首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mid-infrared limb spectra in the range 600-1400 cm−1 taken with the Composite InfraRed Spectrometer (CIRS) on-board the Cassini spacecraft were used to determine vertical profiles of HCN, HC3N, C2H2, and temperature in Titan's atmosphere. Both high (0.5 cm−1) and low (13.5 cm−1) spectral resolution data were used. The 0.5 cm−1 data gave profiles at four latitudes and the 13.5 cm−1 data gave almost complete latitudinal coverage of the atmosphere. Both datasets were found to be consistent with each other. High temperatures in the upper stratosphere and mesosphere were observed at Titan's northern winter pole and were attributed to adiabatic heating in the subsiding branch of a meridional circulation cell. On the other hand, the lower stratosphere was much colder in the north than at the equator, which can be explained by the lack of solar radiation and increased IR emission from volatile enriched air. HC3N had a vertical profile consistent with previous ground based observations at southern and equatorial latitudes, but was massively enriched near the north pole. This can also be explained in terms of subsidence at the winter pole. A boundary observed at 60° N between enriched and un-enriched air is consistent with a confining polar vortex at 60° N and HC3N's short lifetime. In the far north, layers were observed in the HC3N profile that were reminiscent of haze layers observed by Cassini's imaging cameras. HCN was also enriched over the north pole, which gives further evidence for subsidence. However, the atmospheric cross section obtained from 13.5 cm−1 data indicated a HCN enriched layer at 200-250 km, extending into the southern hemisphere. This could be interpreted as advection of polar enriched air towards the south by a meridional circulation cell. This is observed for HCN but not for HC3N due to HCN's longer photochemical lifetime. C2H2 appears to have a uniform abundance with altitude and is not significantly enriched in the north. This is consistent with observations from previous CIRS analysis that show increased abundances of nitriles and hydrocarbons but not C2H2 towards the north pole.  相似文献   

2.
Four broad spectral features were identified in far-infrared limb spectra from the Cassini Composite Infrared Spectrometer (CIRS), two of which have not been identified before. The features are broader than the spectral resolution, which suggests that they are caused by particulates in Titan's stratosphere. We derive here the spectral properties and variations with altitude for these four features for six latitudes between 65° S and 85° N. Titan's main aerosol is called Haze 0 here. It is present at all wavenumbers in the far-infrared and is found to have a fractional scale height (i.e., the aerosol density scale height divided by the atmospheric density scale height) between 1.5 and 1.7 with a small increase in opacity in the north. A second feature around 140 cm−1 (Haze A) has similar spatial properties to Haze 0, but has a smaller fractional scale height of 1.2-1.3. Both Haze 0 and Haze A show an increase in retrieved abundance below 100 km. Two other features (Haze B around 220 cm−1 and Haze C around 190 cm−1) have a large maximum in their density profiles at 140 and 90 km, respectively. Haze B is much more abundant in the northern hemisphere compared to the southern hemisphere. Haze C also shows a large increase towards the north, but then disappears at 85° N.  相似文献   

3.
Mid- and far-infrared spectra from the Composite InfraRed Spectrometer (CIRS) have been used to determine volume mixing ratios of nitriles in Titan's atmosphere. HCN, HC3N, C2H2, and temperature were derived from 2.5 cm−1 spectral resolution mid-IR mapping sequences taken during three flybys, which provide almost complete global coverage of Titan for latitudes south of 60° N. Three 0.5 cm−1 spectral resolution far-IR observations were used to retrieve C2N2 and act as a check on the mid-IR results for HCN. Contribution functions peak at around 0.5-5 mbar for temperature and 0.1-10 mbar for the chemical species, well into the stratosphere. The retrieved mixing ratios of HCN, HC3N, and C2N2 show a marked increase in abundance towards the north, whereas C2H2 remains relatively constant. Variations with longitude were much smaller and are consistent with high zonal wind speeds. For 90°-20° S the retrieved HCN abundance is fairly constant with a volume mixing ratio of around 1 × 10−7 at 3 mbar. More northerly latitudes indicate a steady increase, reaching around 4 × 10−7 at 60° N, where the data coverage stops. This variation is consistent with previous measurements and suggests subsidence over the northern (winter) pole at approximately 2 × 10−4 m s−1. HC3N displays a very sharp increase towards the north pole, where it has a mixing ratio of around 4 × 10−8 at 60° N at the 0.1-mbar level. The difference in gradient for the HCN and HC3N latitude variations can be explained by HC3N's much shorter photochemical lifetime, which prevents it from mixing with air at lower latitude. It is also consistent with a polar vortex which inhibits mixing of volatile rich air inside the vortex with that at lower latitudes. Only one observation was far enough north to detect significant amounts of C2N2, giving a value of around 9 × 10−10 at 50° N at the 3-mbar level.  相似文献   

4.
A strong, broad spectral emission feature at 85° N latitude centered at 221 cm−1 remains unidentified after candidate ices of H2O and pure crystalline CH3CH2CN are unambiguously ruled out. A much shallower weak emission feature starts at 160 cm−1 and blends into the strong feature at ∼190 cm−1. This feature is consistent with one formed by an HCN ice cloud composed of ?5 μm radius particles that resides in the lower stratosphere somewhere below an altitude of 160 km. Titan's stratospheric aerosol appears to have a spectral emission feature at about 148 cm−1. The aerosol abundance at 85° N is about a factor 2.2 greater than at 55° S.  相似文献   

5.
In this paper, we have analyzed neutron spectroscopy data gathered by the High Energy Neutron Detector (HEND) instrument onboard Mars Odyssey for comparison of polar regions. It is known that observation of the neutron albedo of Mars provides important information about the distribution of water-ice in subsurface layers and about peculiarities of the CO2 seasonal cycle. It was found that there are large water-rich permafrost areas with contents of up to ∼50% water by mass fraction at both the north and south Mars polar regions. The water-ice layers at high northern latitudes are placed close to the surface, but in the south they are covered by a dry and relatively thick (10-20 cm) layer of soil. Analysis of temporal variations of neutron flux between summer and winter seasons allowed the estimation of the masses of the CO2 deposits which seasonally condense at the polar regions. The total mass of the southern seasonal deposition was estimated as 6.3×1015 kg, which is larger than the total mass of the seasonal deposition at the north by 40-50%. These results are in good agreement with predictions from the NASA Ames Research Center General Circulation Model (GCM). But, the dynamics of the condensation and sublimation processes are not quite as consistent with these models: the peak accumulation of the condensed mass of CO2 occurred 10-15 degrees of Ls later than is predicted by the GCM.  相似文献   

6.
We have analyzed the continuum emission of limb spectra acquired by the Cassini/CIRS infrared spectrometer in order to derive information on haze extinction in the 3–0.02 mbar range (∼150–350 km). We focused on the 600–1420 cm−1 spectral range and studied nine different limb observations acquired during the Cassini nominal mission at 55°S, 20°S, 5°N, 30°N, 40°N, 45°N, 55°N, 70°N and 80°N. By means of an inversion algorithm solving the radiative transfer equation, we derived the vertical profiles of haze extinction coefficients from 17 spectral ranges of 20-cm−1 wide at each of the nine latitudes. At a given latitude, all extinction vertical profiles retrieved from various spectral intervals between 600 and 1120 cm−1 display similar vertical slopes implying similar spectral characteristics of the material at all altitudes. We calculated a mean vertical extinction profile for each latitude and derived the ratio of the haze scale height (Hhaze) to the pressure scale height (Hgas) as a function of altitude. We inferred Hhaze/Hgas values varying from 0.8 to 2.4. The aerosol scale height varies with altitude and also with latitude. Overall, the haze extinction does not show strong latitudinal variations but, at 1 mbar, an increase by a factor of 1.5 is observed at the north pole compared to high southern latitudes. The vertical optical depths at 0.5 and 1.7 mbar increase from 55°S to 5°N, remain constant between 5°N and 30°N and display little variation at higher latitudes, except the presence of a slight local maximum at 45°N. The spectral dependence of the haze vertical optical depth is uniform with latitude and displays three main spectral features centered at 630 cm−1, 745 cm−1 and 1390 cm−1, the latter showing a wide tail extending down to ∼1000 cm−1. From 600 to 750 cm−1, the optical depth increases by a factor of 3 in contrast with the absorbance of laboratory tholins, which is generally constant. We derived the mass mixing ratio profiles of haze at the nine latitudes. Below the 0.4-mbar level all mass mixing ratio profiles increase with height. Above this pressure level, the profiles at 40°N, 45°N, 55°N, at the edge of the polar vortex, display a decrease-with-height whereas the other profiles increase. The global increase with height of the haze mass mixing ratio suggest a source at high altitudes and a sink at low altitudes. An enrichment of haze is observed at 0.1 mbar around the equator, which could be due to a more efficient photochemistry because of the strongest insolation there or an accumulation of haze due to a balance between sedimentation and upward vertical drag.  相似文献   

7.
Up to now, there has been no corroboration from Cassini CIRS of the Voyager IRIS-discovery of cyanoacetylene (HC3N) ice in Titan’s thermal infrared spectrum. We report the first compelling spectral evidence from CIRS for the ν6 HC3N ice feature at 506 cm−1 at latitudes 62°N and 70°N, from which we derive particle sizes and column abundances in Titan’s lower stratosphere. We find mean particle radii of 3.0 μm and 2.3 μm for condensed HC3N at 62°N and 70°N, respectively, and corresponding ice phase molecular column abundances in the range 1-10 × 1016 mol cm−2. Only upper limits for cloud abundances can be established at latitudes of 85°N, 55°N, 30°N, 10°N, and 15°S. Under the assumption that cloud tops coincide with the uppermost levels at which HC3N vapor saturates, we infer geometric thicknesses for the clouds equivalent to 10-20 km or so, with tops at 165 km and 150 km at 70°N and 62°N, respectively.  相似文献   

8.
The Cassini Composite Infrared Spectrometer (CIRS) has been used to derive the vertical and meridional variation of temperature and phosphine (PH3) abundance in Saturn's upper troposphere. PH3 has a significant effect on the measured radiances in the thermal infrared and between May 2004 and September 2005 CIRS recorded thousands of spectra in both the far (10-600 cm−1) and mid (600-1400 cm−1) infrared, at a variety of latitudes covering the southern hemisphere. Low spectral resolution (15 cm−1) data has been used to constrain the temperature structure of the troposphere between 100 and 500 mbar. The vertical distributions of phosphine and ammonia were retrieved from far-infrared spectra at the highest spectral resolution (0.5 cm−1), and lower resolution (2.5 cm−1) mid-infrared data were used to map the meridional variation in the abundance of phosphine in the 250-500 mbar range. Temperature variations at the 250 mbar level are shown to occur on the same scale as the prograde and retrograde jets in Saturn's atmosphere [Porco, C.C., and 34 colleagues, 2005. Science 307, 1243-1247]. The PH3 abundance at 250 mbar is found to be enhanced at the equator when compared with mid-latitudes. At mid latitudes we see anti-correlation between temperature and PH3 abundance at 250 mbar, phosphine being enhanced at 45° S and depleted at 25 and 55° S. The vertical distribution is markedly different polewards of 60-65° S, with depleted PH3 at 500 mbar but a slower decline in abundance with altitude when compared with the mid-latitudes. This variation is similar to the variations of cloud and aerosol parameters observed in the visible and near infrared, and may indicate the subsidence of tropospheric air at polar latitudes, coupled with a diminished sunlight penetration depth reducing the rate of PH3 photolysis in the polar region.  相似文献   

9.
Vertical distributions and spectral characteristics of Titan’s photochemical aerosol and stratospheric ices are determined between 20 and 560 cm?1 (500–18 μm) from the Cassini Composite Infrared Spectrometer (CIRS). Results are obtained for latitudes of 15°N, 15°S, and 58°S, where accurate temperature profiles can be independently determined.In addition, estimates of aerosol and ice abundances at 62°N relative to those at 15°S are derived. Aerosol abundances are comparable at the two latitudes, but stratospheric ices are ~3 times more abundant at 62°N than at 15°S. Generally, nitrile ice clouds (probably HCN and HC3N), as inferred from a composite emission feature at ~160 cm?1, appear to be located over a narrow altitude range in the stratosphere centered at ~90 km. Although most abundant at high northern latitudes, these nitrile ice clouds extend down through low latitudes and into mid southern latitudes, at least as far as 58°S.There is some evidence of a second ice cloud layer at ~60 km altitude at 58°S associated with an emission feature at ~80 cm?1. We speculate that the identify of this cloud may be due to C2H6 ice, which in the vapor phase is the most abundant hydrocarbon (next to CH4) in the stratosphere of Titan.Unlike the highly restricted range of altitudes (50–100 km) associated with organic condensate clouds, Titan’s photochemical aerosol appears to be well-mixed from the surface to the top of the stratosphere near an altitude of 300 km, and the spectral shape does not appear to change between 15°N and 58°S latitude. The ratio of aerosol-to-gas scale heights range from 1.3–2.4 at about 160 km to 1.1–1.4 at 300 km, although there is considerable variability with latitude. The aerosol exhibits a very broad emission feature peaking at ~140 cm?1. Due to its extreme breadth and low wavenumber, we speculate that this feature may be caused by low-energy vibrations of two-dimensional lattice structures of large molecules. Examples of such molecules include polycyclic aromatic hydrocarbons (PAHs) and nitrogenated aromatics.Finally, volume extinction coefficients NχE derived from 15°S CIRS data at a wavelength of λ = 62.5 μm are compared with those derived from the 10°S Huygens Descent Imager/Spectral Radiometer (DISR) data at 1.583 μm. This comparison yields volume extinction coefficient ratios NχE(1.583 μm)/NχE(62.5 μm) of roughly 70 and 20, respectively, for Titan’s aerosol and stratospheric ices. The inferred particle cross-section ratios χE(1.583 μm)/χE(62.5 μm) appear to be consistent with sub-micron size aerosol particles, and effective radii of only a few microns for stratospheric ice cloud particles.  相似文献   

10.
Far-IR (25-50 μm, 200-400 cm−1) nadir and limb spectra measured during Cassini's four year prime mission by the Composite InfraRed Spectrometer (CIRS) instrument have been used to determine the abundances of cyanogen (C2N2), methylacetylene (C3H4), and diacetylene (C4H2) in Titan's stratosphere as a function of latitude. All three gases are enriched at northern latitudes, consistent with north polar subsidence. C4H2 abundances agree with those derived previously from mid-IR data, but C3H4 abundances are about 2 times lower, suggesting a vertical gradient or incorrect band intensities in the C3H4 spectroscopic data. For the first time C2N2 was detected at southern and equatorial latitudes with an average volume mixing ratio of 5.5±1.4×10−11 derived from limb data (>3-σ significance). This limb result is also corroborated by nadir data, which give a C2N2 volume mixing ratio of 6±3×10−11 (2-σ significance) or alternatively a 3-σ upper limit of 17×10−11. Comparing these figures with photochemical models suggests that galactic cosmic rays may be an important source of N2 dissociation in Titan's stratosphere. Like other nitriles (HCN, HC3N), C2N2 displays greater north polar relative enrichment than hydrocarbons with similar photochemical lifetimes, suggesting an additional loss mechanism for all three of Titan's main nitrile species. Previous studies have suggested that HCN requires an additional sink process such as incorporation into hazes. This study suggests that such a sink may also be required for Titan's other nitrile species.  相似文献   

11.
《Icarus》1986,66(2):366-379
We report ground-based laser heterodyne spectroscopy of non-thermal emission in the cores of the 10.33-μmR(8) and 10.72-μmP(32) lines of 12C16O2, obtained at 23 locations on the disk of Mars during the 1984 opposition, at Ls = 130°. The data were obtained at a sub-Doppler spectral resolution, and the temperature of the middle Martian atmosphere (50–85 km) is derived from the frequency width and intensity of the R(8) emission, and from the total intensity of the P(32) emission. We find that the temperature of the middle Martian atmosphere varies with latitude. Near the subsolar latitude, the average 50- to 85-km temperature is close to the radiative equilibrium value for a CO2 atmosphere. However, at high latitudes in both the northern (summer) and southern (winter) hemispheres the 50- to 85-km temperature exceeds the CO2 radiative equilibrium value; a meridional gradient in the range of 0.4 – 0.9°K per degree of latitude is indicated by our data. The highest temperatures are seen at high latitudes in the winter hemisphere, reminiscent of the seasonal effects seen at the Earth's mesopause. As in the terrestrial case, this winter polar warming in the Martian middle atmosphere necessitates departures from radiative equilibrium; dynamical heating of order 4 × 102 ergs g−1 sec−1 is required at the edge of the winter polar night. A comparison with 2-D circulation models shows that the presence of atmospheric dust may enhance this dynamical heating at high winter latitudes, and may also account for heating at high latitudes in the summer hemisphere.  相似文献   

12.
《Icarus》1987,70(3):442-468
The predictions of an analytical steady thermally forced viscous model for the zonally averaged global circulation of the Martian atmosphere are compared to observations of atmospheric temperatures and eolian feature directions. The temperature of the winter polar atmosphere is a sensitive indicator of the value of the mean eddy diffusivity v of the atmosphere. For global dust storm season, the observed large warming of the atmosphere over the winter (north) pole during the 1977b storm as well as the distribution and azimuths of Type I(b) dust streaks can be well reproduced if v = 107−108cm2sec−1. Observed northeasterly surface winds at high northern latitudes could be produced by plausible fluxes of CO2 from the northern polar cap. The thermal structure at southern latitudes during this storm is satisfactorily produced, but a major discrepancy exists between observations and predictions of the temperature structure at middle northern latitudes. By comparing these results with those from previous inviscid models of the zonal mean circulation on Mars, we suggest v > 107cm2sec−1 at heights above 30 km and v ⪡ 107cm2sec−1 at lower altitudes may yield a meridional circulation which produces the dynamical warming necessary to account for the observed thermal structure at 0.6 mbar at all latitudes. For late southern summer when the dust content of the atmosphere has decreased to levels characteristic of much of the Martian year, the lack of dynamical warming of the winter pole implies v ≤ 106cm2sec−1. In addition, the predicted surface wind azimuths at this season agree well with the observed azimuths of Type I(d) dust streaks, which are observed to form at this season. The observed latitudinal concentration of the streaks is not explained by the model and may require additional processes which have not been included.  相似文献   

13.
The infrared AOTF spectrometer is a part of the SPICAM experiment onboard the Mars-Express ESA mission. The instrument has a capability of solar occultations and operates in the spectral range of 1-1.7 μm with a spectral resolution of ∼3.5 cm−1. We report results from 24 orbits obtained during MY28 at Ls 130°-160°, and the latitude range of 40°-55° N. For these orbits the atmospheric density from 1.43 μm CO2 band, water vapor mixing ratio based on 1.38 μm absorption, and aerosol opacities were retrieved simultaneously. The vertical resolution of measurements is better than 3.5 km. Aerosol vertical extinction profiles were obtained at 10 wavelengths in the altitude range from 10 to 60 km. The interpretation using Mie scattering theory with adopted refraction indices of dust and H2O ice allows to retrieve particle size (reff∼0.5-1 μm) and number density (∼1 cm−3 at 15-30 km) profiles. The haze top is generally below 40 km, except the longitude range of 320°-50° E, where high-altitude clouds at 50-60 km were detected. Optical properties of these clouds are compatible with ice particles (effective radius reff=0.1-0.3 μm, number density N∼10 cm−3) distributed with variance νeff=0.1-0.2 μm. The vertical optical depth of the clouds is below 0.001 at 1 μm. The atmospheric density profiles are retrieved from CO2 band in the altitude range of 10-90 km, and H2O mixing ratio is determined at 15-50 km. Unless a supersaturation of the water vapor occurs in the martian atmosphere, the H2O mixing ratio indicates ∼5 K warmer atmosphere at 25-45 km than predicted by models.  相似文献   

14.
We use five and one-half years of limb- and nadir-viewing temperature mapping observations by the Composite Infrared Radiometer-Spectrometer (CIRS) on the Cassini Saturn orbiter, taken between July 2004 and December 2009 (LS from 293° to 4°; northern mid-winter to just after northern spring equinox), to monitor temperature changes in the upper stratosphere and lower mesosphere of Titan. The largest changes are in the northern (winter) polar stratopause, which has declined in temperature by over 20 K between 2005 and 2009. Throughout the rest of the mid to upper stratosphere and lower mesosphere, temperature changes are less than 5 K. In the southern hemisphere, temperatures in the middle stratosphere near 1 mbar increased by 1-2 K from 2004 through early 2007, then declined by 2-4 K throughout 2008 and 2009, with the changes being larger at more polar latitudes. Middle stratospheric temperatures at mid-northern latitudes show a small 1-2 K increase from 2005 through 2009. At north polar latitudes within the polar vortex, temperatures in the middle stratosphere show a ∼4 K increase during 2007, followed by a comparable decrease in temperatures in 2008 and into early 2009. The observed temperature changes in the north polar region are consistent with a weakening of the subsidence within the descending branch of the middle atmosphere meridional circulation.  相似文献   

15.
Our model [Dimitrov, V., Bar-Nun, A., 1999. A model of energy dependent agglomeration of hydrocarbon aerosol particles and implication to Titan's aerosol. J. Aerosol. Sci. 30(1), 35-49] describes the experimentally found polymerization of C2H2 and HCN to form aerosol embryos, their growth and adherence to form various aerosols objects [Bar-Nun, A., Kleinfeld, I., Ganor, E., 1988. Shape and optical properties of aerosols formed by photolysis of C2H2, C2H4 and HCN. J. Geophys. Res. 93, 8383-8387]. These loose fractal objects describe well the findings of DISR on the Huygens probe [Tomasko, M.G., Bézard, B., Doose, L., Engel, S., Karkoschka, E., 2008. Measurements of methane absorption by the descent imager/spectral radiometer (DISR) during its descent through Titan's atmosphere. Planet. Space Sci., this issue, doi:10.1016/j.pss.2007]. These include (1) various regular objects of R=(0.035-0.064)×10−6 m, as compared with DISR's 0.05×10−6 m; (2) diverse low and high fractal structures composed of random combinations of various regular and irregular objects; (3) the number density of fractal particles is 6.9×106 m−3 at Z=100 km, as compared with DISR's finding of 5.0×106 m−3 at Z=80 km; (4) the number of structural units per higher fractals in the atmosphere at Z∼100 km is (2400-2700), as compared with DISR's 3000, and their size being of R=(5.4-6.4)×10−6 m will satisfy this value and (5) condensation of CH4 on the highly fractal structures could begin at the altitude where thin methane clouds were observed, filling somewhat the new open fractal structures.  相似文献   

16.
In July 1994, the Shoemaker-Levy 9 (SL9) impacts introduced hydrogen cyanide (HCN) to Jupiter at a well confined latitude band around −44°, over a range of specific longitudes corresponding to each of the 21 fragments (Bézard et al. 1997, Icarus 125, 94-120). This newcomer to Jupiter's stratosphere traces jovian dynamics. HCN rapidly mixed with longitude, so that observations recorded later than several months after impact witnessed primarily the meridional transport of HCN north and south of the impact latitude band. We report spatially resolved spectroscopy of HCN emission 10 months and 6 years following the impacts. We detect a total mass of HCN in Jupiter's stratosphere of 1.5±0.7×1013 g in 1995 and 1.7±0.4×1013 g in 2000, comparable to that observed several days following the impacts (Bézard et al. 1997, Icarus 125, 94-120). In 1995, 10 months after impact, HCN spread to −30° and −65° latitude (half column masses), consistent with a horizontal eddy diffusion coefficient of Kyy=2-3×1010 cm2 s−1. Six years following impact HCN is observed in the northern hemisphere, while still being concentrated at 44° south latitude. Our meridional distribution of HCN suggests that mixing occurred rapidly north of the equator, with Kyy=2-5×1011 cm2 s−1, consistent with the findings of Moreno et al. (2003, Planet. Space Sci. 51, 591-611) and Lellouch et al. (2002, Icarus 159, 112-131). These inferred eddy diffusion coefficients for Jupiter's stratosphere at 0.1-0.5 mbar generally exceed those that characterize transport on Earth. The low abundance of HCN detected at high latitudes suggests that, like on Earth, polar regions are dynamically isolated from lower latitudes.  相似文献   

17.
R. de Kok  P.G.J. Irwin  N.A. Teanby 《Icarus》2008,197(2):572-578
In Titan's north polar region stratospheric clouds are expected to form due to a combination of low temperatures and downward motion of volatile-enriched air. Here we investigate possible sources of stratospheric clouds at Titan's pole using data from the Cassini Composite Infrared Spectrometer and a simple condensation model. An upper limit for C4N2 gas was determined to be 9×10−9, which is less than required to make the C4N2 cloud at the Voyager epoch. Hence, the presence of this cloud after equinox remains a mystery. The largest cloud seen in far-infrared spectra has a feature around 220 cm−1 and is located around an altitude of 140 km. The upper limit for propionitrile (C2H5CN) gas shows that the feature around 220 cm−1 is probably not due to pure propionitrile ice. Instead, our model calculations show that HCN should cause by far the largest cloud around 140 km. We therefore propose that HCN ice plays an important role in the formation of the massive polar cloud, because of the unavailability of sufficient condensable gas other than HCN to produce a strong enough condensate feature. However, the signature at 220 cm−1 is not consistent with that of pure HCN ice at 172 cm−1 and mixing of HCN ice with other ices, or chemical alteration of HCN ice might mask the HCN ice signature.  相似文献   

18.
H.G. Roe  I. de Pater 《Icarus》2004,169(2):440-461
All previous observations of seasonal change on Titan have been of physical phenomena such as clouds and haze. We present here the first observational evidence of chemical change in Titan's atmosphere. Images taken during 1999-2002 (late southern spring on Titan) with the W.M. Keck I 10-meter telescope at 8-13 μm show a significant accumulation of ethylene (C2H4) in the south polar stratosphere as well as north-south stratospheric temperature variation (colder at poles). Our observations restrict this newly discovered south polar ethylene accumulation to latitudes south of 60° S. The only other observations of the spatial distribution of C2H4 were those of Voyager I, which found a significant north polar accumulation in early northern spring. We see no build-up in the north, although the highest northern latitudes are obstructed from view in the current season. Our observations constrain any unobserved north polar accumulation of C2H4 to north of 50° N latitude. Comparison of the Voyager I results with our new results show seasonal chemical change has occurred in Titan's atmosphere.  相似文献   

19.
《Icarus》2003,166(1):1-20
We have analyzed observations of the Acidalia hemisphere of Mars taken by the Hubble Space Telescope's Near-Infrared Camera Multi-Object Spectrograph (HST/NICMOS) during July of 1997 (Ls=152°, northern martian summer). The data consist of images at ∼60 km/pixel resolution, using both narrow- and medium-band filters specifically selected to allow us to study the hydration state of the martian surface. Calibration was performed by comparison to Phobos-2 ISM observations of overlapping regions, and atmospheric gas correction was performed by modeling the atmosphere for each pixel using a line-by-line radiative transfer code coupled with the MOLA altimetry data. Our results indicate the presence of at least three spectrally different large-scale (>1000 km diameter) terrains corresponding to the dark regions of northern Acidalia, the southern hemisphere classical dark terrain, and the classical intermediate terrain adjacent to southern Acidalia. We also identified two other spectrally unique terrains, corresponding to the northern polar ice cap, and to the southern winter polar hood. Comparisons with mineral spectra indicate the possibility of different H2O- or OH-bearing (i.e., hydroxides and/or hydrates) minerals existing both in northern Acidalia and in the nearby intermediate albedo terrain. Hydrated minerals do not appear to be spectrally important components of the southern hemisphere dark terrains imaged by HST in 1997.  相似文献   

20.
Ethylene (C2H4) emission has been measured in the poles and equator of Jupiter. The 949 cm−1 spectra were recorded with a high resolution spectrometer at the McMath-Pierce telescope at Kitt Peak in October-November 1998 and at the Infrared Telescope Facility at Mauna Kea in June 2000. C2H4 is an important product of methane chemistry in the outer planets. Knowledge of its abundance can help discriminate among the various proposed sets of CH4 photolysis branching ratios at Ly-α, and determine the relative importance of the reaction pathways that produce C2H2 and C2H6. In the equatorial region the C2H4 emission is weak, and we were only able to detect it at high air-mass, near the limb. We derive a peak equatorial molar abundance of C2H4 of 4.5×10−7-1.7×10−6 near 2.2×10−3 mbar, with a total column of 5.7×1014-2.2×1015 molecules cm−2 above 10 mbar depending upon choice of thermal profile. We observed enhanced C2H4 emission from the poles in the regions where auroras are seen in X-ray, UV, and near infrared images. In 2000 we measured a short-term change in the distribution of polar C2H4 emission; the emission in the north IR auroral “hot spot” decreased by a factor of three over a two-day interval. This transient behavior and the sensitivity of C2H4 emission to temperature changes near its contribution peak at 5-10 microbar suggests that the polar enhancement is primarily a thermal effect coupled with vertical transport. Comparing our observations from Kitt Peak and Mauna Kea shows that the C2H4 emission of the northern non-“hot spot” auroral regions did not change over the three-year period while that in the southern polar regions decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号