首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Analyses of mineral inclusions, carbon isotopes, nitrogen contents and nitrogen aggregation states in 29 diamonds from two Buffalo Hills kimberlites in northern Alberta, Canada were conducted. From 25 inclusion bearing diamonds, the following paragenetic abundances were found: peridotitic (48%), eclogitic (32%), eclogitic/websteritic (8%), websteritic (4%), ultradeep? (4%) and unknown (4%). Diamonds containing mineral inclusions of ferropericlase, and mixed eclogitic-asthenospheric-websteritic and eclogitic-websteritic mineral associations suggests the possibility of diamond growth over a range of depths and in a variety of mantle environments (lithosphere, asthenosphere and possibly lower mantle).

Eclogitic diamonds have a broad range of C-isotopic composition (δ13C=−21‰ to −5‰). Peridotitic, websteritic and ultradeep diamonds have typical mantle C-isotope values (δ13C=−4.9‰ av.), except for two 13C-depleted peridotitic (δ13C=−11.8‰, −14.6‰) and one 13C-depleted websteritic diamond (δ13C=−11.9‰). Infrared spectra from 29 diamonds identified two diamond groups: 75% are nitrogen-free (Type II) or have fully aggregated nitrogen defects (Type IaB) with platelet degradation and low to moderate nitrogen contents (av. 330 ppm-N); 25% have lower nitrogen aggregation states and higher nitrogen contents (30% IaB; <1600 ppm-N).

The combined evidence suggests two generations of diamond growth. Type II and Type IaB diamonds with ultradeep, peridotitic, eclogitic and websteritic inclusions crystallised from eclogitic and peridotitic rocks while moving in a dynamic environment from the asthenosphere and possibly the lower mantle to the base of the lithosphere. Mechanisms for diamond movement through the mantle could be by mantle convection, or an ascending plume. The interaction of partial melts with eclogitic and peridotitic lithologies may have produced the intermediate websteritic inclusion compositions, and can explain diamonds of mixed parageneses, and the overlap in C-isotope values between parageneses. Strong deformation and extremely high nitrogen aggregation states in some diamonds may indicate high mantle storage temperatures and strain in the diamond growth environment. A second diamond group, with Type IaA–IaB nitrogen aggregation and peridotitic inclusions, crystallised at the base of the cratonic lithosphere. All diamonds were subsequently sampled by kimberlites and transported to the Earth's surface.  相似文献   


2.
The diamonds from the Swartruggens dyke swarm are mainly tetrahexahedra, with subsidiary octahedral and cuboid crystals. They are predominantly colourless, with subordinate yellows, browns, and greens. The existence of discrete cores and oscillatory growth structures within the diamonds, together with the recognition of harzburgite, lherzolite, at least two eclogitic and a websteritic diamond paragenesis, variable nitrogen contents, and both Type IaAB and Type Ib–IaA diamonds provides evidence for episodic diamond growth in at least six different environments. The predominance of plastic deformation in the diamonds, the state of nitrogen aggregation, and the suite of inclusion minerals recovered are all consistent with a xenocrystic origin for the diamonds, with the Type Ib–IaA diamonds being much younger than the rest. Mantle storage at a time-averaged temperature of ±1100 °C is inferred for the Type IaAB diamonds. The distribution of mantle xenocrysts of garnet and chromite within the high-grade Main kimberlite dyke compared to the low-grade Changehouse kimberlite dyke strongly suggests that the difference in diamond content is due to an increased eclogitic component of diamonds in the Main kimberlite dyke.  相似文献   

3.
A mineral inclusion, carbon isotope, nitrogen content, nitrogen aggregation state and morphological study of 576 microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, was conducted. Mineral inclusion data show the diamonds are largely eclogitic (64%), followed by peridotitic (25%) and ultradeep (11%). The paragenetic abundances are similar to macrodiamonds from the DO27 kimberlite (Davies, R.M., Griffin, W.L., O'Reilly, S.Y., 1999. Diamonds from the deep: pipe DO27, Slave craton, Canada. In: Gurney, J.J., Gurney, J.L., Pascoe, M.D., Richardson, S.H. (Eds.), The J. B. Dawson Vol., Proc. 7th Internat. Kimberlite Conf., Red Roof Designs, Cape Town, pp. 148–155) but differ to diamonds from nearby kimberlites at Ekati (e.g., Lithos (2004); Tappert, R., Stachel, T., Harris, J.W., Brey, G.P., 2004. Mineral Inclusions in Diamonds from the Panda Kimberlite, S. P., Canada. 8th International Kimberlite Conference, extended abstracts) and Snap Lake to the south (Dokl. Earth Sci. 380 (7) (2001) 806), that are dominated by peridotitic stones.

Eclogitic diamonds with variable inclusion compositions and temperatures of formation (1040–1300 °C) crystallised at variable lithospheric depths sometimes in changing chemical environments. A large range to very 13C-depleted C-isotope compositions (δ13C=−35.8‰ to −2.2‰) and an NMORB bulk composition, calculated from trace elements in garnet and clinopyroxene inclusions, are consistent with an origin from subducted oceanic crust and sediments. Carbon isotopes in the peridotitic diamonds have mantle compositions (δ13C mode −4.0‰). Mineral inclusion compositions are largely harzburgitic. Variable temperatures of formation (garnet TNi=800–1300 °C) suggest the peridotitic diamonds originate from the shallow ultra-depleted and deeper less depleted layers of the central Slave lithosphere. Carbon isotopes (δ13C av.=−5.1‰) and mineral inclusions in the ultradeep diamonds suggest they formed in peridotitic mantle (670 km). The diamonds may have been entrained in a plume and subcreted to the base of the central Slave lithosphere.

Poorly aggregated nitrogen (IaA without platelets) in a large number of eclogitic (67%) and peridotitic (32%) diamonds, with similar nitrogen contents, indicates the diamonds were stored in the mantle at low temperatures (1060–<1100 °C) following crystallisation in the Archean. Type IaA diamonds have largely cubo-octahedral growth forms, and Type II and Type IaAB diamonds, with higher nitrogen aggregation states, mostly have octahedral morphologies. However, no correlation between these groups and their mineral inclusion compositions, C-isotopes, and N-contents rules out the possibility of unique source origins and suggests eclogitic and peridotitic diamonds experienced variable mantle thermal states. Variation in mineral inclusion chemistries in single diamonds, possible overgrowths of 13C-depleted eclogitic diamond on diamonds with peridotitic and ultradeep inclusions, and Type I ultradeep diamond with low N-aggregation is consistent with diamond growth over time in changing chemical environments.  相似文献   


4.
Mineral inclusions recovered from 100 diamonds from the A154 South kimberlite (Diavik Diamond Mines, Central Slave Craton, Canada) indicate largely peridotitic diamond sources (83%), with a minor (12%) eclogitic component. Inclusions of ferropericlase (4%) and diamond in diamond (1%) represent “undetermined” parageneses.

Compared to inclusions in diamonds from the Kaapvaal Craton, overall higher CaO contents (2.6 to 6.0 wt.%) of harzburgitic garnets and lower Mg-numbers (90.6 to 93.6) of olivines indicate diamond formation in a chemically less depleted environment. Peridotitic diamonds at A154 South formed in an exceptionally Zn-rich environment, with olivine inclusions containing more than twice the value (of  52 ppm) established for normal mantle olivine. Harzburgitic garnet inclusions generally have sinusoidal rare earth element (REEN) patterns, enriched in LREE and depleted in HREE. A single analyzed lherzolitic garnet is re-enriched in middle to heavy REE resulting in a “normal” REEN pattern. Two of the harzburgitic garnets have “transitional” REEN patterns, broadly similar to that of the lherzolitic garnet. Eclogitic garnet inclusions have normal REEN patterns similar to eclogitic garnets worldwide but at lower REE concentrations.

Carbon isotopic values (δ13C) range from − 10.5‰ to + 0.7‰, with 94% of diamonds falling between − 6.3‰ and − 4.0‰. Nitrogen concentrations range from below detection (< 10 ppm) to 3800 ppm and aggregation states cover the entire spectrum from poorly aggregated (Type IaA) to fully aggregated (Type IaB). Diamonds without evidence of previous plastic deformation (which may have accelerated nitrogen aggregation) typically have < 25% of their nitrogen in the fully aggregated B-centres. Assuming diamond formation beneath the Central Slave to have occurred in the Archean [Westerlund, K.J., Shirey, S.B., Richardson, S.H., Gurney, J.J., Harris, J.W., 2003b. Re–Os systematics of diamond inclusion sulfides from the Panda kimberlite, Slave craton. VIIIth International Kimberlite Conference, Victoria, Canada, Extended Abstracts, 5p.], such low aggregation states indicate mantle residence at fairly low temperatures (< 1100 °C). Geothermometry based on non-touching inclusion pairs, however, indicates diamond formation at temperatures around 1200 °C. To reconcile inclusion and nitrogen based temperature estimates, cooling by about 100–200 °C shortly after diamond formation is required.  相似文献   


5.
《Lithos》2007,93(1-2):199-213
Kimberlite pipes K11, K91 and K252 in the Buffalo Head Hills, northern Alberta show an unusually large abundance (20%) of Type II (no detectable nitrogen) diamonds. Type I diamonds range in nitrogen content from 6 ppm to 3300 ppm and in aggregation states from low (IaA) to complete (IaB). The Type IaB diamonds extend to the lowest nitrogen concentrations yet observed at such high aggregation states, implying that mantle residence occurred at temperatures well above normal lithospheric conditions. Syngenetic mineral inclusions indicate lherzolitic, harzburgitic, wehrlitic and eclogitic sources. Pyropic garnet and forsteritic olivine characterize the peridotitic paragenesis from these pipes. One lherzolitic garnet inclusion has a moderately majoritic composition indicating a formation depth of ∼ 400 km. A wehrlitic paragenesis is documented by a Ca-rich, high-chromium garnet and very CaO-rich (0.11–0.14 wt.%) olivine. Omphacitic pyroxene and almandine-rich garnet are characteristic of the eclogitic paragenesis. A bimodal δ13C distribution with peaks at − 5‰ and − 17‰ is observed for diamonds from all three kimberlite pipes. A large proportion (∼ 40%) of isotopically light diamonds (δ13C < −10‰) indicates a predominantly eclogitic paragenesis.The Buffalo Head Terrane is of Lower Proterozoic metamorphic age (2.3–2.0 Ga) and hence an unconventional setting for diamond exploration. Buffalo Hills diamonds formed during multiple events in an atypical mantle setting. The presence of majorite and abundance of Type II and Type IaB diamonds suggests formation under sublithospheric conditions, possibly in a subducting slab and resulting megalith. Type IaA to IaAB diamonds indicate formation and storage under lower temperature in normal lithospheric conditions.  相似文献   

6.
D. Phillips  J.W. Harris  K.S. Viljoen 《Lithos》2004,77(1-4):155-179
Silicate and oxide mineral inclusions in diamonds from the geologically and historically important De Beers Pool kimberlites in Kimberley, South Africa, are characterised by harzburgitic compositions (>90%), with lesser abundances from eclogitic and websteritic parageneses. The De Beers Pool diamonds contain unusually high numbers of inclusion intergrowths, with garnet+orthopyroxene±chromite±olivine and chromite+olivine assemblages dominant. More unusual intergrowths include garnet+olivine+magnesite and an eclogitic assemblage comprising garnet+clinopyroxene+rutile. The mineral chemistry of the De Beers Pool inclusions overlaps that of most worldwide localities. Peridotitic garnet inclusions exhibit variable CaO (<5.8 wt.%) and Cr2O3 contents (3.0–15.0 wt.%), although the majority are harzburgitic with very low calcium concentrations (<2 wt.% CaO). Eclogitic garnet inclusions are characterised by a wide range in CaO (3.3–21.1 wt.%) with low Cr2O3 (<1 wt.%). Websteritic garnets exhibit intermediate compositions. Most chromite inclusions contain 63–67 wt.% Cr2O3 and <0.5 wt.% TiO2. Olivine and orthopyroxene inclusions are magnesium-rich with Mg-numbers of 93–97. Olivine inclusions in chromite exhibit the highest Mg-numbers and also contain elevated Cr2O3 contents up to 1.0 wt.%. Peridotitic clinopyroxene inclusions are Cr-diopsides with up to 0.8 wt.% K2O. Eclogitic and websteritic clinopyroxene inclusions exhibit overlapping compositions with a wide range in Mg-numbers (66–86).

Calculated temperatures for non-touching inclusion pairs from individual diamonds range from 1082 to 1320 °C (average=1197 °C), whereas pressures vary from 4.6 to 7.7 GPa (average=6.3 GPa). Touching inclusion assemblages are characterised by equilibration temperatures of 995 to 1182 °C (average=1079 °C) and pressures of 4.2–6.8 GPa (average=5.4 GPa). Provided that the non-touching inclusions represent equilibrium assemblages, it is suggested that these inclusions record the conditions at the time of diamond crystallisation (1200 °C; 3.0 Ga). The lower average temperatures for touching inclusions are attributed to re-equilibration in a cooling mantle (1050 °C) prior to kimberlite eruption at 85 Ma. Pressure estimates for touching garnet–orthopyroxene inclusions are also skewed towards lower values than most non-touching inclusions. This apparent difference may be an artefact of the Al-exchange geobarometer and/or the result of sampling bias, due to limited numbers of non-touching garnet–orthopyroxene inclusions. Alternatively pressure differences could be caused by differential uplift in the mantle or possibly variations in thermal compressibility between diamond and silicate inclusions. However, thermodynamic modelling suggests that thermal compressibility differences would cause only minor changes in internal inclusion pressures (<0.2 GPa/100 °C).  相似文献   


7.
The Archean lithospheric mantle beneath the Kaapvaal–Zimbabwe craton of Southern Africa shows ±1% variations in seismic P-wave velocity at depths within the diamond stability field (150–250 km) that correlate regionally with differences in the composition of diamonds and their syngenetic inclusions. Seismically slower mantle trends from the mantle below Swaziland to that below southeastern Botswana, roughly following the surface outcrop pattern of the Bushveld-Molopo Farms Complex. Seismically slower mantle also is evident under the southwestern side of the Zimbabwe craton below crust metamorphosed around 2 Ga. Individual eclogitic sulfide inclusions in diamonds from the Kimberley area kimberlites, Koffiefontein, Orapa, and Jwaneng have Re–Os isotopic ages that range from circa 2.9 Ga to the Proterozoic and show little correspondence with these lithospheric variations. However, silicate inclusions in diamonds and their host diamond compositions for the above kimberlites, Finsch, Jagersfontein, Roberts Victor, Premier, Venetia, and Letlhakane do show some regional relationship to the seismic velocity of the lithosphere. Mantle lithosphere with slower P-wave velocity correlates with a greater proportion of eclogitic versus peridotitic silicate inclusions in diamond, a greater incidence of younger Sm–Nd ages of silicate inclusions, a greater proportion of diamonds with lighter C isotopic composition, and a lower percentage of low-N diamonds whereas the converse is true for diamonds from higher velocity mantle. The oldest formation ages of diamonds indicate that the mantle keels which became continental nuclei were created by middle Archean (3.2–3.3 Ga) mantle depletion events with high degrees of melting and early harzburgite formation. The predominance of sulfide inclusions that are eclogitic in the 2.9 Ga age population links late Archean (2.9 Ga) subduction-accretion events involving an oceanic lithosphere component to craton stabilization. These events resulted in a widely distributed younger Archean generation of eclogitic diamonds in the lithospheric mantle. Subsequent Proterozoic tectonic and magmatic events altered the composition of the continental lithosphere and added new lherzolitic and eclogitic diamonds to the already extensive Archean diamond suite.  相似文献   

8.
Integrated models of diamond formation and craton evolution   总被引:4,自引:0,他引:4  
Two decades of diamond research in southern Africa allow the age, average N content and carbon composition of diamonds, and the dominant paragenesis of their syngenetic silicate and sulfide inclusions to be integrated on a cratonwide scale with a model of craton formation. Individual eclogitic sulfide inclusions in diamonds from the Kimberley area kimberlites, Koffiefontein, Orapa and Jwaneng have Re–Os isotopic ages that range from circa 2.9 Ga to the mid-Proterozoic and display little correspondence with the prominent variations in the P-wave velocity (±1%) that the mantle lithosphere shows at depths within the diamond stability field (150–225 km). Silicate inclusions in diamonds and their host diamond compositions for the above kimberlites, Finsch, Jagersfontein, Roberts Victor, Premier, Venetia, and Letlhakane show a regional relationship to the seismic velocity of the lithosphere. Mantle lithosphere with slower P-wave velocity relative to the craton average correlates with a greater proportion of eclogitic vs. peridotitic silicate inclusions in diamond, a greater incidence of younger Sm–Nd ages of silicate inclusions, a greater proportion of diamonds with lighter C isotopic composition, and a lower percentage of low-N diamonds. The oldest formation ages of diamonds support a model whereby mantle that became part of the continental keel of cratonic nuclei first was created by middle Archean (3.2–3.3 Ga or older) mantle depletion events with high degrees of melting and early harzburgite formation. The predominance of eclogitic sulfide inclusions in the 2.9 Ga age population links late Archean (2.9 Ga) subduction–accretion events to craton stabilization. These events resulted in a widely distributed, late Archean generation of eclogitic diamonds in an amalgamated craton. Subsequent Proterozoic tectonic and magmatic events altered the composition of the continental lithosphere and added new lherzolitic and eclogitic diamonds to the already extensive Archean diamond suite. Similar age/paragenesis systematics are seen for the more limited data sets from the Slave and Siberian cratons.  相似文献   

9.
Cathodoluminescence (CL) imaging of polished sections of a diamond from the Guaniamo region of Venezuela suggests a history of the diamond involving two periods of growth separated by a period of resorption and possibly brittle deformation. In situ electron probe analysis of multiple eclogitic garnet inclusions reveals a correlation between garnet composition and location in the stone. An early-formed garnet in the diamond core has higher Ca/(Ca+Mg) and lower Mg/(Mg+Fe) values than later garnets associated with the second period of diamond growth. This variation conforms to an extensive trend of variation in the suite of eclogitic garnets extracted from Venezuelan diamonds. The diamond is zoned in carbon isotope composition (in situ secondary ion mass spectrometry, SIMS, data). The core compositions (δ13C PDB), corresponding to the first stage of growth, average −17.7‰. The second period of growth is apparently in two sub-sets of CL zones with mean values of −13.0‰ and −7.9‰. Nitrogen contents of diamond are low (30–300 atomic ppm) and do not correlate with carbon isotope composition. Oxygen isotope ratios of the garnet inclusions are elevated substantially above those expected for “common mantle”; δ18O VSMOW of early garnet is approximately +10.5‰ and two late garnets average +8.8‰. The evolutionary trend of magnesium enrichment in garnet is unlikely to represent igneous fractionation. The stable isotope data are consistent with diamond formation in subducted meta-basic rocks that had interacted with sea water at low temperatures at or near the sea floor and contained a substantial biogenic carbon component. During or following subduction, diamonds continued to form in an evolving system that was progressively modified by interaction with mantle material.  相似文献   

10.
Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia   总被引:9,自引:0,他引:9  
The Sputnik kimberlite pipe is a small “satellite” of the larger Mir pipe in central Yakutia (Sakha), Russia. Study of 38 large diamonds (0.7-4.9 carats) showed that nine contain inclusions of the eclogitic paragenesis, while the remainder contain inclusions of the peridotitic paragenesis, or of uncertain paragenesis. The peridotitic inclusion suite comprises olivine, enstatite, Cr-diopside, chromite, Cr-pyrope garnet (both lherzolitic and harzburgitic), ilmenite, Ni-rich sulfide and a Ti-Cr-Fe-Mg-Sr-K phase of the lindsleyite-mathiasite (LIMA) series. The eclogitic inclusion suite comprises omphacite, garnet, Ni-poor sulfide, phlogopite and rutile. Peridotitic ilmenite inclusions have high Mg, Cr and Ni contents and high Nb/Zr ratios; they may be related to metasomatic ilmenites known from peridotite xenoliths in kimberlite. Eclogitic phlogopite is intergrown with omphacite, coexists with garnet, and has an unusually high TiO2 content. Comparison with inclusions in diamonds from Mir shows general similarities, but differences in details of trace-element patterns. Large compositional variations among inclusions of one phase (olivine, garnet, chromite) within single diamonds indicate that the chemical environment of diamond crystallisation changed rapidly relative to diamond growth rates in many cases. P-T conditions of formation were calculated from multiphase inclusions and from trace element geothermobarometry of single inclusions. The geotherm at the time of diamond formation was near a 35 mW/m2 conductive model; that is indistinguishable from the Paleozoic geotherm derived by studies of xenoliths and concentrate minerals from Mir. A range of Ni temperatures between garnet inclusions in single diamonds from both Mir and Sputnik suggests that many of the diamonds grew during thermal events affecting a relatively narrow depth range of the lithosphere, within the diamond stability field. The minor differences between inclusions in Mir and Sputnik may reflect lateral heterogeneity in the upper mantle.  相似文献   

11.
This paper reports on the petrology and geochemistry of a diamondiferous peridotite xenolith from the Premier diamond mine in South Africa.

The xenolith is altered with pervasive serpentinisation of olivine and orthopyroxene. Garnets are in an advanced state of kelyphitisation but partly fresh. Electron microprobe analyses of the garnets are consistent with a lherzolitic paragenesis (8.5 wt.% Cr2O3 and 6.6 wt.% CaO). The garnets show limited variation in trace element composition, with generally low concentrations of most trace elements, e.g. Y (<11 ppm), Zr (<18 ppm) and Sr (<0.5 ppm). Garnet rare earth element concentrations, when normalised against the C1 chondrite of McDonough and Sun (Chem. Geol. 120 (1995) 223), are characterised by a rare earth element pattern similar to garnet from fertile lherzolite.

All diamonds recovered are colourless. Most crystals are sharp-edged octahedra, some with minor development of the dodecahedral form. A number of crystals are twinned octahedral macles, while aggregates of two or more octahedra are also common. Mineral inclusions are rare. Where present they are predominantly small black rosettes believed to consist of sulfide. In one instance a polymineralic (presumably lherzolitic) assemblage of reddish garnet, green clinopyroxene and a colourless mineral is recognised.

Infrared analysis of the xenolith diamonds show nitrogen contents generally lower than 500 ppm and variable nitrogen aggregation state, from 20% to 80% of the ‘B’ form. When plotted on a nitrogen aggregation diagram a well defined trend of increasing nitrogen aggregation state with increasing nitrogen content is observed. Carbon isotopic compositions range from −3.6 ‰ to −1.3 ‰. These are broadly correlated with diamond nitrogen content as determined by infrared spectroscopy, with the most negative C-isotopic compositions correlating with the lowest nitrogen contents.

Xenolith mantle equilibration temperatures, calculated from nitrogen aggregation systematics as well as the Ni in garnet thermometer are on the order of 1100 to 1200 °C.

It is concluded that the xenolith is a fertile lherzolite, and that the lherzolitic character may have resulted from the total metasomatic overprinting of pre-existing harzburgite. Metasomatism occurred prior to, or accompanied, diamond growth.  相似文献   


12.
Chemical compositions were determined on mineral inclusions recovered from 290 microdiamonds (<1 mm) from 8 operating diamond mines in Yakutia. The sampled diamond mines include Mir, Udachnaya, Internatsionalnaya, Aykhal, Sytykanskaya, Yubileynaya, Komsomolskaya and Krasnopresnenskaya. The mineral inclusions include both ultramafic (peridotitic) suite (U-type) and eclogitic suite (E-type) examples. Olivines, chromites, Cr-pyropes, Cr-diopsides and enstatite were studied from U-type diamonds. Mg–Ca–Fe-garnets and omphacitic clinopyroxenes were studied from E-type microdiamonds. Abundances and compositions of these inclusions were compared with published and unpublished data on inclusions available from approximately 2000 macrodiamonds (>1 mm) from the same sources, and worldwide data for olivines and chromites. Although there are general similarities, notable exceptions were detected in about 10% of the inclusions from microdiamonds. For each of the pipes, anomalous compositions occur between the micro- and macrodiamond inclusions, but in different proportions, sometimes as high as 50% of the inclusions. Our study has demonstrated that mineral inclusions in microdiamonds are considerably more variable in their compositions and parageneses compared with inclusions in macrodiamonds.

Significant compositional anomalies in inclusions from microdiamonds include: (1) garnets containing pyroxene solid solution (majoritic component) both in U- and E-type microdiamonds from three pipes: Yubileynaya, Komsomolskaya and Krasnopresnenskaya. The moles of Si (pfu) in these garnets range from 3.07 to 3.13 and as high as 3.29, on the basis of 12 oxygens, along with a notable contents of Na2O in two eclogitic garnets (0.43 and 0.93 wt.%) and uniquely high Cr2O3 and CaO contents in an ultramafic garnet of wehrlitic paragenesis; (2) coexisting wehrlitic garnets in a single microdiamond, one majoritic, the other normal, both with distinct +Eu anomalies, considered as signatures of crustal protoliths for the precursors to these garnets; (3) olivines with relatively low Fo (86–89) and high-NiO contents (0.46–0.64 wt.%), from Yubileynaya and Sytykanskaya microdiamonds; (4) chromites containing high-TiO2 (up to 4.7 wt.%) and some extremely rich in MgO (Mg# 80). It is concluded that many of these compositional features observed may be related to a deeper origin for the microdiamond source region (>300 km), for at least a 10–30% portion of microdiamonds from each Yakutian pipe.  相似文献   


13.
Diamonds from the Kankan area in Guinea formed over a large depth profile beginning within the cratonic mantle lithosphere and extending through the asthenosphere and transition zone into the lower mantle. The carbon isotopic composition, the concentration of nitrogen impurities and the nitrogen aggregation level of diamonds representing this entire depth range have been determined. Peridotitic and eclogitic diamonds of lithospheric origin from Kankan have carbon isotopic compositions ('13C: peridotitic -5.4 to -2.2‰; eclogitic -19.7 to -0.7‰) and nitrogen characteristics (N: peridotitic 17-648 atomic ppm; eclogitic 0-1,313 atomic ppm; aggregation from IaA to IaB) which are generally typical for diamonds of these two suites worldwide. Geothermobarometry of peridotitic and eclogitic inclusion parageneses (worldwide sources) indicates that both suites formed under very similar conditions within the cratonic lithosphere, which is not consistent with a derivation of diamonds with light carbon isotopic composition from subducted organic matter within subducting oceanic slabs. Diamonds containing majorite garnet inclusions fall to the isotopically heavy side ('13C: -3.1‰ to +0.9‰) of the worldwide diamond population. Nitrogen contents are low (0-126 atomic ppm) and one of the two nitrogen-bearing diamonds shows such a low level of nitrogen aggregation (30% B-centre) that it cannot have been exposed to ambient temperatures of the transition zone (̿,400 °C) for more than 0.2 Ma. This suggests rapid upward transport and formation of some Kankan diamonds pene-contemporaneous to Cretaceous kimberlite activity. Similar to these diamonds from the asthenosphere and the transition zone, lower mantle diamonds show a small shift towards isotopic heavy compositions (-6.6 to -0.5‰, mode at -3.5‰). As already observed for other mines, the nitrogen contents of lower mantle diamonds were below detection (using FTIRS). The mutual shift of sublithospheric diamonds towards isotopic heavier compositions suggests a common carbon source, which may have inherited an isotopic heavy composition from a component consisting of subducted carbonates.  相似文献   

14.
The trace element composition of silicate inclusions in diamonds: a review   总被引:1,自引:0,他引:1  
On a global scale, peridotitic garnet inclusions in diamonds from the subcratonic lithosphere indicate an evolution from strongly sinusoidal REEN, typical for harzburgitic garnets, to mildly sinusoidal or “normal” patterns (positive slope from LREEN to MREEN, fairly flat MREEN–HREEN), typical for lherzolitic garnets. Using the Cr-number of garnet as a proxy for the bulk rock major element composition it becomes apparent that strong LREE enrichment in garnet is restricted to highly depleted lithologies, whereas flat or positive LREE–MREE slopes are limited to less depleted rocks. For lherzolitic garnet inclusions, there is a positive relation between equilibration temperature, enrichment in MREE, HREE and other HFSE (Ti, Zr, Y), and decreasing depletion in major elements. For harzburgitic garnets, relations are not linear, but it appears that lherzolite style enrichment in MREE–HREE only occurs at temperatures above 1150–1200 °C, whereas strong enrichment in Sr is absent at these high temperatures. These observations suggest a transition from melt metasomatism (typical for the lherzolitic sources) characterized by fairly unfractionated trace and major element compositions to metasomatism by CHO fluids carrying primarily incompatible trace elements. Melt and fluid metasomatism are viewed as a compositional continuum, with residual CHO fluids resulting from primary silicate or carbonate melts in the course of fractional crystallization and equilibration with lithospheric host rocks.

Eclogitic garnet inclusions show “normal” REEN patterns, with LREE at about 1× and HREE at about 30× chondritic abundance. Clinopyroxenes approximately mirror the garnet patterns, being enriched in LREE and having chondritic HREE abundances. Positive and negative Eu anomalies are observed for both garnet and clinopyroxene inclusions. Such anomalies are strong evidence for crustal precursors for the eclogitic diamond sources. The trace element composition of an “average eclogitic diamond source” based on garnet and clinopyroxene inclusions is consistent with derivation from former oceanic crust that lost about 10% of a partial melt in the garnet stability field and that subsequently experienced only minor reenrichment in the most incompatible trace elements. Based on individual diamonds, this simplistic picture becomes more complex, with evidence for both strong enrichment and depletion in LREE.

Trace element data for sublithospheric inclusions in diamonds are less abundant. REE in majoritic garnets indicate source compositions that range from being similar to lithospheric eclogitic sources to strongly LREE enriched. Lower mantle sources, assessed based on CaSi–perovskite as the principal host for REE, are not primitive in composition but show moderate to strong LREE enrichment. The bulk rock LREEN–HREEN slope cannot be determined from CaSi–perovskites alone, as garnet may be present in these shallow lower mantle sources and then would act as an important host for HREE. Positive and negative Eu anomalies are widespread in CaSi–perovskites and negative anomalies have also been observed for a majoritic garnet and a coexisting clinopyroxene inclusion. This suggests that sublithospheric diamond sources may be linked to old oceanic slabs, possibly because only former crustal rocks can provide the redox gradients necessary for diamond precipitation in an otherwise reduced sublithospheric mantle.  相似文献   


15.
The diamond population from the Jagersfontein kimberlite is characterized by a high abundance of eclogitic, besides peridotitic and a small group of websteritic diamonds. The majority of inclusions indicate that the diamonds are formed in the subcratonic lithospheric mantle. Inclusions of the eclogitic paragenesis, which generally have a wide compositional range, include two groups of eclogitic garnets (high and low Ca) which are also distinct in their rare earth element composition. Within the eclogitic and websteritic suite, diamonds with inclusions of majoritic garnets were found, which provide evidence for their formation within the asthenosphere and transition zone. Unlike the lithospheric garnets all majoritic garnet inclusions show negative Eu-anomalies. A narrow range of isotopically light carbon compositions (δ13C −17 to −24 ‰) of the host diamonds suggests that diamond formation in the sublithospheric mantle is principally different to that in the lithosphere. Direct conversion from graphite in a subducting slab appears to be the main mechanism responsible for diamond formation in this part of the Earth’s mantle beneath the Kaapvaal Craton. The peridotitic inclusion suite at Jagersfontein is similar to other diamond deposits on the Kaapvaal Craton and characterized by harzburgitic to low-Ca harzburgitic compositions.  相似文献   

16.
Mineral inclusions in diamonds from Namibia document a range of mantle sources, including eclogitic, websteritic and peridotitic parageneses. Based on unusual textural features a group of inclusions showing websteritic, peridotitic and transitional chemical features is assigned to an 'undetermined suite' (12% of the studied diamonds). The mutual characteristic of this group is the occurrence of lamellar intergrowths of clinopyroxene and orthopyroxene. In addition, the 'undetermined suite' is associated with a number of uncommon phases: in one diamond MgCO3 is enclosed by clinopyroxene. Other minerals that form touching inclusions with the pyroxene lamellae are (1) a SiO2 phase observed in three diamonds, together with CaCO3 in one of them, (2) phlogopite and a Cr-rich 'titanate' (probably lindsleyite). The inclusions document a metamorphic path of decreasing pressures and temperatures after entrapment in diamond. First, homogeneous low-Ca clinopyroxenes were entrapped at high temperatures. They subsequently exsolved orthopyroxene and probably also SiO2 (coesite) on cooling along a P,T trajectory that did not allow garnet to be exsolved as well. Phlogopite, carbonates and LIMA phases are the result of overprint of a peridotitic source rock by a carbon-rich agent. The resulting unusual, olivine-free mineral association and the host diamonds are interpreted as products of extensive carbonation of the peridotite.  相似文献   

17.
Diamonds and their mineral inclusions are valuable for studying the genesis of diamonds, the characteristics and processes of ancient lithospheric mantle and deeper mantle. This has been paid lots of attentions by geologists both at home and abroad. Most diamonds come from lithospheric mantle. According to their formation preceded, accompanied or followed crystallization of their host diamonds, mineral inclusions in diamonds are divided into three groups: protogenetic, syngenetic and epigenetic. To determine which group the mineral inclusions belong to is very important because it is vital for understanding the data’s meaning. According to the type of mantle source rocks, mineral inclusions in diamonds are usually divided into peridotitic (or ultramafic) suite and eclogitic suite. The mineral species of each suite are described and mineralogical characteristics of most common inclusions in diamonds, such as olivine, clinopyroxene, orthopyroxene, garnet, chromite and sulfide are reviewed in detail. In this paper, the main research fields and findings of diamonds and their inclusions were described: ①getting knowledge of mineralogical and petrologic characteristics of diamond source areas, characteristics of mantle fluids and mantle dynamics processes by studying the major element and trace element compositions of mineral inclusions; ②discussing deep carbon cycle by studying carbon isotopic composition of diamonds; ③determining forming temperature and pressure of diamonds by using appropriate assemblages of mineral inclusions or single mineral inclusion as geothermobarometry, by using the abundance and aggregation of nitrogen impurities in diamonds and by measuring the residual stress that an inclusion remains under within a diamond ; ④estimating the crystallization ages of diamonds by using the aggregation of nitrogen impurities in diamonds and by determine the radiometric ages of syngenetic mineral inclusions in diamonds. Genetic model of craton lithospheric diamonds and their mineral inclusion were also introduced. In the end, the research progress on diamonds and their inclusions in China and the gap between domestic and international research are discussed.  相似文献   

18.
Several thousand clinopyroxene, garnet, and phlogopite inclusions of mantle rocks from Jurassic and Triassic kimberlites in the northeastern Siberian craton have been analyzed and compared with their counterparts from Paleozoic kimberlites, including those rich in diamond. The new and published mineral chemistry data make a basis for an updated classification of kimberlite-hosted clinopyroxenes according to peridotitic and mafic (eclogite and pyroxenite) parageneses. The obtained results place constraints on the stability field of high-Na lherzolitic clinopyroxenes, which affect the coexisting garnet and decrease its Ca contents. As follows from analyses of the mantle minerals from Mesozoic kimberlites, the cratonic lithosphere contained more pyroxenite and eclogite in the Mesozoic than in the Paleozoic. It virtually lacked ultradepleted harzburgite-dunite lithologies and contained scarce eclogitic diamonds. On the other hand, both inclusions in diamond and individual eclogitic minerals from Mesozoic kimberlites differ from eclogitic inclusions in diamond from Triassic sediments in the northeastern Siberian craton. Xenocrystic phlogopites from the D’yanga pipe have 40Ar/39Ar ages of 384.6, 432.4, and 563.4 Ma, which record several stages of metasomatic impact on the lithosphere. These phlogopites are younger than most of Paleozoic phlogopites from the central part of the craton (Udachnaya kimberlite). Therefore, hydrous mantle metasomatism acted much later on the craton periphery than in the center. Monomineral clinopyroxene thermobarometry shows that Jurassic kimberlites from the northeastern craton part trapped lithospheric material from different maximum depths (170 km in the D’yanga pipe and mostly < 130 km in other pipes). The inferred thermal thickness of cratonic lithosphere decreased progressively from ~ 260 km in the Devonian-Carboniferous to ~ 225 km in the Triassic and to ~ 200 km in the Jurassic, while the heat flux (Hasterok-Chapman model) was 34.9, 36.7, and 39.0 mW/m2, respectively. Dissimilar PT patterns of samples from closely spaced coeval kimberlites suggest different emplacement scenarios, which influenced both the PT variations across the lithosphere and the diamond potential of kimberlites.  相似文献   

19.
Individual, sub-calcic, chrome-pyrope crystals from Finsch and Kimberley diamonds, Finsch and Bultfontein kimberlite heavy mineral concentrate, and from diamondiferous harzburgite-dunite xenoliths from the Udachnaya kimberlite pipe were analyzed for rare earth elements (REE), Sc, Ti, and Zr with the ion microprobe. The abundances and abundance ratios of these trace elements including LREE enrichment and low Ti, together with high and variable Cr contents, are inconsistent with a simple equilibrium relationship between peridotite-suite garnet and silicate and carbonate liquids. It is suggested that the trace element abundance patterns represent a signature of ancient mantle metasomatism which preceded the formation of peridotite-suite garnet and diamond.  相似文献   

20.
Forty-one diamonds sourced from the Juina-5 kimberlite pipe in Southern Brazil, which contain optically identifiable inclusions, have been studied using an integrated approach. The diamonds contain <20 ppm nitrogen (N) that is fully aggregated as B centres. Internal structures in several diamonds revealed using cathodoluminescence (CL) are unlike those normally observed in lithospheric samples. The majority of the diamonds are composed of isotopically light carbon, and the collection has a unimodal distribution heavily skewed towards δ13C ~ ?25 ‰. Individual diamonds can display large carbon isotope heterogeneity of up to ~15 ‰ and predominantly have isotopically lighter cores displaying blue CL, and heavier rims with green CL. The light carbon isotopic compositions are interpreted as evidence of diamond growth from abiotic organic carbon added to the oceanic crust during hydrothermal alteration. The bulk isotopic composition of the oceanic crust, carbonates plus organics, is equal to the composition of mantle carbon (?5 ‰), and we suggest that recycling/mixing of subducted material will replenish this reservoir over geological time. Several exposed, syngenetic inclusions have bulk compositions consistent with former eclogitic magnesium silicate perovskite, calcium silicate perovskite and NAL or CF phases that have re-equilibrated during their exhumation to the surface. There are multiple occurrences of majoritic garnet with pyroxene exsolution, coesite with and without kyanite exsolution, clinopyroxene, Fe or Fe-carbide and sulphide minerals alongside single occurrences of olivine and ferropericlase. As a group, the inclusions have eclogitic affinity and provide evidence for diamond formation at pressures extending to Earth’s deep transition zone and possibly the lower mantle. It is observed that the major element composition of inclusions and isotopic compositions of host Juina-5 diamonds are not correlated. The diamond and inclusion compositions are intimately related to subducted material and record a polybaric growth history across a depth interval stretching from the lower mantle to the base of the lithosphere. It is suggested that the interaction of slab-derived melts and mantle material combined with subsequent upward transport in channelised networks or a buoyant diapir explains the formation of Juina-5 diamonds. We conclude that these samples, despite originating at great mantle depths, do not provide direct information about the ambient mantle, instead, providing a snapshot of the Earth’s deep carbon cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号