable accuracy and because a long continuous arc has been obtained which compares with actual data to a known precision, this ephemeris may be used as a standard for computing highly eccentric orbits in the Earth-Moon system.Orbit improvement was used to obtain the initial conditions which generated the ephemeris. This improvement was based on correcting the energy by adjusting the semimajor axis to match computed times of perigee passage with the observed. This procedure may generate errors in semimajor axis to compensate for model errors in the energy; however this compensation error is also implicit in orbit determination itself.  相似文献   

20.
全轨道均匀分布的小行星观测对天球参考架零点的测定,以及其它一些相关课题的研究非常有利。本文就低纬子午环的观测能力,计算分析了小行星在全轨道观测的星等范围和弧段分布,给出了可观测弧段长度的计算公式,并进行了模拟计算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号