首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
P. Lamy  I. Toth 《Icarus》2009,201(2):674-713
We present new color results of cometary nuclei obtained with the Hubble Space Telescope (HST) whose superior resolution enables us to accurately isolate the nucleus signals from the surrounding comae. By combining with scrutinized available data obtained with ground-based telescopes, we accumulated a sample of 51 cometary nuclei, 44 ecliptic comets (ECs) and 7 nearly-isotropic comets (NICs) using the nomenclature of Levison [Levison, H.F., 1996. In: Rettig, T.W., Hahn, J.M. (Eds.), Completing the Inventory of the Solar System. In: ASP Conf. Ser., vol. 107, pp. 173-192]. We analyze color distributions and color-color correlations as well as correlations with other physical parameters. We present our compilation of colors of 232 outer Solar System objects—separately considering the different dynamical populations, classical KBOs in low and high-inclination orbits (respectively CKBO-LI and CKBO-HI), resonant KBOs (practically Plutinos), scattered-disk objects (SDOs) and Centaurs—of 12 candidate dead comets, and of 85 Trojans. We perform a systematic analysis of all color distributions, and conclude by synthesizing the implications of the dynamical evolution and of the colors for the origin of the minor bodies of the Solar System. We find that the color distributions are remarkably consistent with the scenarios of the formation of TNOs by Gomes [Gomes, R.S., 2003. Icarus 161, 404-418] generalized by the “Nice” model [Levison, H.F., Morbidelli, A., VanLaerhoven, Ch., Gomes, R., Tsiganis, L., 2008. Icarus 196, 258-273], and of the Trojans by Morbidelli et al. [Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R., 2005. Nature 435, 462-465]. The color distributions of the Centaurs are globally similar to those of the CKBO-HI, the Plutinos and the SDOs. However the potential bimodality of their distributions allows to possibly distinguish two groups based on their (BR) index: Centaur I with (BR)>1.7 and Centaurs II with (BR)<1.4. Centaurs I could be composed of TNOs (prominently CKBO-LI) and ultra red objects from a yet unstudied family. Centaurs II could consist in a population of evolved objects which have already visited the inner Solar System, and which has been scattered back beyond Jupiter. The diversity of colors of the ECs, in particular the existence of very red objects, is consistent with an origin in the Kuiper belt. Candidate dead comets represent an ultimate state of evolution as they appear more evolved than the Trojans and Centaurs II.  相似文献   

2.
Abstract— We present results of thermal evolution calculations for objects originating in the Kuiper belt and transferring inwards, to the region of the outer planets. Kuiper belt objects (KBOs) are considered to be part of a reservoir that supplies the flux of small icy bodies, mainly Centaurs and Jupiter‐family comets, to regions interior to the orbit of Neptune. We study the internal thermal evolution, for ?108 yr, of three typical KBOs and use the end state of the simulation as initial conditions for evolutionary calculations of two typical Centaurs. Some evolutionary trends can be identified for the KBOs, depending on key physical parameters, such as size and composition. The subsequent evolution in the Centaur region results in both specific features for each modeled object (mainly surface and sub‐surface composition) and common characteristics of thermally evolved Centaurs.  相似文献   

3.
The first phase of the Caltech Wide Area Sky Survey occurred from lateNovember 2001 through mid-April 2003. We present preliminary resultsfrom this survey which has detected 28 bright Kuiper Belt Objects(KBOs) and 4 Centaurs, 19 of which were discovered in our surveyincluding Quaoar, the largest KBO, as well as 6 of the 10intrinsically brightest KBOs. We have surveyed 5108 square degrees ofthe sky nearest the invariable plane to a limiting red magnitude of20.7. Correcting for the overabundance of objects near the invariableplane, this represents 27% completeness in terms of KBO numbers.Thus, approximately 100 KBOs and Centaurs brighter than mR = 20.7exist, about 3/4 of which remain undiscovered. The bright KBOs areconsistent with the canonical q=4 size distribution, suggesting thatabout ten 1000 km diameter KBOs and about one 2000 km diameter KBOexist. Additionally, we observe only 3 KBOs with low inclination(i < 7 degrees) with 67% of the sky available to these objectssurveyed. This is in sharp contrast with the known KBOs, of whichabout 60% of the ~ 800 observed objects (as of May 2003) have i< 7 degrees. Although we observe at systematically higher invariableplane latitudes than many deeper KBO surveys, such systematic biasescannot fully explain the lack of low inclination objects, ameasurement which is significant at the > 3 σ level. Thissuggests that the bright KBOs have a fundamentally different maximumsize than the fainter KBOs. A better characterization of the surveylimiting magnitude and a more thorough modeling of observational biaseffects of different classes of KBOs will be made in a future work.  相似文献   

4.
We analyze the Centaur population as a group of objects with perihelion distances (q) of less than 30 AU and heliocentric distances outside the orbit of Jupiter, formed by objects entering this region from the Scattered Disk (SD). We perform a numerical integration of 95 real Scattered Disk Objects (SDOs) extracted from the Minor Planet Center database and of 905 synthetic SDOs compensating for observational biases. SDOs have in the Centaur zone a mean lifetime of 72 Myr, though this number falls with a decrease of q. After this incursion, 30% of them enter the zone interior to Jupiter's orbit. We find that the contribution to the Centaur population from the SD gives a total of ∼2.8×108 Centaurs with a radius R>1 km. We also propose a model for the intrinsic distribution of orbital elements of Centaurs and their distance and apparent magnitude distribution.  相似文献   

5.
《Icarus》2003,166(1):195-211
We present optical observations of 24 Centaurs performed between 1998 and 2002 with the University of Hawaii 2.2-m telescope. This is the largest such Centaur survey to date. We report colors for all objects, and show that they cover a continuum with mean V–R color of 0.58±0.01 and standard deviation 0.15. The color distribution fits between those of the Kuiper Belt and the cometary nuclei, and seems consistent with the dynamical concept of the majority of Centaurs originating from the Kuiper Belt. We find no strong correlation between a Centaur's color and its orbital elements; there is at best a <3−σ correlation with semimajor axis, with redder Centaurs being farther from the Sun. We have calculated the phase-darkening slope parameters G for 5 Centaurs, 4 of which are reported for the first time. They range from −0.18 to 0.13. We have sufficient data to constrain the rotation periods of two Centaurs, 1999 UG5 (which we reported earlier) and 1998 SG35. We performed a comparison of the surface brightness profiles of 10 apparently-inactive Centaurs with point sources. We found no coma around these 10 objects, including C/LINEAR (2000 B4), and generally the upper limits to the dust mass loss rates are below 0.05 kg s−1.  相似文献   

6.
We present here the latest BV, VR, and RI color measurements obtained with the CFH12K mosaic camera of the 3.6-m Canada-France-Hawaii Telescope (CFHT). This work is the latest extension of the Meudon Multicolor Survey (2MS) and extends the total number of Centaurs and trans-neptunian objects (TNOs) in the dataset to 71. With this large and homogeneous dataset, we performed relevant statistical analyses to search for correlations with physical and orbital parameters and interrelations with related populations (cometary nuclei and irregular satellites). With a larger dataset, we confirm the correlations found for the Classical TNOs in our previous survey: some colors are significantly correlated with perihelion distance and inclination. The only exception is with the eccentricity. However, results strongly depend on which objects are considered Classicals, and with a dynamically more restricted definition these correlations are no longer present. We also find that strongly significant trends with orbital parameters are not detected for Centaurs, Plutinos or scattered disk objects (SDOs). We also make for the first time reliable statistical comparison between TNOs and related populations (e.g., Centaurs, irregular satellites, short period comets—i.e., SPCs). We find that (1) the colors of SPCs do not match either their TNO or Centaur precursors, and this suggests that some process modifies the surface of SPCs at entry into the inner Solar System. The only exception concerns colors of SDOs from which we could statistically assess that SPCs and SDOs could be drawn from a same single parent distribution. (2) Not surprisingly, Centaurs are compatible with each of the Edgeworth-Kuiper belt dynamical groups at a highly significant level except with the SDOs. (3) Centaurs' colors still present a strong dichotomy between a neutral/slightly red group (e.g., Chiron) and a very red group (e.g., Pholus). (4) The irregular satellite population is not compatible with any of the Centaur, Plutino or Classical populations; however, the similarity of their color properties with SDOs suggests that both groups can be extracted from the same parent distribution. However, due to the small number of Centaurs and SDOs these conclusions cannot be taken as definitive.  相似文献   

7.
We present observations of thermal emission from fifteen transneptunian objects (TNOs) made using the Spitzer Space Telescope. Thirteen of the targets are members of the Classical population: six dynamically hot Classicals, five dynamically cold Classicals, and two dynamically cold inner Classical Kuiper belt objects (KBOs). We fit our observations using thermal models to determine the sizes and albedos of our targets finding that the cold Classical KBOs have distinctly higher visual albedos than the hot Classicals and other TNO dynamical classes. The cold Classicals are known to be distinct from other TNOs in terms of their color distribution, size distribution, and binarity fraction. The Classical objects in our sample all have red colors yet they show a diversity of albedos which suggests that there is not a simple relationship between albedo and color. As a consequence of high albedos, the mass estimate of the cold Classical Kuiper belt is reduced from approximately 0.01 M to approximately 0.001 M. Our results also increase significantly the sample of small Classical KBOs with known albedos and sizes from 21 to 32 such objects.  相似文献   

8.
Recent dynamical analyses of the Kuiper belt have introduced a rigorous classification scheme, determined the mean orbital plane, and identified “Core” and “Halo” populations as a function of inclination with respect to this plane (Elliot, J.L., Kern, S.D., Clancy, K.B., Gulbis, A.A.S., Millis, R.L., Buie, M.W., Wasserman, L.H., Chiang, E.I., Jordan, A.B., Trilling, D.E., Meech, K.J., 2005. Astron. J. 129, 1117-1162). Here, we use new observations and existing data to investigate the colors of Kuiper belt objects (KBOs) within this framework. With respect to the bulk KBO color distribution (all objects for which we have B-V and V-R colors; median B-R=1.56), we find that the population of objects classified following (Elliot, J.L., Kern, S.D., Clancy, K.B., Gulbis, A.A.S., Millis, R.L., Buie, M.W., Wasserman, L.H., Chiang, E.I., Jordan, A.B., Trilling, D.E., Meech, K.J., 2005. Astron. J. 129, 1117-1162) as Classical tends to be red (B-R>1.56) while the Scattered Near population is mostly neutral (B-R<1.56). Colors of Scattered Extended and Resonant objects are consistent with the bulk distribution. Separating objects into specific resonances demonstrates that the color of the Resonant sample is dominated by KBOs in the 3:2 resonance, which is consistent with previous findings. Unlike the objects in the 3:2 resonance, however, the majority of objects in the 5:2 resonance are neutral and all but one of the objects in the 4:3, 5:3, 7:4, 2:1, and 7:3 resonances are red. In particular, the objects in the 7:4 resonance are remarkably red. We find that the colors of KBOs in the Core (low-inclination) and Halo (high-inclination) are statistically different, with Core objects being primarily red and Halo objects having a slight tendency to be neutral. Notably, virtually all of the non-Resonant Core objects are red. This combination of low inclination, unperturbed orbits and red colors in the Core may be indicative of a relic grouping of objects.  相似文献   

9.
Margaret Pan  Re'em Sari 《Icarus》2005,173(2):342-348
The observed size distribution of Kuiper belt objects (KBOs)—small icy and rocky Solar System bodies orbiting beyond Neptune—is well described by a power law at large KBO sizes. However, recent work by Bernstein et al. (2004, Astron. J. 128, 1364-1390) indicates that the size distribution breaks and becomes shallower for KBOs smaller than about 70 km in size. Here we show that we expect such a break at KBO radius ∼40 km since destructive collisions are frequent for smaller KBOs. Specifically, we assume that KBOs are gravity-dominated bodies with negligible material strength. This gives a power-law slope q?3 where the number N>r of KBOs larger than a size r is given by N>rr1−q; the break location follows from this slope through a self-consistent calculation. The existence of this break, the break's location, and the power-law slope we expect below the break are consistent with the findings of Bernstein et al. (2004, Astron. J. 128, 1364-1390). The agreement with observations indicates that KBOs as small as ∼40 km are effectively strengthless.  相似文献   

10.
We report 43 new visible colors of Centaurs and TNOs, obtained at NTT and VLT telescopes under the “ESO large program on physical properties of Centaurs and TNOs.” Merging these new measurements with those obtained during the first part of the program (Boehnhardt et al., 2002, Astron. Astrophys. 395, 297-303) and the “Meudon Multicolor Survey” (Doressoundiram et al., 2002, Astron. J. 124, 2279-2296) we have a unique dataset of 109 objects. We checked for correlations and trends between colors, physical and orbital parameters, carrying out an analysis based on Monte Carlo simulation to account for observational error bars. Centaurs show no evidence for correlation between VR vs. RI colors which raises the hypothesis that more than one single coloring process might be acting on their surfaces. Classical objects seem to be composed of two different color populations: objects with i<4.5° display only red colors while those with i>4.5° display the whole range of colors from blue to very red. The possibility that the low inclined population is misguiding global conclusions is analyzed. Classical objects also show a stronger color-perihelion correlation for intrinsically brighter objects, corresponding to critical estimated sizes of different formation/evolutionary histories. Scattered disk objects show color resemblances with the classical objects at i>12°, hence surface reflectivities resemblances, pointing to a common origin. No color-aphelion trend is found for SDOs, as expected from the intense irradiation by galactic cosmic-rays beyond the solar wind termination shock. Plutinos show a color-absolute magnitude trend, in which all the intrinsically faintest objects are blue. We see many red Plutinos in highly inclined and highly eccentric orbits, that should have originated in a primordial inner disk under Gomes (2003, Icarus 161, 404-418) migration scenario. This seems to invalidate the assumption that objects originated in this inner disk are mainly blue. Finally, we also find six candidates for light-curve studies: four objects (1998 WU31, 1999 OE4, 1999 OX3, and 2001 KP77) present significant short term R-magnitude variability, and two objects (1999 XX143 and 2000 GP183) evidence possible color variations with rotation.  相似文献   

11.
We present a numerical check of the collisional resurfacing (CR) hypothesis proposed to explain the observed color diversity within the Kuiper Belt (where surface reddening due to space weathering is counteracted by regular resurfacing of neutral material after mutual collisions). Deterministic simulations are performed in order to estimate the relative spatial distribution of kinetic energy received by collisions, , for a population of target Kuiper Belt objects (KBOs) embedded in a swarm of impactors distributed within the belt. Four different impactor disks have been considered, depending on the excitation and the external limit of the belt and the density of the scattered KBOs (SKBOs) population. The obtained results are compared to the relative color index distribution within the observed Kuiper Belt, in order to derive possible similarities between the high vs low objects spatial distribution in our simulations and the bluer vs redder KBOs distribution in the “real” Kuiper Belt. Such similarities are found for several important features, in particular the general correlations between highly impacted objects and high rms excitation and low perihelion q values that are in good agreement with equivalent correlations found for the bluest objects of the observed belt. Nevertheless, simulations disagree with observations on two crucial points. (1) The plutinos are significantly more collisionally affected than the rest of our test KBO population, whereas there is no observed tendency toward bluer plutinos. (2) There is always a much stronger correlation between and eccentricities than inclinations, whereas observations show just the opposite feature. The presence of numerous SKBO impactors could significantly damp these problematic features, but cannot erase them. Whether these contradictions invalidate the whole CR scenario or not remains yet uncertain, since the physical processes at play are still far from being fully understood and the sample of available observational data is still relatively limited. But it seems nevertheless that the scenario might not hold in its simple present form.  相似文献   

12.
We present optical photometry of the Centaur 5145 Pholus during 2003 May and 2004 April using the facility CCD camera on the 1.8-m Vatican Advanced Technology Telescope on Mt. Graham, Arizona. We derive a double-peaked lightcurve and a rotation period of 9.980±0.002 h for Pholus, consistent with periods of 9.9825±0.004 and 9.9823±0.0012 h by Buie and Bus (1992, Icarus 100, 288-294) and Farnham (2001, Icarus 152, 238-245). We find a lightcurve peak-to-peak amplitude of 0.60 mag, significantly larger than peak-to-peak amplitude determinations of 0.15 and 0.39 mag by Buie and Bus and Farnham. We use the three observed amplitudes and an amplitude-aspect model to derive four possible rotational pole positions as well as axial ratios of a/b=1.9 and c/b=0.9. If we assume an albedo of 0.04, we find Pholus has dimensions of 310×160×150 km. If we assume Pholus is a strengthless rubble-pile and its non-spherical shape is due to rotational distortion, our axial ratios and period measurements indicate Pholus has a density of 0.5 g cm−3, suggestive of an ice-rich, porous interior. By combining B-band and R-band lightcurves, we find BR=1.94±0.01 and any BR color variation over the surface of Pholus must be smaller than 0.06 mag (i.e., much smaller than the 1.0<BR<2.0 range seen among the Centaur and Kuiper belt object populations). By combining our VR measurements with values in the literature, we find no evidence for any color variegation between the northern and southern hemispheres of Pholus. Observations of the Kuiper belt object 2004 DW (90482) over a time interval of seven hours show no color variation Our observations add to the growing body of evidence that individual Centaurs and KBOs exhibit homogeneous surface colors and hence gray impact craters on radiation reddened crusts are probably not responsible for the surprising range of colors seen among the Centaur and Kuiper belt object populations.  相似文献   

13.
Brenae L. Bailey 《Icarus》2009,203(1):155-1401
The Centaurs are a transient population of small bodies in the outer Solar System whose orbits are strongly chaotic. These objects typically suffer significant changes of orbital parameters on timescales of a few thousand years, and their orbital evolution exhibits two types of behaviors described qualitatively as random walk and resonance-sticking. We have analyzed the chaotic behavior of the known Centaurs. Our analysis has revealed that the two types of chaotic evolution are quantitatively distinguishable: (1) the random walk type behavior is well described by so-called generalized diffusion in which the rms deviation of the semimajor axis grows with time t as ∼tH, with Hurst exponent H in the range 0.22-0.95, however (2) orbital evolution dominated by intermittent resonance sticking, with sudden jumps from one mean motion resonance to another, has poorly defined H. We further find that these two types of behavior are correlated with Centaur dynamical lifetime: most Centaurs whose dynamical lifetime is less than 22 Myr exhibit generalized diffusion, whereas most Centaurs of longer dynamical lifetimes exhibit intermittent resonance sticking. We also find that Centaurs in the diffusing class are likely to evolve into Jupiter-family comets during their dynamical lifetimes, while those in the resonance-hopping class do not.  相似文献   

14.
Due to the distance, faintness, and very recent discovery ofKuiper Belt Objects (KBOs) and Centaurs, very little is knownabout the physical characteristics of these basic buildingblocks of the solar system. New intermediate-band photometryobservations of KBOs and Centaurs suggest that absorption bandsexist in the visible portion of their spectra, which could offerinsights into the surface composition of these objects.  相似文献   

15.
Results of the first polarimetric observations of Centaurs (5145) Pholus and (10199) Chariklo, and new observations of (2060) Chiron are presented together with the estimates of their absolute magnitudes. Observations were carried out at the 8 m ESO Very Large Telescope in 2007-2008. They revealed noticeable negative polarization in the phase-angle range 0.5-4.4° with a minimum varying from −1% to −2.1% in the R band. All three objects show diverse polarization phase-angle behaviour, each distinctly different from that of transneptunian objects. We found evidence of surface heterogeneity for Chariklo while Chiron and Pholus appear to have rather homogeneous surfaces. Polarization phase behaviours of Chiron and Pholus are significantly different from any other Solar System bodies studied so far. A shift of negative polarization minima toward small phase angles seems to be a characteristic feature of polarization properties of Centaurs. Presence of a small amount of water frost on a dark surface is considered as one of the possible ways to explain these properties.  相似文献   

16.
Kuiper belt objects (KBOs) are generally very faint and cannot in practice be monitored with a well-sampled long-term light curve; so our discovery of the bright KBO 2000 EB173 offers an excellent opportunity for synoptic studies. We present a well-sampled photometric time series (77 R and 29 V magnitudes on 78 nights) over a 225-day time span centered on the 2001 opposition. The light curve (corrected to the year 2001 opposition distance) varies from 19.11 to 19.39 mag with a single peak that is smooth, time symmetric, and coincident with opposition. All variations in the light curve are consistent with a linear opposition surge (ROPP=19.083+0.125∗α, where α is the solar phase angle), while any rotational modulation must have a peak-to-peak amplitude of less than 0.097 mag. This is the first measured opposition surge for any KBO (other than Pluto). The VR color is 0.63±0.02, with no apparent variation with phase at the few percent level. With R=19.11 at opposition, 2000 EB173 remains the brightest known KBO and a prime target for future photometric and spectroscopic studies.  相似文献   

17.
Among all the asteroid dynamical groups, Centaurs have the highest fraction of objects moving in retrograde orbits. The distribution in absolute magnitude, H, of known retrograde Centaurs with semi-major axes in the range 6–34 AU exhibits a remarkable trend: 10 % have H<10 mag, the rest have H>12 mag. The largest objects, namely (342842) 2008 YB3, 2011 MM4 and 2013 LU28, move in almost polar, very eccentric paths; their nodal points are currently located near perihelion and aphelion. In the group of retrograde Centaurs, they are obvious outliers both in terms of dynamics and size. Here, we show that these objects are also trapped in retrograde resonances that make them unstable. Asteroid 2013 LU28, the largest, is a candidate transient co-orbital to Uranus and it may be a recent visitor from the trans-Neptunian region. Asteroids 342842 and 2011 MM4 are temporarily submitted to various high-order retrograde resonances with the Jovian planets but 342842 may be ejected towards the trans-Neptunian region within the next few hundred kyr. Asteroid 2011 MM4 is far more stable. Our analysis shows that the large retrograde Centaurs form an heterogeneous group that may include objects from various sources. Asteroid 2011 MM4 could be a visitor from the Oort cloud but an origin in a relatively stable closer reservoir cannot be ruled out. Minor bodies like 2011 MM4 may represent the remnants of the primordial planetesimals and signal the size threshold for catastrophic collisions in the early Solar System.  相似文献   

18.
A Large Program (LP) has been carried out at ESO-VLT using almost simultaneously the UT1, UT2 and UT4 telescopes (Cerro Paranal, Chile). The aim of this Large Program was to obtain simultaneous visible and near-IR spectroscopic measurements (using FORS, ISAAC and SINFONI instruments) with a S/N ratio as high as possible for almost all objects among different dynamical groups observable within the VLT capability.In this paper we present results on the second half of the Large Program which includes new near-infrared spectroscopy data of 20 objects. For 12 of them for which we had obtained the complete spectral range (V + J + H + K bands), we apply a radiative transfer model to the entire spectral range to constrain their surface composition.We also present an analysis of all near-IR spectral data available on TNOs and Centaurs from both the complete LP and the literature. An overview for a total sample of 75 objects is thus carried out analyzing the ice content with respect to the physical and dynamical characteristics. The major new results are: (i) all objects classified as BB class seem to have icy surfaces; (ii) the possible presence of CH3OH has primarily been detected on very red surfaces (RR class objects) and (iii) the majority of Centaurs observed multiple times have an heterogeneous composition.  相似文献   

19.
P. Rousselot  J.-M. Petit  A. Sergeev 《Icarus》2005,176(2):478-491
We present photometric observations of Centaur (60558) 2000 EC98 and trans-neptunian object (55637) 2002 UX25 at different phase angles and with different filters (mainly R but also V and B for some data). Results for 2000 EC98 are: (i) a rotation period of 26.802±0.042 h if a double-peaked lightcurve is assumed, (ii) a lightcurve amplitude of 0.24±0.06 for the R band, (iii) a phase curve with H=9.03±0.01 and G=−0.39±0.08 (R filter) and H=9.55±0.04 and G=−0.50±0.35 (V filter) or a slope of (R filter) and 0.22±0.06 (V filter), (iv) the color indices B-V=0.76±0.15 and V-R=0.51±0.09 (for α=0.1-0.5°) and 0.55±0.08 (for α=1.4-1.5°). The rotation period is amongst the longest ever measured for Centaurs and TNOs. We also show that our photometry was not contaminated by any cometary activity down to magnitude ?27/arcsec2. For 2002 UX25 the results are: (i) a rotation period of 14.382±0.001 h or 16.782±0.003 h (if a double-peaked lightcurve is assumed) (ii) a lightcurve amplitude of 0.21±0.06 for the R band (and the 16.782 h period), (iii) a phase curve with H=3.32±0.01 and G=+0.16±0.18 or a slope of (R filter), (iv) the color indices B-V=1.12±0.26 and V-R=0.61±0.12. The phase curve reveals also a possible very narrow and bright opposition surge. Because such a narrow surge appears only for one point it needs to be confirmed.  相似文献   

20.
The origin of Jupiter-family comets is linked to the intermediate stage of evolution through the Centaur region. Thus the structure of the Centaur population provides important constraints on sources of short-period comets. We show that our model of the Oort cloud evolution gives results which are consistent with the orbital distribution of observed Centaurs. In particular, it explains the existence of the large population of Centaurs with semimajor axes greater than 60 AU. The main source for these objects is the inner Oort cloud. Both Jupiter-family and Halley-type comets are produced by Centaurs originating from the Oort cloud. The injection rate for Jupiter-family comets coming from the inner Oort cloud is, at least, not less than that for a model based on the observed sample of high-eccentricity trans-Neptunian objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号