首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The type of collision between the European and the Adriatic plates in the easternmost Alps is one of the most interesting questions regarding the Alpine evolution. Tectonic processes such as compression, escape and uplift are interconnected and shape this area. We can understand these ongoing processes better, if we look for signs of the deformation within the Earth's deep crust of the region. By collecting records from permanent and temporary seismic networks, we assemble a receiver function dataset, and analyze it with the aim of giving new insights on the structure of the lower crust and of the shallow portion of the upper mantle, which are inaccessible to direct observation. Imaging is accomplished by performing common conversion depth stacks along three profiles that crosscut the Eastern Alpine orogen, and allow isolating features consistently persistent in the area. The study shows a moderately flat Moho underlying a seismically anisotropic middle-lower crust from the Southern Alps to the Austroalpine nappes. The spatial progression of anisotropic axes reflects the orientation of the relative motion and of the stress field detected at the surface. These observations suggest that distributed deformation is due to the effect of the Alpine indentation. In the shallow upper mantle right below the Moho interface, a further anisotropic layer is recognized, extended from the Bohemian Massif to the Northern Calcareous Alps.  相似文献   

2.
Using informational digital diagrams, we analyzed the snow event that occurred on Feb 26, 2006 and the sandstorm on Apr 11, 2006 in Xi'an. Results indicate that, under similar weather circumstances, different events evidently exhibit unique vertical structure features. Informational digital diagrams provide a method for transitional weather prediction, a problem for present extrapolative analysis system.  相似文献   

3.
Directivity effects are a characteristic of seismic source finiteness and are a consequence of the rupture spread in preferential directions. These effects are manifested through seismic spectral deviations as a function of the observation location. The directivity by Doppler effect method permits estimation of the directions and rupture velocities, beginning from the duration of common pulses, which are identified in waveforms or relative source time functions. The general model of directivity that supports the method presented here is a Doppler analysis based on a kinematic source model of rupture (Haskell, Bull Seismol Soc Am 54:1811–1841, 1964) and a structural medium with spherical symmetry. To evaluate its performance, we subjected the method to a series of tests with synthetic data obtained from ten typical seismic ruptures. The experimental conditions studied correspond with scenarios of simple and complex, unilaterally and bilaterally extended ruptures with different mechanisms and datasets with different levels of azimuthal coverage. The obtained results generally agree with the expected values. We also present four real case studies, applying the method to the following earthquakes: Arequipa, Peru (M w = 8.4, June 23, 2001); Denali, AK, USA (M w = 7.8; November 3, 2002); Zemmouri–Boumerdes, Algeria (M w = 6.8, May 21, 2003); and Sumatra, Indonesia (M w = 9.3, December 26, 2004). The results obtained from the dataset of the four earthquakes agreed, in general, with the values presented by other authors using different methods and data.  相似文献   

4.
The Gobi Altai region of southwestern Mongolia is a natural laboratory for studying processes of active, transpressional, intracontinental mountain building at different stages of development. The region is structurally dominated by several major E—W left-lateral strike-slip fault systems. The North Gobi Altai fault system is a seismically active, right-stepping, left-lateral, strike-slip fault system that can be traced along the surface for over 350 km. The eastern two-thirds of the fault system ruptured during a major earthquake (M = 8.3) in 1957, whereas degraded fault scarps cutting alluvial deposits along the western third of the system indicate that this segment did not rupture during the 1957 event but has been active during the Quaternary. The highest mountains in the Gobi Altai are restraining bend uplifts along the length of the fault system. Detailed transects across two of the restraining bends indicate that they have asymmetric flower structure cross-sectional geometries, with thrust faults rooting into oblique-slip and strike-slip master faults. Continued NE-directed convergence across the fault system, coupled with left-lateral strike-slip displacements, will lead to growth and coalescence of the restraining bends into a continuous sublinear range, possibly obscuring the original strike-slip fault system; this may be a common mountain building process.

The largely unknown Gobi-Tien Shan fault system is a major left-lateral strike-slip fault system (1200 km + long) that links the southern ranges of the Gobi Altai with the Barkol Tagh and Bogda Shan of the easternmost Tien Shan in China. Active scarps cutting alluvial deposits are visible on satellite imagery along much of its central section, indicating Quaternary activity. The total displacement is unknown, but small parallel splays have apparent offsets of 20 + km, suggesting that the main fault zone has experienced significantly more displacement. Field investigations conducted at two locations in southwestern Mongolia indicate that late Cenozoic transpressional uplift is still active along the fault system. The spatial relationship between topography and active faults in the Barkol Tagh and Bogda Shan strongly suggests that these ranges are large, coalescing, restraining bends that have accommodated the fault's left-lateral motion by thrusting, oblique-slip displacement and uplift. Thus, from a Mongolian perspective, the easternmost Tien Shan formed where it is because it lies at the western termination zone of the Gobi-Tien Shan fault system. The Gobi-Tien Shan fault system is one of the longest fault systems in central Asia and, together with the North Gobi Altai and other, smaller, subparallel fault systems, is accommodating the eastward translation of south Mongolia relative to the Hangay Dome and Siberia. These displacements are interpreted to be due to eastward viscous flow of uppermost mantle material in the topographically low, E–W trending corridor between the northern edge of the Tibetan Plateau and the Hangay Dome, presumably in response to the Indo-Eurasian collision 2500 km to the south.  相似文献   


5.
杨旭  李永华 《地震学报》2020,42(2):121-134
本文利用中国数字测震台网和流动台站的地震资料,基于参数优化的AICD自动拾取算法和质量评估方案得到了高质量的震相到时,并在此基础上使用一维、三维定位方法对腾冲地区的799次地震事件进行了重新定位。定位结果显示:水平方向上,一维、三维重定位结果相差较小;深度方向上,三维定位的震源成丛分布比一维定位结果更加密集,地震主要位于地壳内低速层之上。分别利用一维、三维定位方法对典型地震、人工震源进行定位,结果表明,三维定位的精度明显优于一维定位,其在水平、深度方向上的平均绝对定位误差分别为0.7 km和1.3 km。   相似文献   

6.
We consider an inverse problem of determination of short-period (high-frequency) radiator in an extended earthquake source. This radiator is assumed to be noncoherent (i.e., random), it can be described by its power flux or brightness (which depends on time and location over the extended source). To decide about this radiator we try to use temporal intensity function (TIF) of a seismic waveform at a given receiver point. It is defined as (time-varying) mean elastic wave energy flux through unit area. We suggest estimating it empirically from the velocity seismogram by its squaring and smoothing. We refer to this function as observed TIF. We believe that one can represent TIF produced by an extended radiator and recorded at some receiver point in the earth as convolution of the two components: (1) ideal intensity function (ITIF) which would be recorded in the ideal nonscattering earth from the same radiator; and (2) intensity function which would be recorded in the real earth from unit point instant radiator (intensity Green's function, IGF). This representation enables us to attempt to estimate an ITIF of a large earthquake by inverse filtering or deconvolution of the observed TIF of this event, using the observed TIF of a small event (actually, fore-or aftershock) as the empirical IGF. Therefore, the effect of scattering is stripped off. Examples of the application of this procedure to real data are given. We also show that if one can determine far-field ITIF for enough rays, one can extract from them the information on space-time structure of the radiator (that is, of brightness function). We apply this theoretical approach to short-periodP-wave records of the 1978 Miyagi-oki earthquake (M=7.6). Spatial and temporal centroids of a short-period radiator are estimated.  相似文献   

7.
The magnetic field behavior in the magnetosheath, when the IMF and the solar wind velocity are almost collinear, has been analyzed based on the perturbation method. Magnetic disturbances are considered against a background of the stationary MHD solar wind flow around the magnetosphere when the magnetic field and the solar wind velocity are strictly collinear. It has been indicated that the angle between the magnetic field and velocity vectors increases considerably in a relatively thin layer near the magnetopause. The angle rise factor profiles have been determined for different distances from the subsolar point. The thickness of the layer, where the angle reaches values of about unity and more, has been estimated. It is important to take this layer into account when the magnetopause stability with respect to Kelvin-Helmholtz waves is analyzed.  相似文献   

8.
9.
The weight of the geological evidence, which includes the recognition of a late Cretaceous paired metamorphic belt, suggests that a southward dipping subduction zone existed in the Eastern Alps. On this basis a new plate tectonic model is presented for the post-Palaeozoic evolution of that orogen.  相似文献   

10.
In order to empirically obtain the scaling relationships for the high-frequency ground motion in the Western Alps (NW Italy), regressions are carried out on more than 7500 seismograms from 957 regional earthquakes. The waveforms were selected from the database of 6 three-component stations of the RSNI (Regional Seismic network of Northwestern Italy). The events, M W ranging between 1.2 and 4.8, were recorded within a hypocentral distance of 200 km during the time period: 1996–2001. The peak ground velocities are measured in selected narrow-frequency bands, between 0.5 and 14 Hz. Results are presented in terms of a regional attenuation function for the vertical ground motion, a set of vertical excitation terms at the reference station STV2 (hard-rock), and a set of site terms (vertical and horizontal), all relative to the vertical component of station STV2.The regional propagation of the ground motion is modeled after quantifying the expected duration of the seismic motion as a function of frequency and hypocentral distance. A simple functional form is used to take into account both the geometrical and the anelastic attenuation: a multi-variable grid search yielded a quality factor Q(f) = 310f 0.20, together with a quadri-linear geometrical spreading at low frequency. A simpler, bi-linear geometrical spreading seems to be more appropriate at higher frequencies (f > 1.0 Hz). Excitation terms are matched by using a Brune spectral model with variable, magnitude-dependent stress drop: at M w 4.8, we used Δσ = 50 MPa. A regional distance-independent attenuation parameter is obtained (κ0 = 0.012 s) by modelling the average spectral decay at high frequency of small earthquakes.In order to predict the absolute levels of ground shaking in the region, the excitation/attenuation model is used through the Random Vibration Theory (RVT) with a stochastic point-source model. The expected peak-ground accelerations (PGA) are compared with the ones derived by Ambraseys et al. (1996) for the Mediterranean region and by Sabetta and Pugliese (1996) for the Italian territory.  相似文献   

11.
Array measurements of microtremors at 16 sites in the city of Thessaloniki were performed to estimate the Vs velocity of soil formations for site effect analysis. The spatial autocorrelation method was used to determine phase velocity dispersion curves in the frequency range from 0.8–1.5 to 6–7 Hz. A Rayleigh wave inversion technique (stochastic method) was subsequently applied to determine the Vs profiles at all the examined sites. The determination of Vs profiles reached a depth of 320 m. Comparisons with Vs values from cross-hole tests at the same sites proved the reliability of the SPAC method. The accuracy of the Vs profiles, the ability to reach large penetration depths in densely populated urban areas and its low cost compared to conventional geophysical prospecting, make Mictrotremor Exploration Method very attractive and useful for microzonation and site effects studies. An example of its application for the site characterization in Thessaloniki is presented herein.  相似文献   

12.
13.
Following the implementation of the European Water Framework Directive (WFD) and the need to reach a “good ecological status” for rivers, key-questions are being raised about braided rivers. Before any environmental policy can be drawn up, these rivers need to be located, long term changes must be evaluated, and the regional diversity of such systems must be understood, as their inner complexity has not yet been well studied. Therefore, the aim of this work is to carry out a census of the braided channels of the French Alps and to establish a typology based on basic geomorphic indicators. A minimum estimate of the cumulative length of braided rivers prior to major infrastructure construction amounted to 1214 km. Around 53% of these rivers have disappeared during the last two centuries in relation to embankment or channelization, but a loss of 17% is still unexplained. The range in catchment size, mean slope and active channel width has been determined for the Western Alpine braided channels as well as the range in changes due to narrowing, widening and shifting. Seven types of braided rivers have been distinguished based on geographical settings (climate conditions and geology) and differences in terms of adjustment to human pressure on peak flow and sediment delivery. The percentage area of islands in the active channel and the relative length of banks also show a regional difference. Maximum and minimum thresholds of braided activity have been established taking into account the active channel width and the catchment area. The position of the studied reaches between these two thresholds are discussed in relation to position of rivers known in the literature, considering both long-term trends and short-term fluctuations in channel width.  相似文献   

14.
The coupling relationships between hillslope and channel network are fundamental for the understanding of mountainous landscapes' evolution. Here, we applied dendrogeomorphic methods to identify the hillslope–channel relationship and the sediment transfer dynamics within an alpine catchment, at the highest possible resolution. The Schimbrig catchment is located in the central Swiss Alps and can be divided into two distinct geomorphic sectors. To the east, the Schimbrig earth flow is the largest sediment source of the basin, while to the west, the Rossloch channel network is affected by numerous shallow landslides responsible for the supply of sediment from hillslopes to channels. To understand the connectivity between hillslopes and channels and between sources and sink, trees were sampled along the main Rossloch stream, on the Schimbrig earth flow and on the Rossloch depositional area. Geomorphic observations and dendrogeomophic results indicate different mechanisms of sediment production, transfer and deposition between upper and lower segments of the channel network. In the source areas (upper part of the Rossloch channel system), sediment is delivered to the channel network through slow movements of the ground, typical of earth flow, shallow landslides and soil creep. Contrariwise, in the depositional area (lower part of the channel network), the mechanisms of sediment transfer are mainly due to torrential activity, floods and debris flows. Tree analysis allowed the reconstruction of periods of high activity during the last century for the entire catchment. The collected dataset presents a very high temporal resolution but we encountered some limitations in establishing the source‐to‐sink connectivity at the catchment‐wide scale. Despite these uncertainties, for decennial timescales the results suggest a direct coupling between hillslopes and neighbouring channels in the Rossloch channel network, and a de‐coupling between sediment sources and sink farther downstream, with connections possible only during extraordinary events. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
16.
In order to study the sensitivity of snow cover to changes in meteorological variables at a regional scale, a numerical snow model and an analysis system of the meteorological conditions adapted to relief were used. This approach has been successfully tested by comparing simulated and measured snow depth at 37 sites in the French Alps during a ten year data period. Then, the sensitivity of the snow cover to a variation in climatic conditions was tested by two different methods, which led to very similar results. To assess the impact of a particular “doubled CO2” scenario, coherent perturbations were introduced in the input data of the snow model. It was found that although the impact would be very pronounced, it would also be extremely differentiated, dependent on the internal state of the snow cover. The most sensitive areas are the elevations below 2400 m, especially in the southern part of the French Alps.  相似文献   

17.
This article employs Support Vector Machine (SVM) and Relevance Vector Machine (RVM) for prediction of Evaporation Losses (E) in reservoirs. SVM that is firmly based on the theory of statistical learning theory, uses regression technique by introducing ε‐insensitive loss function has been adopted. RVM is based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. The input of SVM and RVM models are mean air temperature (T) ( °C), average wind speed (WS) (m/sec), sunshine hours (SH)(hrs/day), and mean relative humidity (RH) (%). Equations have been also developed for prediction of E. The developed RVM model gives variance of the predicted E. A comparative study has also been presented between SVM, RVM and ANN models. The results indicate that the developed SVM and RVM can be used as a practical tool for prediction of E. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Glaciokarst is a landscape which combines karst features and hydrology as well as inherited glacial features. It is a result of glaciation upon a karst geomorphological system. The relationship between glaciers and karst is rather poorly known and inadequately recognized. This research focuses on three distinct karst areas along the Adriatic coast in the southern Dinaric Alps that were affected by the Quaternary glaciations. An insight into specific glaciokarst processes and surface features was provided through the study of the areas of the Lov?en, Orjen and Vele? Mountains. A glaciokarst geomorphology is in general well preserved due to the prevailing vertically oriented chemical denudation following de‐glaciation and almost the entire absence of other surface processes. Typical glacial erosional features are combined by a variety of depressions which are the result of a karstic drainage of sub‐glacial waters. The majority of glacial deposits occur as extensive lateral‐terminal moraine complexes, which are often dissected by smaller breach‐lobe moraines on the external side of the ridge. Those moraine complexes are likely to be a product of several glacial events, which is supported by complex depositional structures. According to the type of glacial depositional features, the glaciers in the study areas were likely to have characteristics of moraine‐dammed glaciers. Due to vertical drainage ice‐marginal fluvial processes were unable to evacuate sediment. Fluvial transport between glacial and pro‐glacial systems in karst areas is inefficient. Nevertheless, some sediment from the glacier margin is washed away by the pro‐glacial streams, filling the karst depressions and forming piedmont‐type poljes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
20.
u¶rt;m mam m u¶rt;uu n n mau au u n¶rt; anama. am m auu u au am aua ¶rt;a, m m unam ¶rt; u¶rt;au ua aau mn¶rt;mu n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号