首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reflection/transmission laws (R/T laws) of plane waves at a plane interface between two homogeneous anisotropic viscoelastic (dissipative) halfspaces are discussed. Algorithms for determining the slowness vectors of reflected/transmitted plane waves from the known slowness vector of the incident wave are proposed. In viscoelastic media, the slowness vectors of plane waves are complex-valued, p = P + iA, where P is the propagation vector, and A the attenuation vector. The proposed algorithms may be applied to bulk plane waves (A = 0), homogeneous plane waves (A0, P and A parallel), and inhomogeneous plane waves (A0, P and A non-parallel). The manner, in which the slowness vector is specified, plays an important role in the algorithms. For unrestricted anisotropy and viscoelasticity, the algorithms require an algebraic equation of the sixth degree to be solved in each halfspace. The degree of the algebraic equation decreases to four or two for simpler cases (isotropic media, plane waves in symmetry planes of anisotropic media). The physical consequences of the proposed algorithms are discussed in detail. vcerveny@seis.karlov.mff.cuni.cz  相似文献   

2.
Based on the uU formulation of Biot equation and the assumption of zero permeability coefficient, a viscous-spring transmitting boundary which is frequency independent is derived to simulate the cylindrical elastic wave propagation in unbounded saturated porous media. By this viscous-spring boundary the effective stress and pore fluid pressure on the truncated boundary of the numerical model are replaced by a set of spring, dashpot and mass elements, and its simplified form is also given. A uU formulation FEA program is compiled and the proposed transmitting boundaries are incorporated therein. Numerical examples show that the proposed viscous-spring boundary and its simplified form can provide accurate results for cylindrical elastic wave propagation problems with low or intermediate values of permeability or frequency content. For general two dimensional wave propagation problems, spuriously reflected waves can be greatly suppressed and acceptable accuracy can still be achieved by placing the simplified boundary at relatively large distance from the wave source.  相似文献   

3.
This work examines the propagation of time harmonic, horizontally polarized shear waves through a naturally occurring heterogeneous medium that exhibits viscous behaviour as well as random fluctuations of its elastic modulus about a mean value. As a first step, the governing equation, which is a heterogeneous Helmholtz equation, is solved using algebraic transformations and the relevant Green's function is obtained for two sets of boundary conditions, one corresponding to a finite depth layer and the other to an infinite layer. Viscous material behaviour is introduced by considering the depth-dependent elastic modulus to be a complex quantity. Subsequently, material stochasticity in the medium is handled through the perturbation approach by assuming that the elastic modulus has a small random fluctuation about its mean value. The final results are closed-form expressions for the mean value and covariance matrix of both the wave speed profile in the medium and the corresponding Green's function. In Part II, (Soil Dynam. Earth. Engng, 1996,15, 129-39), two examples concerning seismic wave propagation in soft topsoil and in sandstone serve to illustrate the methodology and comparisons are made with Monte Carlo simulations.  相似文献   

4.
This article provides the application of the high-order, staggered-grid, finite-difference scheme to model elastic wave propagation in 3-D isotropic media. Here, we use second-order, temporal-and high-order spatial finite-difference formulations with a staggered grid for discretization of the 3-D elastic wave equations of motion. The set of absorbing boundary conditions based on paraxial approximations of 3-D elastic wave equations are applied to the numerical boundaries. The trial resuits for the salt model show that the numerical dispersion is decreased to a minimum extent, the accuracy high and diffracted waves abundant. It also shows that this method can be used for modeling wave propagation in complex media with the lateral variation of velocity.  相似文献   

5.
为了研究黏弹介质中VSP地震勘探地震波的波场特征,在理论分析地震波在黏弹介质中传播特性的基础上,采用高斯射线束方法对黏弹介质VSP地震进行波场正演模拟.正演结果与各向同性介质及VTI介质VSP正演对比,体现了地震波在黏弹介质中传播的特点.同时VSP高斯束正演方法能够解决复杂构造正演盲区问题,其动力学特征更能反映黏弹介质对地震波传播的影响,计算速度又优于波动方程类正演方法,正演结果能有效分辨地震波场特征,为VSP数据处理与解释提供了借鉴.  相似文献   

6.
ABSTRACT

An accurate comprehension of celerity (flood wave speed) dynamics is a key step for understanding flood wave propagation in rivers. We present the results of empirically estimated celerity values in 12 Brazilian rivers, and analyse the behaviour of celerity–discharge relationships (CxQ). Celerity was estimated with a reach-scale (RS) method, based on the peak travel time between stations; and with a local-scale (LS) method, based on the derivative of discharge–cross-section area relationships surveyed at gauging stations. The results indicate that the magnitudes of celerity values obtained by the methods are reasonably comparable, and can rarely be considered constant, varying with river discharge. Three reaches presented differing CxQ relationships at local and reach scales, which suggests that in situ cross-sections at gauging stations should not be extrapolated as representative of the whole reach for flood routing studies, and that CxQ relationship assessments might provide relevant insights for hydrological modelling.  相似文献   

7.
The multi-axial perfectly matched layer (M-PML) is a material boundary condition for wave propagation problems in unbounded domains. It is obtained by extending the formulation of the split-field perfectly matched layer to a more general absorptive medium, for which damping profiles are specified along all dimensions of the problem. Under the hypothesis of small damping, it has been demonstrated that the stability of the system of partial differential equations of the M-PML can be related to the ratio of the damping profiles, and stable M-PML terminations for isotropic and orthotropic elastic media have been constructed. In the present work, we use the Routh–Horwitz determinants to demonstrate that the conclusions regarding the stability of M-PML for isotropic media for small damping are in fact valid for the more general case of damping coefficients of any (positive) value. The effectiveness of the M-PML is demonstrated by constructing stable terminations for the abovementioned media. The stability analysis is presented for 2-D in-plane (P-SV) wave propagation in elastic isotropic continua.  相似文献   

8.
9.
Abstract

We deduce the dissipative Alfvén wave equation in a medium stratified in one direction, with a transverse magnetic field, in the presence of dissipation by fluid viscosity and electrical resistance; the dissipative Alfvén wave equation generalizes earlier results for homogeneous (Cowling, 1960) and inhomogeneous (Campos, 1983a) media, and corrects an error in the literature (Heyvaerts and Priest, 1983). The wave equation is solved exactly in two cases: a uniform magnetic field, and a magnetic field decreasing with height. In both cases the mean state is assumed to be isothermal, with a constant rate of ionization, so that the magnetic diffusivity is constant, but the dynamic viscosity increases with height. There are therefore two regions, a low- (high-) altitude region where electrical resistance dominates fluid viscosity (or vice versa), and an asymptotic regime relevant to the uppermost (lowermost) layers. The two regions are separated by a transition layer, across which the wave field is continuous and whose structure is expressible by hypergeometric functions, with different arguments in the low- and high-altitude regions, and over the whole altitude range. These exact solutions allow the amplitude and phase of the wave field to be plotted as a function of height for a variety of magnetoatmospheric mean states. They show that wave dissipation is more localized and intense when the magnetic field decreases with height than when it is uniform.  相似文献   

10.
The subsurface media are not perfectly elastic, thus anelastic absorption, attenuation and dispersion (aka Q filtering) effects occur during wave propagation, diminishing seismic resolution. Compensating for anelastic effects is imperative for resolution enhancement. Q values are required for most of conventional Q-compensation methods, and the source wavelet is additionally required for some of them. Based on the previous work of non-stationary sparse reflectivity inversion, we evaluate a series of methods for Q-compensation with/without knowing Q and with/without knowing wavelet. We demonstrate that if Q-compensation takes the wavelet into account, it generates better results for the severely attenuated components, benefiting from the sparsity promotion. We then evaluate a two-phase Q-compensation method in the frequency domain to eliminate Q requirement. In phase 1, the observed seismogram is disintegrated into the least number of Q-filtered wavelets chosen from a dictionary by optimizing a basis pursuit denoising problem, where the dictionary is composed of the known wavelet with different propagation times, each filtered with a range of possible values. The elements of the dictionary are weighted by the infinity norm of the corresponding column and further preconditioned to provide wavelets of different values and different propagation times equal probability to entry into the solution space. In phase 2, we derive analytic solutions for estimates of reflectivity and Q and solve an over-determined equation to obtain the final reflectivity series and Q values, where both the amplitude and phase information are utilized to estimate the Q values. The evaluated inversion-based Q estimation method handles the wave-interference effects better than conventional spectral-ratio-based methods. For Q-compensation, we investigate why sparsity promoting does matter. Numerical and field data experiments indicate the feasibility of the evaluated method of Q-compensation without knowing Q but with wavelet given.  相似文献   

11.
应用混合变量弹性动力学方程和线性常微分方程组的矩阵指数解法,将层状介质中广泛应用的弹性波传播矩阵解法推广至横向非均匀介质,给出了一种可计算复杂地质体中弹性波传播的广义传播矩阵数值解法。该方法可模拟任意震源及所产生的各种体波、面波,数值结果表明具有很高的计算精度。  相似文献   

12.
In viscoelastic media, the slowness vector p of plane waves is complex-valued, p = P + iA. The real-valued vectors P and A are usually called the propagation and the attenuation vector, repectively. For P and A nonparallel, the plane wave is called inhomogeneousThree basic approaches to the determination of the slowness vector of an inhomogeneous plane wave propagating in a homogeneous viscoelastic anisotropic medium are discussed. They differ in the specification of the mathematical form of the slowness vector p. We speak of directional specification, componental specification and mixed specification of the slowness vector. Individual specifications lead to the eigenvalue problems for 3 × 3 or 6 × 6 complex-valued matrices.In the directional specification of the slowness vector, the real-valued unit vectors N and M in the direction of P and A are assumed to be known. This has been the most common specification of the slowness vector used in the seismological literature. In the componental specification, the real-valued unit vectors N and M are not known in advance. Instead, the complex-valued vactorial component p of slowness vector p into an arbitrary plane with unit normal n is assumed to be known. Finally, the mixed specification is a special case of the componental specification with p purely imaginary. In the mixed specification, plane represents the plane of constant phase, so that N = ±n. Consequently, unit vector N is known, similarly as in the directional specification. Instead of unit vector M, however, the vectorial component d of the attenuation vector in the plane of constant phase is known.The simplest, most straightforward and transparent algorithms to determine the phase velocities and slowness vectors of inhomogeneous plane waves propagating in viscoelastic anisotropic media are obtained, if the mixed specification of the slowness vector is used. These algorithms are based on the solution of a conventional eigenvalue problem for 6 × 6 complex-valued matrices. The derived equations are quite general and universal. They can be used both for homogeneous and inhomogeneous plane waves, propagating in elastic or viscoelastic, isotropic or anisotropic media. Contrary to the mixed specififcation, the directional specification can hardly be used to determine the slowness vector of inhomogeneous plane waves propagating in viscoelastic anisotropic media. Although the procedure is based on 3 × 3 complex-valued matrices, it yields a cumbersome system of two coupled equations.  相似文献   

13.
This paper presents a new analysis method, called macro–micro analysis method (MMAM) for numerical simulation of wave propagation in stochastic media, which could be used to predict distribution of earthquake strong motion with high accuracy and spatial resolution. This MMAM takes advantage of the bounding medium theory (BMT) and the singular perturbation expansion (SPE). BMT can resolve uncertainty of soil and crust structures by obtaining optimistic and pessimistic estimates of expected strong motion distribution. SPE leads to efficient multi‐scale analysis for reducing a huge amount of computation. The MMAM solution is given as the sum of waves of low resolution covering a whole city and waves of high resolution for each city portion. This paper presents BMT and SPE along with the formulation of MMAM for wave propagation in three‐dimensional elastic media. Application examples are presented to verify the validity of the MMAM and demonstrate potential usefulness of this approach. In a companion paper (Earthquake Engng. Struct. Dyn., this issue) application examples of earthquake strong motion prediction are also presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Based on the modified Biot's theory of two-phase porous media, a study was presented on seismic reflection and transmission coefficients at an air-water interface of saturated porous soil media. The major differences between air-saturated soils and water-saturated soils were theoretically discussed, and the theoretical formulas of reflection and transmission coefficients at an air-water interface were derived. The characteristics of propagation and attenuation of elastic waves in air-saturated soils were given and the relations among the frequency, the angle of incidence and the reflection, transmission coefficients were analyzed by using numerical methods. Numerical results show that the propagation characteristic of the wave in air-saturated soils is great different from that in water-saturated soils. The frequency and the angle of incidence can have great influences on the reflection and transmission coefficients at interface. Some new cognition about the wave propagation is obtained and the study suggests that we may carefully pay attention to the influence of air on the dynamic analysis of seismic wave.  相似文献   

15.
Basic ideas of the causal approach to wave propagation in random media are first overviewed. This approach appeals from the outset to the linearity, causality, and passivity of the effective medium and is therefore particularly simple from the conceptual viewpoint. The energy analysis and the Kramers-Kronig relations play the major role in this method, which does not resort to ensemble averaging.Then the dispersion of plane wave propagation in randon media is evaluated by extending Wu's results on attenuation induced by scattering. These results are particularly suitable for seismic waves, for which the so-called mean-field approach may not provide adequate modeling. The presence of intrinsic losses is also incorporated. The analysis also includes the case of propagation of a small-amplitude discontinuity.  相似文献   

16.
为了研究黏弹VTI介质井间地震波的波场特征,理论分析地震波在黏弹VTI介质中传播特性的基础上,编程实现高斯射线束方法对黏弹VTI介质井间地震波场的正演模拟.为将黏弹VTI介质和完全弹性各向同性介质正演记录进行对比,将黏弹VTI介质的黏弹性参数和各向异性参数设定为零,得到完全弹性各向同性介质下的正演结果.两种介质正演结果对比显示的差异与地震波理论完全一致,证明了所研究的黏弹VTI介质井间地震高斯束正演数值模拟的正确性,为井间地震复杂介质地震波场研究提供了借鉴.  相似文献   

17.
Anisotropy is often observed due to the thin layering or aligned micro‐structures, like small fractures. At the scale of cross‐well tomography, the anisotropic effects cannot be neglected. In this paper, we propose a method of full‐wave inversion for transversely isotropic media and we test its robustness against structured noisy data. Optimization inversion techniques based on a least‐square formalism are used. In this framework, analytical expressions of the misfit function gradient, based on the adjoint technique in the time domain, allow one to solve the inverse problem with a high number of parameters and for a completely heterogeneous medium. The wave propagation equation for transversely isotropic media with vertical symmetry axis is solved using the finite difference method on the cylindrical system of coordinates. This system allows one to model the 3D propagation in a 2D medium with a revolution symmetry. In case of approximately horizontal layering, this approximation is sufficient. The full‐wave inversion method is applied to a crosswell synthetic 2‐component (radial and vertical) dataset generated using a 2D model with three different anisotropic regions. Complex noise has been added to these synthetic observed data. This noise is Gaussian and has the same amplitude f?k spectrum as the data. Part of the noise is localized as a coda of arrivals, the other part is not localized. Five parameter fields are estimated, (vertical) P‐wave velocity, (vertical) S‐wave velocity, volumetric mass and the Thomsen anisotropic parameters epsilon and delta. Horizontal exponential correlations have been used. The results show that the full‐wave inversion of cross‐well data is relatively robust for high‐level noise even for second‐order parameters such as Thomsen epsilon and delta anisotropic parameters.  相似文献   

18.
The concept of attenuation operators and complex velocities is applied to scattering attenuation in two and three dimensions, using the minimum-phase assumption for the attenuation operator. Acoustic 2D finite-difference computations of synthetic seismograms show, that the attenuation operator describes well the decay and lowpass filtering of the averaged wave form, which follows from averaging travel-time-corrected wave forms along the wave front. In the case of exponential random media, analytical forms of the attenuation operators and complex velocities are available. The complex velocities are incorporated into the reflectivity method. As an application, synthetic seismograms are presented for theS n wave, attenuated by lithospheric velocity and density fluctuations. The limitations of attenuation operators and complex velocities for scattering are also discussed. With these quantities it is not possible to model phenomena related to the scattered waves themselves, such as amplitude and travel-time fluctuations along the wave front, codas and precursors.  相似文献   

19.
Abstract

We discuss the propagation of internal waves in a rotating stratified unbounded fluid with randomly varying stability frequency, N. The first order smoothing approximation is used to derive the dispersion relation for the mean wave field when N is of the form N 2 = N o 2(1 + ?μ), where μ is a centered stationary random function of either depth (z) or time (t), N o = constant and O < ?2 ≦ 1. Expressions are then derived for the change in phase speed and growth rate due to the random fluctuations μ; in particular, attention is focused on the behaviour of these expressions for short and long correlation lengths (case μ = μ(z)) and times (case μ = μ(t)). For the case μ = μ(z), which represents a model for the temperature and salinity fine-structure in the ocean, the appropriate statistics of the fluctuations observed at station P (50°N, 145°W) have been incorporated into the theory to estimate the actual importance of the effects due to these random fluctuations. It is found that the phase speed of the mean wave decreases significantly if (i) the wavelength is short compared to g/No 2 or (ii) the wave number vector is essentially horizontal and the wave frequency is very close to N o. Also, the random fluctuations cause a significant growth (decay) in the amplitude of a wave propagating upwards (downwards) through a depth of a few kilometers. However, in the direction of energy propagation, the kinetic energy is conserved. Finally, it is shown that the average effect of the depth dependent fluctuations at station P is to slightly decrease the stability frequency and the magnitude of the group velocity.  相似文献   

20.
Source parameters and characteristics of regional attenuation of Tangshan aftershocks are studied by using digital records of Tangshan aftershocks. An inversion method of P wave spectra to reduce influence on the ambiguity in the estimates of parameters by the usual spectrum analysis method is developed. By testing with digital simulation data and applying to actual data, it is confirmed that the method is usable. Source parameters of the Tangshan Luanxian area are obtained by using records of 35 earthquakes at 5 stations.Q values of P wave and high frequency decay rate γ of source spectrum at 5 stations are obtained. TheQ values range from 408 to 847, and the mean value is 520; whiley ranges from 1.54 to 3.22, and the mean value is 2.41. In the studies of spectra of the micro-earthquakes in the Luanxian area, that stress drop increases with increasing earthquake moment is found. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 430–441, 1991.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号