首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fjord landscape of South America, stretching ~ 1500 km between Golfo Corcovado (~ 43°S) and Tierra del Fuego (~ 56°S), is the largest continuous fjord landscape on Earth. This paper presents the results of new structural geological and geomorphological mapping of this landscape using optical satellite images and digital elevation models. First-order geological structures are represented by strike-slip faults forming lineaments up to hundreds of kilometres long. The strike-slip faulting has been active since Late Cretaceous times and is responsible for the presence of a conspicuous structural cleavage visible as lineaments up to ~ 10 km long. A detailed analysis of these second-order lineaments from digital image data was carried out in three sectors. In Sector 1, located northwest of the North Patagonian Icefield, there are three distinct mean orientations, characterized by a main nearly orogen-parallel orientation (az. ~ 145°) and two orogen-oblique secondary orientations (az. ~ 20° and az. ~ 65°). In Sector 2, located west of the South Patagonian Icefield, there are also three separate mean orientations, with most of the lineaments concentrated between azimuths 0° and 80° (mean at ~ 36°); and two other orogen-oblique means at azimuth ~ 122° and ~ 163°. In Sector 3, around the Cordillera Darwin, there is a single main orogen-parallel mean at ~ 100–115°. In all three sectors, mapped fjord orientations bear a striking similarity to the structural data, with fjords orientated preferentially in the same direction as structural lineaments. We infer that successive glaciations followed the same ice-discharge routes, widening and deepening pre-existing geological structures at the expense of the surrounding terrain to create the fjord landscape. This study has broader implications for ice sheet reconstructions and landscape evolution beneath ice sheets because we demonstrate that the primary control on fjord development in glaciated areas is geological and not glaciological.  相似文献   

2.
A geomorphological study focussing on slope instability and landslide susceptibility modelling was performed on a 278 km2 area in the Nalón River Basin (Central Coalfield, NW Spain). The methodology of the study includes: 1) geomorphological mapping at both 1:5000 and 1:25,000 scales based on air-photo interpretation and field work; 2) Digital Terrain Model (DTM) creation and overlay of geomorphological and DTM layers in a Geographical Information System (GIS); and 3) statistical treatment of variables using SPSS and development of a logistic regression model. A total of 603 mass movements including earth flow and debris flow were inventoried and were classified into two groups according to their size. This study focuses on the first group with small mass movements (100 to 101 m in size), which often cause damage to infrastructures and even victims. The detected conditioning factors of these landslides are lithology (soils and colluviums), vegetation (pasture) and topography. DTM analyses show that high instabilities are linked to slopes with NE and SW orientations, curvature values between − 6 and − 0.7, and slope values from 16° to 30°. Bedrock lithology (Carboniferous sandstone and siltstone), presence of Quaternary soils and sediments, vegetation, and the topographical factors were used to develop a landslide susceptibility model using the logistic regression method. Application of “zoom method” allows us to accurately detect small mass movements using a 5-m grid cell data even if geomorphological mapping is done at a 1:25,000 scale.  相似文献   

3.
Groundwater dominance has important effects on the hydrological and geomorphological characteristics of river systems. Low suspended sediment concentrations and high water clarity are expected because significant inputs of sediment-free spring water dilute the suspended sediment generated by storms. However, in many Mediterranean rivers, groundwater dominance is characterised by seasonal alternations of influent and effluent discharge involving significant variability on the sediment transport regimes. Such areas are often subject to soil and water conservation practices over the centuries that have reduced the sediment contribution from agricultural fields and favour subsurface flow to rivers. Moreover, urbanisation during the twentieth century has changed the catchment hydrology and altered basic river processes due to its ‘flashy’ regime. In this context, we monitored suspended sediment fluxes during a two-year period in the Na Borges River, a lowland agricultural catchment (319 km2) on the island of Mallorca (Balearic Islands). The suspended sediment concentration (SSC) was lower when the base flow index (i.e., relative proportion of baseflow compared to stormflow, BFI) was higher. Therefore, strong seasonal contrasts explain the high SSC coefficient of variation, which is clearly related to dilution effects associated with different groundwater and surface water seasonal interactions. A lack of correlation in the Q-SSC rating curves shows that factors other than discharge control sediment transport. As a result, at the event scale, multiple regressions illustrate that groundwater and surface water interactions are involved in the sedimentary response of flood events. In the winter, the stability of baseflow driven by groundwater contributions and agricultural and urban spills causes hydraulic variables (i.e., maximum discharge) to exert the most important control on events, whereas in the summer, it is necessary to accumulate important volumes of rainfall, creating a minimum of wet conditions in the catchment to activate hydrological pathways and deliver sediment to the drainage network. The BFI is also related to sediment delivery processes, as the loads are higher with lower BFI, corroborating the fact that most sediment movement is caused by stormflow and its related factors. Overall, suspended sediment yields were very low (i.e., < 1 t km− 2 yr− 1) at all measuring sites. Such values are the consequence of the limited sediment delivery attributable to soil conservation practices, low surface runoff coefficients and specific geomorphic features of groundwater-dominated rivers, such as low drainage density, low gradient, steep valley walls and flat valley floors.  相似文献   

4.
The glacial buzzsaw hypothesis suggests that efficient erosion limits topographic elevations in extensively glaciated orogens. Studies to date have largely focussed on regions where large glaciers (tens of kilometres long) have been active. In light of recent studies emphasising the importance of lateral glacial erosion in lowering peaks and ridgelines, we examine the effectiveness of small glaciers in limiting topography under both relatively slow and rapid rock uplift conditions. Four ranges in the northern Basin and Range, Idaho, Montana, and Wyoming, USA, were chosen for this analysis. Estimates of maximum Pleistocene slip rates along normal faults bounding the Beaverhead–Bitterroot Mountains (~ 0.14 mm y− 1), Lemhi Range (~ 0.3 mm y− 1) and Lost River Range (~ 0.3 mm y− 1) are an order of magnitude lower than those on the Teton Fault (~ 2 mm y− 1). We compare the distribution of glacial erosion (estimated from cirque floor elevations and last glacial maximum (LGM) equilibrium line altitude (ELA) reconstructions) and fault slip rate with three metrics of topography in each range: the along-strike maximum elevation swath profile, hypsometry, and slope-elevation profiles. In the slowly uplifting Beaverhead–Bitterroot Mountains, and Lemhi and Lost River Ranges, trends in maximum elevation parallel ELAs, independent of variations in fault slip rate. Maximum elevations are offset ~ 500 m from LGM ELAs in the Lost River Range, Lemhi Range, and northern Beaverhead–Bitterroot Mountains, and by ~ 350 m in the southern Beaverhead–Bitterroot Mountains, where glacial extents were less. The offset between maximum topography and mean Quaternary ELAs, inferred from cirque floor elevations, is ~ 350 m in the Lost River and Lemhi Ranges, and 200–250 m in the Beaverhead–Bitterroot Mountains. Additionally, slope-elevation profiles are flattened and hypsometry profiles show a peak in surface areas close to the ELA in the Lemhi Range and Beaverhead–Bitterroot Mountains, suggesting that small glaciers efficiently limit topography. The situation in the Lost River Range is less clear as a glacial signature is not apparent in either slope-elevation profiles or the hypsometry. In the rapidly uplifting Teton Range, the distribution of ELAs appears superficially to correspond to maximum topography, hypsometry, and slope-elevations profiles, with regression lines on maximum elevations offset by ~ 700 and ~ 350 m from the LGM and mean Quaternary ELA respectively. However, Grand Teton and Mt. Moran represent high-elevation “Teflon Peaks” that appear impervious to glacial erosion, formed in the hard crystalline bedrock at the core of the range. Glacier size and drainage density, rock uplift rate, and bedrock lithology are all important considerations when assessing the ability of glaciers to limit mountain range topography. In the northern Basin and Range, it is only under exceptional circumstances in the Teton Range that small glaciers appear to be incapable of imposing a fully efficient glacial buzzsaw, emphasising that high peaks represent an important caveat to the glacial buzzsaw hypothesis.  相似文献   

5.
Giant landslides, which usually have volumes up to several tens of km3, tend to be related to mountainous reliefs such as fault scarps or thrust fronts. The western flank of the Precordillera in southern Peru and northern Chile is characterized by the presence of such mega-landslides. A good example is the Latagualla Landslide (19°15′S), composed of ~ 5.4 km3 of Miocene ignimbritic rock blocks located next to the Moquella Flexure, a structure resulting from the propagation of a west-vergent thrust blind fault that borders the Precordillera of the Central Depression. The landslide mass is very well preserved, allowing reconstitution of its movement and evolution in three main stages. The geomorphology of the landslide indicates that it preceded the incision of the present-day valleys during the late Miocene. Given the local geomorphological conditions 8–9 Ma ago (morphology, slopes and probably a high water table), large-magnitude earthquakes could have provided destabilization forces enough to cause the landslide. On the other hand, present seismic forces would not be sufficient to trigger such landslides; therefore the hazard related to them in the region is low.  相似文献   

6.
Lake Lisan, the lake that filled the Jordan graben during the Last Glacial, left behind a well developed sequence of erosional and depositional shore terraces in the south east of the current Dead Sea. These terraces record a series of stillstands that were caused by small transgressions within an overall trend of falling lake levels. The terraces were observed in places where they had not been identified previously. The morphology of the terraces was investigated in six cross-sections using differential GPS altimetry. The levels of the terraces range between − 370 and − 148 m a.s.l. The high stand of Lake Lisan at − 148 m correlates well with the high level of − 150 m reported by Bowman and Gross [Bowman, D., Gross, T., 1992. The highest stand of Lake Lisan: ~ 150 meters below MSL. Israel Journal of Earth-Science 41, 233–237.] along the western coast of Lake Lisan. The lake terraces are horizontal, elongated and tectonically undisturbed, and have a sub-horizontal foreshore (tread) with an average slope of 8.2° and steep backshore cliff (riser) with an average slope of 17.7°. The six cross-sections show a good altitudinal correlation between their terraces. Moreover, the terraces appear in undisturbed continuity on the aerial photos. These morphological characteristics demonstrate that the retreat of the lake was a result of substantial climatic changes, not of tectonic subsidence.In-situ stromatolites were found on most of the terraces, reflecting a shallow water environment and emphasizing that these terraces are recessional. Well-developed desert varnish and Tafoni observed on blocks sitting on the terrace surfaces imply a long period of exposure and a low rate of post lacustrine erosion. The formation of Lisan terraces is constrained mainly by coastal slope, water depth and underlying lithology. The morphological analysis of these terraces allows identification of two kinds of pseudo-terraces, which were formed as a result of tread or riser destruction.U/Th and OSL dating allowed the dating of three events within the lake level curve more precisely. The high level of − 148 m occurred at 30.5 ± 0.22 ka BP, consistent with the Heinrich Event 3 and Dansgaard–Oeschger stadial 5, the coldest period in the NGRIP Greenland Ice Core record. The next lower terrace at − 154 m was formed at 22.9 ka BP ± 0.29 and corresponds to the stadial 2C, the final phase of the Last High Glacial. The correlation between the Lisan high stands and climatic stadials suggests that Northern-Hemispheric cold periods led to periods with a more positive water balance in the Near East. At ~ 10 ± 0.8 ka BP Lake Lisan experienced a sharp drop to − 200 m followed by a transgression between 9.5 to 7 ka BP.  相似文献   

7.
Jansson and Glasser (Jansson, K.N., Glasser, N.F., 2008. Modification of peripheral mountain ranges by former ice sheets: the Brecon Beacons, southern UK. Geomorphology 97, 178–189.) have recently provided unconventional interpretations of selected glacial erosional and depositional landforms in the Brecon Beacons, UK, based on remotely sensed imagery. These new interpretations contradict well-established and reliable evidence for the origins and ages of certain glacial landforms of this upland area and elsewhere. They suggest that during a post-Last Glacial Maximum (LGM) ice-sheet event ice flowed up supposed, essentially “fluvial” valleys producing “glacial lineations” and depositing marginal moraines at the valley heads and on cirque floors. We argue that their interpretations of some key landforms are incorrect and that they have ignored much of the previous dating and field geomorphological evidence. Sedimentary and morphological evidence (e.g., lack of erratic content; convex planform with respect to the headwall; relatively large height range of moraines; and close association with headwall extent, height, and steepness) all indicate that higher level cirque-floor and valley-head moraines in the Brecon Beacons (> c. 400 m) were formed by cirque glaciers. Available dating evidence indicates a Younger Dryas age. We demonstrate that the supposed “fluvial” valleys, comprising trough heads with steep headwalls, have more nearly parabolic than V-shaped cross profiles indicating substantial glacial modification. Field evidence shows that proposed key exemplar post-LGM glacial lineations are in fact debris flow deposits. We conclude that whilst the adoption of a macroscale approach can shed new light on large-scale, ice-sheet movements, this approach should not be undertaken without consideration of the associated field evidence.  相似文献   

8.
In desert environments with low water and salt contents, rapid thermal variations may be an important source of rock weathering. We have obtained temperature measurements of the surface of rocks in hyper-arid hot and cold desert environments at a rate of 1/s over several days. The values of temperature change over 1-second intervals were similar in hot and cold deserts despite a 30 °C difference in absolute rock surface temperature. The average percentage of the time dT/dt > 2 °C/min was ~ 8 ± 3%, > 4 °C/min was 1 ± 0.9%, and > 8 °C/min was 0.02 ± 0.03%. The maximum change over a 1-second interval was ~ 10 °C/min. When sampled to simulate data taken over intervals longer than 1 s, we found a reduction in time spent above the 2 °C/min temperature gradient threshold. For 1-minute samples, the time spent above any given threshold was about two orders of magnitude lower than the corresponding value for 1-second sampling. We suggest that a rough measure of efficacy of weathering as a function of frequency is the product of the percentage of time spent above a given threshold value multiplied by the damping depth for the corresponding frequency. This product has a broad maximum for periods between 3 and 10 s.  相似文献   

9.
The Basin of Ubaté–Chichinquirá (5°28′N, 73°45′ W, c. 2580 m altitude) includes the Fúquene Valley and is located in the central part of the Eastern Cordillera of Colombia. Rocks and sediments were folded and faulted during the Miocene, uplifted during the (late) Pliocene, and affected by glaciers during the Pleistocene. Successive glacial and interglacial periods left significant marks in the landscape which were used to reconstruct six stages in the development of the landscape along a relative chronology. During early Pleistocene episode 1 glaciers formed U-shape valleys. Evidence of the impact of ice sheets has been found as far downslope as ca. 2900 m elevation. During episode 2 moraines developed which were cut by the present San José River. During episode 3 abundant sediment was produced by glacial erosion. It accentuated the sculpturing of hard rock and deepening of the drainage basin. The ancestral Ubaté–Suarez River constituted a dynamic erosive system that gave rise to deep V-shaped valleys and progressively formed a set of intricate valleys with a high sediment production. Finally, intense glacial and fluvio-glacial erosion led to a geomorphological system with high energy levels and intensive sediment transport leading to wide valleys. During episode 4 the Ubaté–Suarez River eroded and deepened its valley until it captured the old El Hato–San José Valley. It caused intense erosion of the moraine and the fluvio-glacial gravels. Deep V-shaped valleys stabilized in the high areas of the main drainage system and these valleys form the present-day fluvial sub-basins. During episode 5 the deep valley in the northern part of the Basin of Ubaté–Chichinquirá developed. During middle Pleistocene episode 6 colluvial sediments formed the Saboya dam and a lake was formed in the river valley of which the present Lake Fúquene is only a small remnant. Lithological changes indicate fluctuating water levels and Lake Fúquene must have expanded periodically up to an area 5 to 10 times the present-day surface.  相似文献   

10.
P.K. Haff   《Geomorphology》2007,91(3-4):178
An analogy between turbulent fluid systems and landscape drainage systems [Parker, G., Haff, P.K., Murray, A.B., 2001, EOS, Transactions of the American Geophysical Union, 82, pp. F564.] is suggested by the observation that transport in both systems can be approximated by diffusion with size-proportional effective diffusivities, with a cross-over at small scales to Fickian diffusion. The “landscape” Reynolds number of a typical fluvial landscape is estimated to be of order ReL 106 to 109, these large values reflecting the relative efficiency of fluvial transport compared to creep. ReL is the ratio of the large-scale effective diffusivity of rivers to the small-scale diffusivity of creep processes on hillslopes. The spatial dependence of the effective diffusivity produces rivers with logarithmic long-profiles, similar to the profiles of many rivers in nature, and analogous to the logarithmic dependence of mean fluid velocity on distance from a wall in turbulent flow. The landscape example suggests how other generalized “Reynolds numbers” can be constructed as ratios of large-scale to small-scale diffusivities to measure the efficiencies of complex processes that affect the surface. As an example, the global airline transportation network is estimated to have an efficacy relative to that of direct human mechanisms for transport of similar goods and materials of about 108 as measured by a corresponding “technology” Reynolds number. The appearance of such large dimensionless numbers, pertaining to the consequences of human invention and design, reflects the emergence of the technosphere as an increasingly efficient overlay on the historical domain of biology and surficial geology.  相似文献   

11.
Sediment supply provides a fundamental control on the morphology of river deltas, and humans have significantly modified these supplies for centuries. Here we examine the effects of almost a century of sediment supply reduction from the damming of the Elwha River in Washington on shoreline position and beach morphology of its wave-dominated delta. The mean rate of shoreline erosion during 1939–2006 is ~ 0.6 m/yr, which is equivalent to ~ 24,000 m3/yr of sediment divergence in the littoral cell, a rate approximately equal to 25–50% of the littoral-grade sediment trapped by the dams. Semi-annual surveys between 2004 and 2007 show that most erosion occurs during the winter with lower rates of change in the summer. Shoreline change and morphology also differ spatially. Negligible shoreline change has occurred updrift (west) of the river mouth, where the beach is mixed sand to cobble, cuspate, and reflective. The beach downdrift (east) of the river mouth has had significant and persistent erosion, but this beach differs in that it has a reflective foreshore with a dissipative low-tide terrace. Downdrift beach erosion results from foreshore retreat, which broadens the low-tide terrace with time, and the rate of this kind of erosion has increased significantly from ~ 0.8 m/yr during 1939–1990 to ~ 1.4 m/yr during 1990–2006. Erosion rates for the downdrift beach derived from the 2004–2007 topographic surveys vary between 0 and 13 m/yr, with an average of 3.8 m/yr. We note that the low-tide terrace is significantly coarser (mean grain size ~ 100 mm) than the foreshore (mean grain size ~ 30 mm), a pattern contrary to the typical observation of fining low-tide terraces in the region and worldwide. Because this cobble low-tide terrace is created by foreshore erosion, has been steady over intervals of at least years, is predicted to have negligible longshore transport compared to the foreshore portion of the beach, and is inconsistent with oral history of abundant shellfish collections from the low-tide beach, we suggest that it is an armored layer of cobble clasts that are not generally competent in the physical setting of the delta. Thus, the cobble low-tide terrace is very likely a geomorphological feature caused by coastal erosion of a coastal plain and delta, which in turn is related to the impacts of the dams on the Elwha River to sediment fluxes to the coast.  相似文献   

12.
Quantifying the extent to which geomorphic features can be used to extract tectonic signals is a key challenge in the Earth Sciences. Here we analyse the drainage patterns, geomorphic impact, and long profiles of bedrock rivers that drain across and around normal faults in a regionally significant oblique-extensional graben (Hatay Graben) in southern Turkey that has been mapped geologically, but for which there are poor constraints on the activity, slip rates and Plio–Pleistocene evolution of basin-bounding faults. We show that drainage in the Hatay Graben is strongly asymmetric, and by mapping the distribution of wind gaps, we are able to evaluate how the drainage network has evolved through time. By comparing the presence, size, and distribution of long profile convexities, we demonstrate that the northern margin of the graben is tectonically quiescent, whereas the southern margin is bounded by active faults. Our analysis suggests that rivers crossing these latter faults are undergoing a transient response to ongoing tectonic uplift, and this interpretation is supported by classic signals of transience such as gorge formation and hill slope rejuvenation within the convex reach. Additionally, we show that the height of long profile convexities varies systematically along the strike of the southern margin faults, and we argue that this effect is best explained if fault linkage has led to an increase in slip rate on the faults through time from  0.1 to 0.45 mm/yr. By measuring the average length of the original fault segments, we estimate the slip rate enhancement along the faults, and thus calculate the range of times for which fault acceleration could have occurred, given geological estimates of fault throw. These values are compared with the times and slip rates required to grow the documented long-profile convexities enabling us to quantify both the present-day slip rate on the fault (0.45 ± 0.05 mm/yr) and the timing of fault acceleration (1.4 ± 0.2 Ma). Our results have substantial implications for predicting earthquake hazard in this densely populated area (calculated potential Mw = 6.0–6.6), enable us to constrain the tectonic evolution of the graben through time, and more widely, demonstrate that geomorphic analysis can be used as an effective tool for estimating fault slip rates over time periods > 106 years, even in the absence of direct geodetic constraints.  相似文献   

13.
In this paper, we apply current geological knowledge on faulting processes to digital processing of Digital Elevation Models (DEM) in order to pinpoint locations of active faults. The analysis is based on semiautomatic interpretation of 20- and 60-m DEM and their products (slope, shaded relief). In Northern–Eastern Attica, five normal fault segments were recognized on the 20-m DEM. All faults strike WNW–ESE. The faults are from west to east: Thriassion (THFS), Fili (FIFS), Afidnai (AFFS), Avlon (AVFS), and Pendeli (PEFS) and range in length from 10 to 20 km. All of them show geomorphic evidence for recent activity such as prominent range-front escarpments, V-shaped valleys, triangular facets, and tilted footwall areas. However, escarpment morphometry and footwall geometry reveal systematic differences between the “external” segments (PEFS, THFS, and AVFS) and the “internal” segments (AFFS and FIFS), which may be due to mechanical interaction among segments and/or preexisting topography. In addition, transects across all five escarpments show mean scarp slope angles of 22.1°±0.7° for both carbonate and metamorphic bedrock. The slope angle equation for the external segments shows asymptotic behaviour with increasing height. We make an empirical suggestion that slope angle is a function of the long-term fault slip rate which ranges between 0.13 and 0.3 mm/yr. The identified faults may rupture up to magnitude 6.4–6.6 earthquakes. The analysis of the 60-m DEM shows a difference in fault patterns between Western and Northern Attica, which is related to crustal rheology variations.  相似文献   

14.
Piñon (Pinus edulis)-juniper (Juniperus monosperma)-ecosystems increased substantially in the western USA during the 20th century. Sustainability of these ecosystems primarily depends on soil quality and water availability. This study was undertaken with the objective of assessing the effect of tree species on soil physical quality in a semi-arid region in the western part of Sugarite Canyon, northeast of Raton, Colfax County, NM (37°56′32″N and 104°23′00″W) USA. Three cores and three bulk soil samples were obtained from the site under the canopy of three juniper, Gambel oak (Quercus gambelii) and piñon trees for 0–10 and 10–20 cm depths. These samples were analyzed for particle size distribution, soil bulk density (ρb), water stable aggregation (WSA), mean weight diameter (MWD) of aggregates, pH, electrical conductivity (EC) and soil organic carbon (SOC) and total nitrogen (TN) concentrations and stocks. Sand content was greater under juniper (48%) than oak (32%), whereas clay content followed the opposite trend. The ρb, WSA, MWD, pH and EC were similar under juniper, piñon, oak canopies for both depths. Estimated (from Philip and Green and Ampt infiltration models) and measured water infiltration parameters did not vary among these sites and were in accord with the values for ρb, WSA and MWD. The SOC concentrations and stocks were greater under oak (43.1 Mg ha−1 for 0–10 and 37.5 Mg ha−1 for 10–20 cm depths) than piñon (23.3 Mg ha−1 for 0–10 and 18.5 Mg ha−1 for 10–20 cm depths). The TN concentrations were greater under oak (3.4 g kg−1) than piñon (1.7 g kg−1) for the 0–10 cm depth only. Accumulation of detritus material under tree canopies reduced soil compaction and crusting caused by raindrop impact and increased SOC, and TN concentrations, and water infiltration. Coefficients of variation ranged from low to moderate for most soil properties except infiltration rate at 2.5 h, which was highly variable. Overall, soil quality for each site was good and soil aggregation, water infiltration and SOC concentrations were high, and soil ρb was low.  相似文献   

15.
In order to estimate the dynamic structure of the VLF ionospheric exit point, we conducted multipoint ground-based observation of the natural VLF emissions at three unmanned sites: West Ongul (69°01′ S, 39°30′ E), Skallen (69°40′ S, 39°24′ E), and H100 (69°18′ S, 41°19′ E) around Japanese Syowa station, Antarctica, during a whole year of 2006. In this observation, we developed three sets of unmanned autonomous observation systems for natural VLF emissions. Each observation system consists of two crossed vertical loop antennas to pick-up North–South (NS) and East–West (EW) magnetic components, a multi-channel analyzer, and a data logger. The intensity and polarization of NS and EW magnetic components are obtained in 4 spaced frequency (0.5, 1.0, 2.0, and 6.0 kHz) channels by the multi-channel analyzer.The VLF emissions observed at the three sites exhibit an interesting difference in the wave intensity as well as the polarization that allows important information about the locations of their ionospheric exit point to be determined. Firstly, to find the distinct exit point, we have theoretically calculated the spatial distributions of the wave intensity and the polarization on the Earth for VLF whistler mode waves coming down from the magnetized ionosphere, by using the full-wave analysis. Then, we have compared the calculated results with the observed data, to evaluate the possible locations of the ionospheric exit point for the auroral hiss events.As an example, the direction of the estimated ionospheric exit point for the auroral hiss event at 31 March 2006 was found to be consistent with a bright aurora region. However, in this case, the estimated ionospheric exit point was located a few hundred kilometers equatorward of the associated aurora. This would suggest that the ray paths for the auroral hiss could be different from the directions of the geomagnetic field lines for auroral precipitation.  相似文献   

16.
The role, function, and importance of large woody debris (LWD) in rivers depend strongly on environmental context and land use history. The coastal watersheds of central and northern Maine, northeastern U.S., are characterized by low gradients, moderate topography, and minimal influence of mass wasting processes, along with a history of intensive commercial timber harvest. In spite of the ecological importance of these rivers, which contain the last wild populations of Atlantic salmon (Salmo salar) in the U.S., we know little about LWD distribution, dynamics, and function in these systems. We conducted a cross-basin analysis in seven coastal Maine watersheds, documenting the size, frequency, volume, position, and orientation of LWD, as well as the association between LWD, pool formation, and sediment storage. In conjunction with these LWD surveys, we conducted extensive riparian vegetation surveys. We observed very low LWD frequencies and volumes across the 60 km of rivers surveyed. Frequency of LWD ≥ 20 cm diameter ranged from 15–50 pieces km− 1 and wood volumes were commonly < 10–20 m3 km− 1. Moreover, most of this wood was located in the immediate low-flow channel zone, was oriented parallel to flow, and failed to span the stream channel. As a result, pool formation associated with LWD is generally lacking and < 20% of the wood was associated with sediment storage. Low LWD volumes are consistent with the relatively young riparian stands we observed, with the large majority of trees < 20 cm DBH. These results strongly reflect the legacy of intensive timber harvest and land clearing and suggest that the frequency and distribution of LWD may be considerably less than presettlement and/or future desired conditions.  相似文献   

17.
T.C. Hales  J.J. Roering 《Geomorphology》2009,107(3-4):241-253
In the Southern Alps, New Zealand, large gradients in precipitation (< 1 to 12 m year− 1) and rock uplift (< 1 to 10 mm year− 1) produce distinct post-glacial geomorphic domains in which landslide-driven sediment production dominates in the wet, rapid-uplift western region, and rockfall controls erosion in the drier, low-uplift eastern region. Because the western region accounts for < 25% of the active orogen, the dynamics of erosion in the extensive eastern region are of equal importance in estimating the relative balance of uplift and erosion across the Southern Alps. Here, we assess the efficacy of frost cracking as the primary rockfall mechanism in the eastern Southern Alps using air photo and topographic analysis of scree slopes, cosmogenic radionuclide dating of headwalls, paleo-climate data, and a numerical model of headwall temperature. Currently, active scree slopes occur at a relatively uniform mean elevation ( 1450 m) and their distribution is independent of hillslope aspect and rock type, consistent with the notion that frost cracking (which is maximized between − 3 and − 8 °C) may control rockfall erosion. Headwall erosion rates of 0.3 to 0.9 mm year− 1, measured using in-situ 10Be and 26Al in the Cragieburn Range, confirm that rockfall erosion is active in the late Holocene at rates that roughly balance rock uplift. Models of the predicted depth of frost activity are consistent with the scale of fractures and scree blocks in our field sites. Also, vegetated, paleo-scree slopes are ubiquitous at elevations lower than active scree slopes, consistent with the notion that lower temperatures during the last glacial advance induced pervasive rockfall erosion due to frost cracking. Our modeling suggests temporally-averaged peak frost cracking intensity occurs at 2300 m a.s.l., the approximate elevation of the highest peaks in the central Southern Alps, suggesting that the height of these peaks may be limited by a “frost buzzsaw.”  相似文献   

18.
The Southern Alps of New Zealand are the topographic expression of active oblique continental convergence of the Australian and Pacific plates. Despite inferred high rates of tectonic and climatic forcing, the pattern of differential uplift and erosion remains uncertain. We use a 25-m DEM to conduct a regional-scale relief analysis of a 250-km long strip of the western Southern Alps (WSA). We present a preliminary map of regional erosion and denudation by overlaying mean basin relief, a modelled stream-power erosion index, river incision rates, historic landslide denudation rates, and landslide density. The interplay between strong tectonic and climatic forcing has led to relief production that locally attains 2 km in major catchments, with mean values of 0.65–0.68 km. Interpolation between elevations of major catchment divides indicates potential removal of l01–103 km3, or a mean basin relief of 0.51–0.85 km in the larger catchments. Local relief and inferred river incision rates into bedrock are highest about 50–67% of the distance between the Alpine fault and the main divide. The mean regional relief variability is ± 0.5 km.Local relief, valley cross-sectional area, and catchment width correlate moderately with catchment area, and also reach maximum values between the range front and the divide. Hypsometric integrals show scale dependence, and together with hypsometric curves, are insufficient to clearly differentiate between glacial and fluvial dominated basins. Mean slope angle in the WSA (ψ = 30°) is lower where major longitudinal valleys and extensive ice cover occur, and may be an insensitive measure of regional relief. Modal slope angle is strikingly uniform throughout the WSA (φ = 38–40°), and may record adjustment to runoff and landsliding. Both ψ and φ show non-linear relationships with elevation, which we attribute to dominant geomorphic process domains, such as fluvial processes in low-altitude valley trains, surface runoff and frequent landsliding on montane hillslopes, “relief dampening” by glaciers, and rock fall/avalanching on steep main-divide slopes.  相似文献   

19.
Knowledge of the long-term geomorphological dynamics of wetlands is limited, so currently there is an inadequate scientific basis for assessing anthropogenically induced changes and for developing conservation, remediation, and/or sustainable management guidelines for these fragile ecosystems. Along the upper Klip River, eastern South Africa, geomorphological and sedimentological investigations, geochronology, and remote sensing have been used to establish the late Quaternary dynamics of some internationally important floodplain wetlands, thus providing a reference condition against which to assess the extent of recent human impacts. Optically stimulated luminescence dating reveals that the wetlands have developed over at least the last 30 ky as a result of slow meander migration (< 0.2 m y− 1), irregular cutoff events, and infrequent avulsions (approximately one every 3–6 ky) that have occurred autogenically as a natural part of meander-belt development. Following European settlement in the Klip valley (late nineteenth century), however, modifications to local flora and fauna, as well as the initiation of local wetland drainage schemes, have had major impacts. In particular, proliferation of exotic willows and associated debris jams, and the artificial excavation of a 1.2-km-long channel section across the wetlands have initiated an ongoing avulsion that is characterised by failure (gradual abandonment) of the main channel and rapid incision of a headcutting channel. Compared to the pre-settlement condition, little change in lateral migration activity has occurred, but this avulsion provides a clear example of anthropogenically accelerated change, occurring only ~ 1 ky after the last natural avulsion and in a part of the wetlands where avulsions have not occurred previously. Subsequent human interventions have included installing weirs in an attempt to control the resulting erosion and promote reflooding, but ongoing maintenance has been required. In areas that were not glaciated during the Quaternary, many other floodplain wetlands may be of similar antiquity, but the Klip River illustrates their sensitivity to direct and indirect human impacts.  相似文献   

20.
The “Ewijkse Plaat” is a floodplain along the Waal River, NL. In 1988, the floodplain was excavated as part of a program for enlargement of the discharge capacity and was assigned as a nature rehabilitation area. This paper describes the combined geomorphological and vegetation evolution of the floodplain until 16 years after the initial excavation using elevation data and data on vegetation structure derived from detailed aerial stereographic imagery. The impact of these processes on flow velocity and water surface elevation was evaluated by using a hydraulic model. Within 16 years, the excavated amount of sediment was redeposited in the area. The dominant geomorphological process after excavation was vertical accretion of the floodplain which resulted in the formation of natural levees. The amount of sedimentation was correlated to the across-floodplain flow (R2 = 0.89). In the research period, 41% of the sedimentation took place during two single major flood events. The creation of pioneer stages by excavation promoted softwood forest establishment, which influenced the sedimentation pattern significantly. The landscape evolved toward structure-rich vegetation. Nine years after excavation the initial hydraulic gain was lost by the combined effect of sedimentation and vegetation succession. Implications for river and nature management are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号