共查询到20条相似文献,搜索用时 125 毫秒
1.
Ralf Srama Thomas Stephan Eberhard Grün Norbert Pailer Anton Kearsley Amara Graps Rene Laufer Pascale Ehrenfreund Nicolas Altobelli Kathrin Altwegg Siegfried Auer Jack Baggaley Mark J. Burchell James Carpenter Luigi Colangeli Francesca Esposito Simon F. Green Hartmut Henkel Mihaly Horanyi Annette Jäckel Sascha Kempf Neil McBride Georg Moragas-Klostermeyer Harald Krüger Pasquale Palumbo Andre Srowig Mario Trieloff Peter Tsou Zoltan Sternovsky Oliver Zeile Hans-Peter Röser 《Experimental Astronomy》2009,23(1):303-328
The scientific community has expressed strong interest to re-fly Stardust-like missions with improved instrumentation. We
propose a new mission concept, SARIM, that collects interstellar and interplanetary dust particles and returns them to Earth.
SARIM is optimised for the collection and discrimination of interstellar dust grains. Improved active dust collectors on-board
allow us to perform in-situ determination of individual dust impacts and their impact location. This will provide important
constraints for subsequent laboratory analysis.
The SARIM spacecraft will be placed at the L2 libration point of the Sun–Earth system, outside the Earth’s debris belts and
inside the solar-wind charging environment. SARIM is three-axes stabilised and collects interstellar grains between July and
October when the relative encounter speeds with interstellar dust grains are lowest (4 to 20 km/s). During a 3-year dust collection
period several hundred interstellar and several thousand interplanetary grains will be collected by a total sensitive area
of 1 m2. At the end of the collection phase seven collector modules are stored and sealed in a MIRKA-type sample return capsule.
SARIM will return the capsule containing the stardust to Earth to allow for an extraction and investigation of interstellar
samples by latest laboratory technologies. 相似文献
2.
Eberhard Grün Ralf Srama Nicolas Altobelli Kathrin Altwegg James Carpenter Luigi Colangeli Karl-Heinz Glassmeier Stefan Helfert Hartmut Henkel Mihaly Horanyi Annette Jäckel Sascha Kempf Markus Landgraf Neil McBride Georg Moragas-Klostermeyer Pasquale Palumbo Han Scholten Andre Srowig Zoltan Sternovsky Xavier Vo 《Experimental Astronomy》2009,23(3):981-999
The DuneXpress observatory will characterize interstellar and interplanetary dust in-situ, in order to provide crucial information
not achievable with remote sensing astronomical methods. Galactic interstellar dust constitutes the solid phase of matter
from which stars and planetary systems form. Interplanetary dust, from comets and asteroids, represents remnant material from
bodies at different stages of early solar system evolution. Thus, studies of interstellar and interplanetary dust with DuneXpress
in Earth orbit will provide a comparison between the composition of the interstellar medium and primitive planetary objects.
Hence DuneXpress will provide insights into the physical conditions during planetary system formation. This comparison of
interstellar and interplanetary dust addresses directly themes of highest priority in astrophysics and solar system science,
which are described in ESA’s Cosmic Vision. The discoveries of interstellar dust in the outer and inner solar system during
the last decade suggest an innovative approach to the characterization of cosmic dust. DuneXpress establishes the next logical
step beyond NASA’s Stardust mission, with four major advancements in cosmic dust research: (1) analysis of the elemental and
isotopic composition of individual interstellar grains passing through the solar system, (2) determination of the size distribution
of interstellar dust at 1 AU from 10 − 14 to 10 − 9 g, (3) characterization of the interstellar dust flow through the planetary system, (4) establish the interrelation of interplanetary
dust with comets and asteroids. Additionally, in supporting the dust science objectives, DuneXpress will characterize dust
charging in the solar wind and in the Earth’s magnetotail. The science payload consists of two dust telescopes of a total
of 0.1 m2 sensitive area, three dust cameras totaling 0.4 m2 sensitive area, and a nano-dust detector. The dust telescopes measure high-resolution mass spectra of both positive and negative
ions released upon impact of dust particles. The dust cameras employ different detection methods and are optimized for (1)
large area impact detection and trajectory analysis of submicron sized and larger dust grains, (2) the determination of physical
properties, such as flux, mass, speed, and electrical charge. A nano-dust detector searches for nanometer-sized dust particles
in interplanetary space. A plasma monitor supports the dust charge measurements, thereby, providing additional information
on the dust particles. About 1,000 grains are expected to be recorded by this payload every year, with 20% of these grains
providing elemental composition. During the mission submicron to micron-sized interstellar grains are expected to be recorded
in statistically significant numbers. DuneXpress will open a new window to dusty universe that will provide unprecedented
information on cosmic dust and on the objects from which it is derived. 相似文献
3.
We report on the results of the Cosmic Dust Experiment (CDE) onboard the Aeronomy of Ice in the Mesosphere (AIM) satellite, collected during eight months of operation between May 2007 and February 2008. CDE is an impact detector designed to measure the variability of the cosmic dust influx of grains with radius, . CDE consists of 14 permanently polarized polyvinylidene fluoride (PVDF) channels that produce an electrical signal when impacted with hyper-velocity dust particles. The instrument has a total surface area of 0.11 m2 and a time resolution of 1 s. CDE experienced higher noise levels than expected on-orbit, triggering the need for new laboratory experiments, as well as the development of new data reduction approaches. We present the first eight months of reduced CDE data, highlighting the observed spatial and temporal variability of the cosmic dust influx. 相似文献
4.
Assuming that similar organic components as in comet 81P/Wild 2 are present in incoming meteoroids, we try to anticipate the
observable signatures they would produce for meteor detection techniques. In this analysis we consider the elemental and organic
components in cometary aggregate interplanetary dust particles and laboratory analyses of inter- and circumstellar carbon
dust analogues. On the basis of our analysis we submit that (semi) quantitative measurements of H, N and C produced during
meteor ablation will open an entire new aspect to using meteoroids as tracers of these volatile element abundances in active
comets and their contributions to the mesospheric metal layers. 相似文献
5.
Dust particles exposed to the stellar radiation and wind drift radially inward by the Poynting-Robertson (P-R) drag and pile up at the zone where they begin to sublime substantially. The reason they pile up or form a ring is that their inward drifts due to the P-R drag are suppressed by stellar radiation pressure when the ratio of radiation pressure to stellar gravity on them increases during their sublimation phases. We present analytic solutions to the orbital and mass evolution of such subliming dust particles, and find their drift velocities at the pileup zone are almost independent of their initial semimajor axes and masses. We derive analytically an enhancement factor of the number density of the particles at the outer edge of the sublimation zone from the solutions. We show that the formula of the enhancement factor reproduces well numerical simulations in the previous studies. The enhancement factor for spherical dust particles of silicate and carbon extends from 3 to more than 20 at stellar luminosities L?=0.8-500L⊙, where L⊙ is solar luminosity. Although the enhancement factor for fluffy dust particles is smaller than that for spherical particles, sublimating particles inevitably form a dust ring as long as their masses decrease faster than their surface areas during sublimation. The formulation is applicable to dust ring formation for arbitrary shape and material of dust in dust-debris disks as well as in the Solar System. 相似文献
6.
Masateru Ishiguro 《Icarus》2008,193(1):96-104
A thin, bright dust cloud, which is associated with the Rosetta mission target object (67P/Churyumov-Gerasimenko), was observed after the 2002 perihelion passage. The neckline structure or dust trail nature of this cloud is controversial. In this paper, we definitively identify the dust trail and the neckline structure using a wide-field CCD camera attached to the Kiso 1.05-m Schmidt telescope. The dust trail of 67P/Churyumov-Gerasimenko was evident as scattered sunlight in all images taken between September 9, 2002 and February 1, 2003, whereas the neckline structure became obvious only after late 2002. We compared our images with a semi-analytical dynamic model of dust grains emitted from the nucleus. A fading of the surface brightness of the dust trail near the nucleus enabled us to determine the typical maximum size of the grains. Assuming spherical compact particles with a mass density of 103 kg m−3 and an albedo of 0.04, we deduced that the maximum diameter of the dust particles was approximately 1 cm. We found that the mass-loss rate of the comet at the perihelion was on or before the 1996 apparition, while the mass-loss rate averaged over the orbit reached . The result is consistent with the studies of the dust cloud emitted in the 2002/2003 return. Therefore, we can infer that the activity of 67P/Churyumov-Gerasimenko has showed no major change over the past dozen years or so, and the largest grains are cyclically injected into the dust tube lying along the cometary orbit. 相似文献
7.
We have radically re-assessed the conditions required for the formation and growth of carbon grains in the ejecta of novae. The stability and hence the ultimate fate of the grains is primarily determined by the degree to which they are annealed by the nova's ultraviolet radiation field. 相似文献
8.
Under the title ‘Meteors, Meteoroids and Interplanetary Dust’, meteor research is included in the program of the International
Heliophysical Year 2007/9.We list issues for coordinated meteor research within the framework of this global international
program. 相似文献
9.
More than half of the C-type asteroids, the dominant type of asteroid in the outer half of the main-belt, show evidence of hydration in their reflectance spectra. In order to understand the collisional evolution of asteroids and the production of interplanetary dust and to model the infrared signature of small particles in the Solar System it is important to characterize the dust production from primary impact disruption events, and compare the disruption of hydrous and anhydrous targets. We performed a hypervelocity impact disruption experiment on an ∼30 g target of the Murchison CM2 hydrated carbonaceous chondrite meteorite, and compared the results with our previous disruption experiments on anhydrous meteorites including Allende, a CV3 carbonaceous chondrite, and nine ordinary chondrites. Murchison is significantly more friable than the ordinary chondrites or Allende. Nonetheless, on a plot of mass of the largest fragment versus specific impact energy, the Murchison disruption plots within the field of the anhydrous meteorites points, suggesting that Murchison is at least as resistant to impact disruption as the anhydrous meteorites, which require about twice the energy for disruption as terrestrial anhydrous basalt targets. We determined the mass-frequency distribution of the debris from the Murchison disruption over a nine order-of-magnitude mass range, from ∼10−9 g to the mass of the largest fragment produced in the disruption. The cumulative mass-frequency distribution from the Murchison disruption is fit by three power-law segments. For masses >10−2 g the slope is only slightly steeper than that of the corresponding segment from the disruption of most anhydrous meteorites. Over the range from ∼10−6 to 10−2 g the slope is significantly steeper than that for the anhydrous meteorites. For masses <10−6 g the slopes of both the Murchison and the anhydrous meteorites are almost flat. Thus the Murchison disruption significantly over-produced small fragments (10−6-10−3 g) compared to anhydrous meteorite targets. If the Murchison results are representative of hydrous asteroids, the hydrous asteroids may dominate over anhydrous asteroids in the production of interplanetary dust >100 μm in size, the size of micrometeorites recovered from the polar ices, while both types of asteroids might produce comparable amounts of ∼10 μm interplanetary dust. This would explain the puzzle that polar micrometeorites (>100 μm in size) are similar to hydrous meteorites, while the majority of the ∼10 μm interplanetary dust particles are anhydrous. 相似文献
10.
Micrometeoroid impact crater statistics at the boundary of Earth's gravitational sphere of influence
We surveyed craters on a space-exposed surface from the Genesis solar wind sample return mission to find new constraints on the population of micrometeoroids at the edge of the Earth's gravitational sphere of influence. The target was made of 6061-T6 aluminum, identical to the composition of the space-facing end of the Long Duration Exposure Facility satellite, which recorded micrometeoroid impacts in low Earth orbit. We use data from both locations to compare crater frequency as a function of size, with and without gravitational focussing by the Earth. We find that the cratering flux near the Earth-Sun L1 libration point is indistinguishable, within the ∼40% uncertainty of this study, from that in low Earth orbit. The small degree of gravitational focussing between the two locations indicates that particles with geocentric free-space velocities less than a few kilometers per second comprise no more than a few percent of the interplanetary dust complex. 相似文献
11.
12.
A considerable depletion of sodium was observed in Geminid meteoroids. To explain this phenomenon, we developed a quantitative model of sodium loss from meteoroids due to solar heating. We found that sodium can be lost completely from Geminid meteoroids after several thousands of years when they are composed of grains with sizes up to ∼100 μm. The observed variations of sodium abundances in Geminid meteor spectra can be explained by differences in the grain sizes among these meteoroids. Sodium depletions are also to be expected for other meteoroid streams with perihelion distances smaller than ∼0.2 AU. In our model, the meteoroids were represented by spherical dust-balls of spherical grains with an interconnected pore space system. The grains have no porosity and contain usual minerals known from meteorites and IDP's, including small amount of Na-bearing minerals. We modeled the sequence of three consecutive processes for sodium loss in Geminid meteoroids: (i) solid-state diffusion of Na atoms from Na-bearing minerals to the surface of grains, (ii) thermal desorption from grain surfaces and (iii) diffusion through the pore system to the space. The unknown material parameters were approximated by terrestrial analogs; the solid-state diffusion of Na in the grains was approximated by the diffusion rates for albite and orthoclase. 相似文献
13.
Previous studies of mid-Ordovician limestone in Sweden have shown that over a stratigraphic interval representing a few million years there is a two orders-of-magnitude enrichment in fossil L-chondritic meteorites (Ø = 1-21 cm) and sediment-dispersed extraterrestrial chromite (EC) grains (>63 μm). This has been interpreted as a dramatic increase in the flux of L-chondritic matter to Earth following the breakup of the L-chondrite parent body, which based on Ar-Ar gas retention ages (470 ± 6 Ma) of recently fallen meteorites occurred at about this time. Here we show that the general trend in the distribution of sediment-dispersed EC grains can be reproduced in the Puxi River section in central China. A total of 288 kg of limestone was searched for chrome spinels. In samples spanning the lower 8 m of the section, representing the Paroistodus originalis and Lenodus antivariabilis conodont zones, a total of 110 kg of limestone yielded only one EC grain. Similarly to the Swedish sections, EC grains begin to be common in the overlying L. variabilis Zone and remain common throughout the upper 9 m of the section, representing the L. variabilis, Yangtzeplacognathus crassus and L. pseudoplanus zones. In this part of the section 178 kg of limestone yielded 290 EC grains, with an average chemical composition very similar to chromite from recent L chondrites. In most of the beds over this interval one finds 1-4 EC grains per kilogram rock, a clear two orders-of-magnitude enrichment relative to the lower part of the section. Small bed-by-bed variations in the EC content over the upper interval most likely reflect small variations in sedimentation rates. The Puxi River section contains only very rare terrestrial chrome spinel grains, which can be distinguished already by their rounded, abraded appearance compared to the angular, pristine extraterrestrial spinels. In the mid-Ordovician, based on paleoplate reconstructions, the Puxi River site was positioned at mid-latitudes on the southern hemisphere a couple of thousand kilometers east of the Swedish sites. The prominent enrichment of EC grains over the same stratigraphic interval in China and Sweden is supporting evidence for a dramatic increase in the flux of L-chondritic matter to Earth shortly after the disruption of the L-chondrite parent body in the asteroid belt. 相似文献
14.
15.
Interplanetary field enhancements were first discovered in the vicinity of Venus. These events are characterised by an increase in the magnitude of the heliospheric magnetic field with a near-symmetrical, sometimes thorn-shaped profile, and last from minutes to hours. Surveys of the events near Venus and Earth indicated clustering of the events in inertial space, which suggested that their sources were Solar System objects other than the Sun. A survey is presented of strong events of this type detected by the Ulysses spacecraft from 1990 to late 2001. Most of the events are accompanied by a discontinuity in the field direction near the events' centres. Other discontinuities are often symmetrical about the enhancement. The majority of events last less than two hours. When examined as a whole, the events tend to be accompanied by subtle changes in some plasma parameters. The majority of the enhancements are accompanied by magnetic holes on their fringes. The enhancements' occurrence rate increases with decreasing heliocentric distance. Possible formation mechanisms are discussed. No link was found with solar, or solar wind sources. Several aspects of the survey results are consistent with an origin related to cometary dust trails. Possible processes associated with a dust-solar wind interaction are discussed. 相似文献
16.
Masateru Ishiguro Yuki Sarugaku Munetaka Ueno Fumihiko Usui Suk Minn Kwon 《Icarus》2007,189(1):169-183
We present observations of the extended dust structures near the orbits of three short-period comets: 2P/Encke, 22P/Kopff, and 65P/Gunn. The dust trails were originally discovered by the Infrared Astronomical Satellite (IRAS). Our observations were made using wide-field optical CCD cameras on the University of Hawaii 2.24-m telescope, the Canada-France-Hawaii 3.6-m telescope, and the Kiso 1.05-m Schmidt telescope. We compared the observed images with models and found that the extended structures seen around 2P/Encke and 22P/Kopff before perihelion passage were most likely “dust trails,” whereas images taken after perihelion passage show a high contamination by recently released particles (i.e., particles in Neck-Line structures are visible). We could not confirm the existence of a dust trail from 65P/Gunn within the field of view of the camera used. The effective sizes of the particles responsible for the scattered light were estimated at 1-100 mm (2P/Encke), 1-10 mm (22P/Kopff), and 100 μm-1 mm (65P/Gunn), respectively, which is consistent with previous studies of dust trails made with infrared space telescopes and optical telescopes. We evaluated the mass loss rates of these comets, averaged over their orbits, as reaching (2P/Encke), (22P/Kopff), and (65P/Gunn). These values are consistent with previous work. Therefore, the total amount of material ejected from these three comets is , which would contribute a considerable fraction of the lost within 1 AU that needs to be replaced if the zodiacal cloud is to be maintained in a steady state. We also found that the particles in the dust structures are significantly redder than the Sun and the zodiacal light, and might be redder than the average short-period comet nuclei. Specifically, the reflectivity gradients of 2P/Encke, 22P/Kopff, and 65P/Gunn are 13±7 (% 103 Å−1), 20±5 (% 103 Å−1), and 15±4 (% 103 Å−1), respectively. We examined the change in color with distance from the nucleus. No clear correlation was detected for 2P/Encke or 22P/Kopff to an accuracy of 3-11%, while the 65P/Gunn tail did show color variation, becoming redder with increasing distance from the nucleus. This dark red material, consisting of particles of sand-cobble size, has marginally escaped from the nuclei and will evolve into finer-grained interplanetary dust particles after subsequent collisions. 相似文献
17.
本文借助于观测到的大、小麦哲伦云的星际尘埃辐射,估计总星系内的“冷”星际尘埃热再辐射对宇宙微波背景辐射的影响.结果表明:总星系内的星际“冷”尘埃的热辐射所形成的背景辐射对微波背景辐射的扰动强烈地依赖于宇宙减速因子和“冷”尘埃量,在宇宙背景探测者(COBE)的观测结果的限制下,无论宇宙减速因子取何种值,“冷”尘埃所占的比例都是非常少的,如果Ostriker所作的平均每个星系内由尘埃产生的蓝光光深τB=0.5的假定是合理的,那么星际尘埃量随温度的分布是非常不均匀的。 相似文献
18.
This paper describes the Canadian Meteor Orbit Radar (CMOR) that has been in operation since late 2001. CMOR is a 3 station meteor radar operating at a frequency of 29.85 MHz near Tavistock, Ont. To avoid bias against fragmenting meteoroids that is inherent in the traditional multi-station method of Gill and Davies (Mon. Not. R Astron. Soc. 116 (1955) 105), we use a completely geometrical method similar to that used in the AMOR system (Quart. J. R. Astron. Soc. 35 (1994) 293) based on the interferometric determination of the echo directions and the time delays of echoes from two remote stations to obtain the trajectories and speeds of meteoroids. We describe the hardware and some of the software and present some preliminary results that provide a good indication of present capabilities of the system. Typically, we can measure 1500 individual trajectories, and hence orbits, per day with a mean accuracy of 6° in direction and about 10% in speed. A small subset of these for which it is possible to measure the speeds using Hocking's (Radio. Sci. 35 (2000) 1205) method yield speeds with a precision of about 5%. The purpose of this paper is to show that the radiants and speeds necessary for the computation of orbits are well measured rather than to discuss any orbital surveys. 相似文献
19.
Summary The presence of solid carbon monoxide (CO) on interstellar grains was confirmed observationally in 1984 with the detection of infrared absorption at 4.67m wavelength in several molecular clouds. Subsequent observations suggest that solid CO is ubiquitous in the quiescent molecular cloud environment. In some lines of sight, the degree of frosting on to grains is sufficient to reduce appreciably the abundance of CO remaining in the gas, a result of considerable astrophysical significance: in addition to its importance as a tracer of molecular material, CO is vital to the production of many polyatomic molecules by gas phase reaction schemes, and its depletion could have a dramatic effect on the abundances of more complex carbon-bearing molecules. The infrared spectrum of solid CO provides an important diagnostic of the chemical composition and thermal evolution of grain mantles, leading to the prediction that CO2 is also present in solid form.As it is now some six years since observations of interstellar solid CO were first reported, this is an appropriate time to review the topic and to suggest some directions for future research. The introduction (Sect. 1) attempts to place the subject in its broader astrophysical context. The infrared observations and their implications are discussed in detail in Sect. 2. The question of the degree of CO depletion implied by the observations of both solid state and gas phase CO is re-examined in Sect. 3. We assess the possibility of CO detection by means of solid state absorption or luminescence in the ultraviolet in Sect. 4. Future prospects are summarised in the final section.This article was processed by the author using the Springer-Verlag TEX Theaar macro package 1988. 相似文献
20.
The Gegenschein is viewed by the Solar Mass Ejection Imager (SMEI), which has provided near-full-sky broadband visible-light photometric maps for over 5 years. These have an angular resolution of about 0.5° and differential photometric stability of about 1% throughout this time. When individual bright stars are removed from the maps and an empirical sidereal background subtracted, the residue is dominated by the zodiacal light. The unprecedented sky coverage and duration of these measurements enables a definitive characterization of the Gegenschein. This article describes the analysis method for these data, presents a movie with time of the Gegenschein brightness distribution, determines empirical formulae describing its average shape, and discusses its variation with time. These measurements unambiguously confirm previous reports that the Gegenschein surface-brightness distribution has a decided peak in the antisolar point, which rises above a broader background. 相似文献