首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The three-dimensional scattering of cnoidal waves by cylinder arrays are studied numerically by using the generalized Boussinesq equations. The boundary-fitted coordinate transformation and a dual-grid technique are used to simplify the finite-difference computation. Also, a set of open boundary conditions and an incident cnoidal wave are incorporated for time-domain simulation. The free-surface elevation and hydrodynamic forces on each cylinder are calculated to illustrate the evolution of nonlinear waves and their interactions with large cylinder arrays. Comparisons are made between the present nonlinear wave loads and those obtained from linear diffraction theory. The sheltering role played by the neighboring cylinders and the feature of wave interference are discussed.  相似文献   

2.
《Coastal Engineering》2001,42(2):155-162
It is studied whether the mass transport or energy transport is the proper viewpoint for internally generating waves in the extended Boussinesq equations of Nwogu [J. Waterw., Port, Coastal Ocean Eng. 119 (1993) 618–638]. Numerical solutions of the Boussinesq equations with the internal generation of sinusoidal waves show that the energy transport approach yields the required wave amplitude properly while the mass transport approach yields wave amplitude different from the required one by the ratio of phase velocity to energy velocity. The waves which pass through the wave generation point do not cause any numerical distortion while the incident waves are generated. The technique of internal generation of waves shows its capability of generating nonlinear cnoidal waves as well as linear sinusoidal waves.  相似文献   

3.
A Boussinesq model for simulating wave and current interaction   总被引:1,自引:0,他引:1  
A new formulation of a pair of Boussinesq equations for three-dimensional nonlinear dispersive shallow-water waves is presented. This set of model equations permits spatial and temporal variations of the bottom topography and the presence of uniform currents. The newly derived equations are used to simulate the propagation of cnoidal waves and their interactions with a uniform current in a wave channel. The modified Euler's predictor-corrector algorithm for time advancing and a central difference representation for the space derivatives are applied to the computation of the basic equations. A set of open boundary conditions is developed to effectively transmit the cnoidal waves out of the computational domain. It is found that, as expected, the wave length decreases with an opposing current and increases with a following current. The wave height increases in magnitude with an opposing current and decreases with a following current. The Mach reflection due to oblique cnoidal waves propagating into an open channel with an opposing current is also investigated. Due to the opposing current, the wave patterns are compressed into smaller saddle-like regions in comparison with the Mach reflection without current effect.  相似文献   

4.
This paper addresses a numerical investigation of nonlinear waves interactions with an array of two surface-piercing vertical cylinders and the corresponding nonlinear hydrodynamic loads on each individual cylinder. The primary interest of this study is concentrated on the problem of three-dimensional scattering of solitary waves by cylinder arrays and the nonlinear interactions between scattered waves. The theoretical model adopted for simulation is the generalized Boussinesq two-equation model. The boundary-fitted coordinate transformation and multiple-grid technique are utilized here to simplify the computation domain and to facilitate the applications of the boundary conditions on the cylinder surfaces. The velocity potential, free-surface elevation and subsequent evolution of the scattered wave field are numerically evaluated. The hydrodynamic forces on each cylinder during wave impact are also determined. A study of the sheltering effect by the neighboring structures on wave loads is conducted. It is found that the presence of the neighboring cylinder has shown significant influence on the wave loads and the scattering of the primary incident waves. For two transversely arranged cylinders, the transverse force coefficient increases as the separation distance decreases.  相似文献   

5.
波浪与大孔隙多孔介质相互作用的耦合数学模型   总被引:1,自引:0,他引:1  
建立了波浪与大孔隙多孔介质相互作用的耦合数学模型,波浪域的控制方程为雷诺时均方程和k-ε紊流模型。对于计算域的入射波采用推板式造波,它可以是线性波、椭圆余弦波和孤立波。采用PLIC-VOF法追踪波浪自由表面。对于多孔介质内的孔隙流场采用非线性Forchheimer方程,两区域共享连续方程,最后导出的波浪域与孔隙流域的压力修正方程具有完全相同的形式,利用这个方程能够同时而不是分别求解波浪场和孔隙流场,避免了在内部边界上给定匹配条件,实现了波浪场与孔隙流场的同步耦合。波浪与粗颗粒海床、平底床面上抛石潜堤及斜坡上抛石潜堤相互作用的验证计算结果表明该模型可用于研究波浪与大孔隙多孔介质相互作用的问题。  相似文献   

6.
A finite element model of Boussinesq-type equations was set up, and a direct numerical method is proposed so that the full reflection boundary condition is exactly satisfied at a curved wall surface. The accuracy of the model was verified in tests. The present model was used to further examine cnoidal wave propagation and run-up around the cylinder. The results showed that the Ursell number is a nonlinear parameter that indicates the normalized profile of cnoidal waves and has a significant effect on the wave run-up. Cnoidal waves with the same Ursell number have the same normalized profile, but a difference in the relative wave height can still cause differences in the wave run-up between these waves. The maximum dimensionless run-up was predicted under various conditions. Cnoidal waves hold entirely distinct properties from Stokes waves under the influence of the water depth, and the nonlinearity of cnoidal waves enhances rather than weakens with increasing wavelength. Thus, the variations in the maximum run-up with the wavelength for cnoidal waves are completely different from those for Stokes waves, and there are even significant differences in the variation between different cnoidal waves.  相似文献   

7.
This study investigates stem waves, propagating along a vertical wall, due to obliquely incident random waves through laboratory experiments and numerical simulations. Attention is paid to the difference or similarity between the stem waves due to periodic waves and random waves, the nonlinear and linear characteristics, and the effect of wave breaking on the evolution of stem waves. The following were found from this study: as the incident angle of waves become large or the nonlinearity of the incident waves become small, the significant stem wave height, normalized by the incident significant wave height, becomes large. This tendency is the same as that generated by the Stokes waves or cnoidal waves. However, regardless of the nonlinearity of incident waves, the width of stem waves is almost the same. This is a different point between the stem waves due to periodic and random waves. The wave breaking suppresses the growth of the stem waves.  相似文献   

8.
If the upstream boundary conditions are prescribed based on the incident wave only, the time-dependent numerical models cannot effectively simulate the wave field when the physical or spurious reflected waves become significant. This paper describes carefully an approach to specifying the incident wave boundary conditions combined with a set sponge layer to absorb the reflected waves towards the incident boundary. Incorporated into a time-dependent numerical model, whose governing equations are the Boussinesq-type ones, the effectiveness of the approach is studied in detail. The general boundary conditions, describing the down-wave boundary conditions are also generalized to the case of random waves. The numerical model is in detail examined. The test cases include both the normal one-dimensional incident regular or random waves and the two-dimensional oblique incident regular waves. The calculated results show that the present approach is effective on damping the reflected waves towards the incident wave boundary.  相似文献   

9.
The vegetation has important impacts on coastal wave propagation. In the paper, the sensitivities of coastal wave attenuation due to vegetation to incident wave height, wave period and water depth, as well as vegetation configurations are numerically studied by using the fully nonlinear Boussinesq model. The model is based on the implementation of drag resistances due to vegetation in the fully nonlinear Boussinesq equation where the drag resistance is provided by the Morison’s formulation for rigid structure induced drag stresses. The model is firstly validated by comparing with the experimental results for wave propagation in vegetation zones. Subsequently, the model is used to simulate waves with different height, period propagating on vegetation zones with different water depth and vegetation configurations. The sensitivities of wave attenuation to incident wave height, wave period, water depth, as well as vegetation configurations are investigated based on the numerical results. The numerical results indicate that wave height attenuation due to vegetation is sensitive to incident wave height, wave period, water depth, as well as vegetation configurations, and attenuation ratio of wave height is increased monotonically with increases of incident wave height and decreases of water depth, while it is complex for wave period. Moreover, more vegetation segments can strengthen the interaction of vegetation and wave in a certain range.  相似文献   

10.
基于FLUENT软件建立数值波浪水槽,研究椭圆余弦内波及其对墩柱的作用。椭圆余弦内波的生成采用推板造波方法,自由面捕获采用VOF方法。首先,模拟了椭圆余弦内波的生成,比较了不同周期和波高下椭圆余弦内波的波浪形态。然后,在特定的周期和波高条件下模拟了三维椭圆余弦内波对单个墩柱及多个敦柱的作用;分析了各墩柱上受到的惯性力和粘性力的变化趋势,并对不同墩柱下的总波浪力进行了对比;得出了墩柱上受到的波浪力也呈现周期性变化并且在波浪前进方向上后墩柱的受力小于靠前墩柱的结论。  相似文献   

11.
《Coastal Engineering》2005,52(6):497-511
A weakly non-linear Boussinesq model with a slot-type shoreline boundary is used to simulate swash oscillations on beaches. Numerical simulations of swash were compared with laboratory measurements and in general good agreement found (less than 15% root-mean-square error of surface elevation except in regular waves). A series of numerical experiments on shoreline movement were then performed for a range of beach slopes and incident wave conditions. The resulting swash characteristics are then discussed in terms of their physical nature and spectral properties. On steep slopes, both individual bores and infragravity waves are equally significant in driving the swash while infragravity waves alone drive them on mild slopes. Swash excursions on any given slope are found to be highest when individual bores from a partially saturated surf zone ride on top of low-frequency waves. This is confirmed by the relationship found between swash excursion and wave groupiness in the surf zone. Swash excursions increase with increasing incident wave energy, even in fully saturated surf zones. However, a poor correlation is found between swash excursion and the surf similarity parameter due to the involvement of infragravity wave energy in the swash.  相似文献   

12.
The three-dimensional numerical model with σ-coordinate transformation in the vertical direction is applied to the simulation of surface water waves and wave-induced laminar boundary layers. Unlike most of the previous investigations that solved the simplified one-dimensional boundary layer equation of motion and neglected the interaction between boundary layer and outside flow, the present model solves the full Navier–Stokes equations (NSE) in the entire domain from bottom to free surface. A non-uniform mesh system is used in the vertical direction to resolve the thin boundary layer. Linear wave, Stokes wave, cnoidal wave and solitary wave are considered. The numerical results are compared to analytical solutions and available experimental data. The numerical results agree favorably to all of the experimental data. It is found that the analytical solutions are accurate for both linear wave and Stokes wave but inadequate for cnoidal wave or solitary wave. The possible reason is that the existing analytical solutions for cnoidal and solitary waves adopt the first-order approximation for free stream velocity and thus overestimate the near bottom velocity. Besides velocity, the present model also provides accurate results for wave-induced bed shear stress.  相似文献   

13.
In this paper, the recent development in modeling seabed dissipative mechanisms in shallow water is reviewed. Specifically, laminar and turbulent boundary layer solutions as well as viscous mud flow solutions under transient waves are presented. These analytical solutions are compared with experimental data for both solitary waves and cnoidal waves. Very goed agreement is ohtained. The Boussinesq equations with boundary layer effects and the muddy seabed effects are also shown.  相似文献   

14.
波浪水槽中非线性浅水波传播特性与模拟   总被引:2,自引:0,他引:2  
通过建立解析解、进行数值模拟和物理实验,研究了波浪水槽中非线性浅水波浪传播特性,给出了数值模拟中对应造波板做正弦运动的二阶入射边界条件。数值模拟采用高阶Boussinesq方程。实验结果、数值结果和解析解进行对比,并讨论了解析解的适用范围、高次谐波的产生及三波相互作用问题。  相似文献   

15.
This is the second of three papers on the modelling of various types of surf zone phenomena. In the first paper the general model was described and it was applied to study cross-shore motion of regular waves in the surf zone. In this paper, part II, we consider the cross-shore motion of wave groups and irregular waves with emphasis on shoaling, breaking and runup as well as the generation of surf beats. These phenomena are investigated numerically by using a time-domain Boussinesq type model, which resolves the primary wave motion as well as the long waves. As compared with the classical Boussinesq equations, the equations adopted here allow for improved linear dispersion characteristics and wave breaking is modelled by using a roller concept for spilling breakers. The swash zone is included by incorporating a moving shoreline boundary condition and radiation of short and long period waves from the offshore boundary is allowed by the use of absorbing sponge layers. Mutual interaction between short waves and long waves is inherent in the model. This allows, for example, for a general exchange of energy between triads rather than a simple one-way forcing of bound waves and for a substantial modification of bore celerities in the swash zone due to the presence of long waves. The model study is based mainly on incident bichromatic wave groups considering a range of mean frequencies, group frequencies, modulation rates, sea bed slopes and surf similarity parameters. Additionally, two cases of incident irregular waves are studied. The model results presented include transformation of surface elevations during shoaling, breaking and runup and the resulting shoreline oscillations. The low frequency motion induced by the primary-wave groups is determined at the shoreline and outside the surf zone by low-pass filtering and subsequent division into incident bound and free components and reflected free components. The model results are compared with laboratory experiments from the literature and the agreement is generally found to be very good. Finally the paper includes special details from the breaker model: time and space trajectories of surface rollers revealing the breakpoint oscillation and the speed of bores; envelopes of low-pass filtered radiation stress and surface elevation; sensitivity of surf beat to group frequency, modulation rate and bottom slope is investigated. Part III of this work (Sørensen et al., 1998) presents nearshore circulations induced by the breaking of unidirectional and multi-directional waves.  相似文献   

16.
An array of large concentric porous cylinder arrays is mounted in shallow water exposed to cnoidal waves. The interactions between waves and cylinders are studied theoretically using an eigenfunction expansion approach. Semi-analytical solutions of hydrodynamic loads and wave run-up on each cylinder are obtained using first approximation to cnoidal waves. The square array configuration of four-legged identical concentric porous cylinder is investigated in present study. Numerical results reveal the variation of dimensionless wave force and wave run-up on individual cylinder with angle of incidence, porosity parameter, spacing between outer and inner cylinders, spacing between concentric porous cylinders and wave parameter. Different mechanism of wave force is found under different range of scattering parameter.  相似文献   

17.
A Numerical Model for Nonlinear Wave Propagation on Non-uniform Current   总被引:3,自引:0,他引:3  
On the basis of the new type Boussinesq equations (Madsen et al.,2002),a set of equations explicitly including the effects of currents on waves are derived.A numerical implementation of the present equations in one dimension is described.The numerical model is tested for wave propagation in a wave flume of uniform depth with current present.The present numerical results are compared with those of other researchers.It is validated that the present numerical model can reasonably reflect the nonlinear influences of currents on waves.Moreover,the effects of inputting different incident boundary conditions on the calculated results are studied.  相似文献   

18.
港口中系泊船在波浪作用下运动问题的本质是浅水波浪与浮体的相互作用。与深水情况不同,浅水问题应当考虑水底、水域边界的影响及浅水波浪自身的特性,单一模型很难实现该模拟过程。为此,建立了Boussinesq方程计算入射波和Laplace方程计算散射波的全时域组合计算模型。有限元法求解的Boussinesq方程能使入射波充分考虑到水底、水域边界的影响和浅水波浪的特性;散射波被线性化,采用边界元法求解,并以浮体运动时的物面条件为入射波和散射波求解的匹配条件。该方法为完全的时域方法,计算网格不随时间变动,计算过程较为方便。通过与实验及其他数值方法的结果进行比较,验证了本模型对非线性波面、浮体的运动都有比较理想的计算结果,显示了本模型对非线性问题具有较好的计算能力。  相似文献   

19.
An empirical modification to the Airy equation for wave celerity reduces to the expression for solitary waves in shallow water whilst retaining its usual form for deep water. The equation yields celerities in reasonable agreement with those for cnoidal waves in intermediate water depths. In this aspect, it is similar to the work described by Le Roux [Le Roux, J.P., 2007. A function to determine wavelength from deep into shallow water based on the length of the cnoidal wave at breaking. Coastal Engineering 54, 770–774]. The empirical modification has been widely applied in computer programs over the past 30 years.  相似文献   

20.
三维极限波的产生方法及特性   总被引:11,自引:2,他引:9  
柳淑学  洪起庸 《海洋学报》2004,26(6):133-142
极限破碎波浪是造成海洋结构物破坏的主要因素之一,对极限波浪的产生方法和特性进行研究具有重要的工程意义.利用长波传播快、短波传播慢的原理,从理论上给出了产生三维极限波的方法,利用基于Boussinesq方程的数值模拟对该方法进行了验证,同时研究了中心频率、频率宽度和频谱形式等对极限波浪特性的影响,为该方法的进一步应用提出了建议.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号